核因子-κB P65、IL-8及MMP-9在SIAI孕妇不同组织中的表达及临床意义的探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早产是常见的妊娠并发症,约占整个妊娠的5%-15%。早产儿发病率和病死率明显高于正常足月产新生儿,约占围产儿死亡率的2/3,因此一直受到产科界的关注。研究发现早产与宫内感染关系密切,我们将与宫内感染相关的早产称为感染性早产。根据报道早产孕妇中有约58%-88%被证实有组织学绒毛膜羊膜炎改变。但临床上多数孕妇呈现亚临床表现,症状不典型,给临床诊断带来困难。以往感染性早产诊断主要依靠羊水细菌培养阳性或胎盘胎膜组织学检查发现绒毛膜羊膜炎,但上述方法前者所需时间较长,后者需要产后才能确诊,不能达到早期诊断早期治疗的目的。近年来有研究者通过检测孕妇外周血中CRP(c-reactive protein,CRP)、补体及免疫球蛋白ⅠgM、ⅠgG、ⅠgA、ⅠgS等预测感染性早产,但临床应用中发现这些指标均存在敏感性和特异性较低的问题。因此从早产发病机制着手,寻找早期反映羊膜腔内感染敏感性和特异性高的指标成为目前研究的热点。
     NF-κB是近年来发现的一种核转录因子,启动并调节机体炎症和免疫反应、凋亡及细胞的增值分化等相关基因的转录。参与早产及分娩发动过程的许多炎性因子如IL-8等的分泌,均受NF-κB的调控。也有报道MMP-9的基因上游调节元件中含有NF-κB结合位点,与NF-κB结合后启动基因的转录。
     白介素-8(interleukin-8,IL一8)是一种重要的炎性细胞因子,参与机体的炎性反应,被认为是介导羊膜腔内感染的炎性介质,能客观反映羊膜腔内感染的情况,IL-8的表达明显增高提示宫内感染的存在。根据大量研究推测IL-8可能通过刺激多核白细胞的侵润继而促进MMPs的分泌。
     MMPs是一组锌依赖的蛋白水解酶,主要参与细胞外基质的代谢。MMP-9是MMPs家族中的一员,可特异性地降解Ⅳ型胶原。Ⅳ胶原主要存在于绒毛膜和羊膜的基底层。研究发现MMP-9活性的升高与胎膜中胶原的降解密切相关,MMP-9参与正常足月分娩胎膜破裂的发生。进一步研究发现伴有羊膜腔内感染的胎膜早破患者,其体内MMP-9的表达明显高于正常妊娠。但MMP-9与感染的关系并未得到阐明。
     NF-κB是IL-8、MMP-9的基因表达促进因子,IL-8参与促进MMP-9的分泌,MMP-9表达异常增高导致胎膜破裂。NF-κB、IL-8、MMP-9在亚临床绒毛膜羊膜炎的发生中是否存在相关性?它们在孕妇血清、胎盘胎膜中的表达如何,又与胎儿脐血中的表达存在什么关系,目前尚未见报道。
     因此,本实验选择了早产这一常见的妊娠并发症作为研究对象,从胎盘胎膜入手,通过不同的实验方法观察NF-κB与IL-8及MMP-9的表达变化及组织形态学的改变;比较母外周血及脐血中NF-κB、IL-8与MMP-9水平。从而探讨NF-κB、IL-8与MMP-9的含量与亚临床绒毛膜羊膜炎的关系及其在发病机制中的作用,为早期预测感染性早产及为临床上早期制定治疗方案提供理论依据。
     NF-κB P65蛋白预测亚临床绒毛膜羊膜炎价值的研究
     目的:研究NF-κB P65在亚临床绒毛膜羊膜炎孕母血、脐血、胎盘胎膜组织中的表达变化,探讨其在亚临床绒毛膜羊膜炎发病机制中的作用,评价其预测亚临床绒毛膜羊膜炎及亚临床绒毛膜羊膜炎治疗效果的临床价值
     方法:选择早产临产组36例,先兆早产组14例,足月妊娠自然临产组37例,足月妊娠同期对照组38例,早产同期对照组18例。通过HE染色、免疫组织化学、免疫细胞化学、Western Blotting、RT-PCR五种实验方法,观察NF-κB P65在亚临床绒毛膜羊膜炎孕母血、脐血、胎盘胎膜组织中的表达变化。
     结果:
     1.各组孕妇胎盘胎膜组织病理检查结果
     36例早产临产组中有24例(66.67%)为亚绒毛膜羊膜炎患者,其中轻度12例,中度10例,重度2例;37例足月妊娠自然临产组中有7例(18.92%)为亚绒毛膜羊膜炎患者,其中轻度5例,中度2例,重度0例;38例足月妊娠同期对照组中有3例(7.89%)为绒毛膜羊膜炎患者,其中轻度3例,中度0例,重度0例。
     2.两组孕妇NF-κB P65在胎盘胎膜组织中表达水平及临床价值
     2.1免疫组织化学测定两组孕妇NF-κB P65蛋白在胎盘胎膜组织表达比较
     用免疫组织化学法测定妊娠合并亚临床绒毛膜羊膜炎组与妊娠无亚临床绒毛膜羊膜炎组两组孕妇NF-κB P65蛋白表达水平。其的平均染色强度变化妊娠合并亚临床绒毛膜羊膜炎组的中位数和范围为8.00(2.00~8.00),妊娠无亚临床绒毛膜羊膜炎组的中位数和范围为4.00(2.00~6.00),两组间比较差异有统计学意义(P<0.001)。表达比较
     NF-κB P65在妊娠合并亚临床绒毛膜羊膜炎组的中位数和范围为48.43(7.75~97.27),妊娠无亚临床绒毛膜羊膜炎组的中位数和范围为27.98(7.75~61.83),两组间比较差异有统计学意义(P<0.001)。
     2.3 RT-PCR测定两组孕妇NF-κB P65 mRNA在胎盘胎膜组织表达比较
     NF-κB P65 mRNA在妊娠合并亚临床绒毛膜羊膜炎组(47.51±17.21)比妊娠无亚临床绒毛膜羊膜炎组(31.30±13.60)高,两组间比较差异有统计学意义(P<0.001)。
     3.NF-κB P65在脐血中的表达
     3.1免疫细胞化学测定两组孕妇脐血白细胞中NF-κB P65蛋白表达比较
     用免疫细胞化学法测定妊娠合并亚临床绒毛膜羊膜炎组与妊娠无亚临床绒毛膜羊膜炎组两组孕妇脐血白细胞中NF-κB P65蛋白表达水平。其的平均染色强度变化在妊娠合并亚临床绒毛膜羊膜炎组中的中位数和范围为4.00(2.00~8.00),妊娠无亚临床绒毛膜羊膜炎组中的中位数和范围为2.00(2.00~6.00),两组间比较差异有统计学意义(P<0.001)。
     3.2 Western Blotting测定两组孕妇脐血白细胞中NF-κB P65蛋白表达比较
     NF-κB P65在妊娠合并亚临床绒毛膜羊膜炎组的中位数和范围为27.38(17.89~69.40),妊娠无亚临床绒毛膜羊膜炎组中位数和范围为25.18(13.92~32.46),两组间比较差异有统计学意义(P<0.05)。
     3.3 RT-PCR测定各组孕妇脐血自细胞中NF-κB P65 mRNA表达比较
     NF-κB P65 mRNA在妊娠合并亚临床绒毛膜羊膜炎组中的中位数和范围为30.76(17.79~74.72),妊娠无亚临床绒毛膜羊膜炎组中的中位数和范围为22.67(13.57~30.12),两组间比较差异有统计学意义(P<0.01)。
     4.NF-κB P65在母血中的表达
     4.1免疫细胞化学测定两组孕妇母血白细胞中NF-κB P65蛋白表达比较
     用免疫细胞化学法测定妊娠合并亚临床绒毛膜羊膜炎组与妊娠无亚临床绒毛膜羊膜炎组两组孕妇母血白细胞中NF-κB P65蛋白表达水平。其的平均染色强度变化在妊娠合并亚临床绒毛膜羊膜炎组的中位数和范围为8.00(3.00~8.00),妊娠无亚临床绒毛膜羊膜炎组的中位数和范围为4.00(2.00~6.00),两组间比较差异有统计学意义(P<0.001)。
     4.2 Western Blotting测定两组孕妇母血白细胞中NF-κB P65蛋白表达比较
     NF-κB P65在妊娠合并亚临床绒毛膜羊膜炎组的中位数和范围为34.22(19.24~88.49),妊娠无亚临床绒毛膜羊膜炎组的中位数和范围为31.45(11.33~48.44),两组间比较差异有统计学意义(P<0.01)。
     4.3 RT-PCR测定各组孕妇母血白细胞中NF-κB P65 mRNA表达比较
     NF-κB P65 mRNA在妊娠合并亚临床绒毛膜羊膜炎组的中位数和范围为42.58(28.57~81.11),妊娠无亚临床绒毛膜羊膜炎组的中位数和范围为23.56(14.92~42.87),两组间比较差异有统计学意义(P<0.001)。
     5胎盘胎膜组织、脐血及母血中NF-κB P65表达的相关性比较
     5.1产妇胎盘胎膜组织、脐血及母血中NF-κB P65蛋白IHC/ICC法检测结果的相关性比较
     分析IHC/ICC法检测胎盘胎膜组织、脐血及母血中NF-κB P65蛋白的表达三者间的相互关系,发现胎盘胎膜组织NF-κB P65蛋白的表达与脐血NF-κB P65蛋白的表达存在正相关性,相关系数r=0.498,P<0.01;胎盘胎膜组织NF-κB P65蛋白的表达与母血中NF-κB P65蛋白的表达存在正相关性,相关系数r=0.581,P<0.01;脐血NF-κB P65蛋白的表达与母血中NF-κB P65蛋白的表达存在正相关性,相关系数r=0.769,P<0.01。
     5.2产妇胎盘胎膜组织、脐血及母血中NF-κB P65蛋白WesternBlotting法检测结果的相关性比较
     分析Western Blotting法检测胎盘胎膜组织、脐血及母血中NF-κB P65蛋白的表达三者间的相互关系,发现胎盘胎膜组织NF-κB P65蛋白的表达与脐血NF-κB P65蛋白的表达存在正相关性,相关系数r=0.583,P<0.01;胎盘胎膜组织NF-κB P65蛋白的表达与母血中NF-κB P65蛋白的表达存在正相关性,相关系数r=0.714,P<0.01;脐血NF-K B P65蛋白的表达与母血中NF-K B P65蛋白的表达存在正相关性,相关系数r=0.802,P<0.01。
     5.3产妇胎盘胎膜组织、脐血及母血中NF-κB P65 mRNA RT-PCR法检测结果的相关性比较
     分析RT-PCR法检测胎盘胎膜组织、脐血及母血中NF-κB P65mRNA的表达三者间的相互关系,发现胎盘胎膜组织NF-κB P65 mRNA的表达与脐血NF-κB P65 mRNA的表达存在正相关性,相关系数r=0.522,P<0.01;胎盘胎膜组织NF-κB P65mRNA的表达与母血中NF-KB P65 mRNA的表达存在正相关性,相关系数r=0.571,P<0.01;脐血NF-κB P65 mRNA的表达与母血中NF-κB P65 mRNA的表达存在正相关性,相关系数r=0.892,P<0.01。
     6.NF-κB P65的ROC曲线
     6.1产妇脐血白细胞中NF-κB P65的ROC曲线
     显示出运用ICC、Western Blotting、RT-PCR三种方法检测脐血白细胞中NF-κB P65的临界点分别为3.50,25.64和22.83,为最适预测有无绒毛膜羊膜炎的值。三种方法曲线下NF-κB P65的积分面积分别为0.728,0.653和0.749,三者面积比较差异有统计学意义(P<0.05)。其中ICC检测脐血白细胞中NF-κB P65有较好的敏感性(75.8%),特异性(51.9%)。
     6.2产妇母血白细胞中NF-κB P65的ROC曲线
     显示出运用ICC、Western Blotting、RT-PCR三种方法检测母血白细胞中NF-κB P65的临界点分别为5.00,31.61和31.68,为最适预测有无绒毛膜羊膜炎的值。三种方法曲线下NF-κB P65的积分面积分别为0.899,0.676和0.920,三者面积比较差异有统计学意义(P<0.05)。其中运用RT-PCR法检测母血白细胞中NF-κB P65mRNA有较好的敏感性(87.9%),特异性(89.3%)。
     结论:
     1.亚临床绒毛膜羊膜炎孕母血白细胞中NF-κB P65表达增高,可能作为预测亚临床绒毛膜羊膜炎实验室指标之一,且有可能作为评价亚临床绒毛膜羊膜炎治疗效果实验室指标之一;
     2.亚临床绒毛膜羊膜炎胎儿脐血中NF-κB P65表达增高,可能作为预测早产亚临床绒毛膜羊膜炎实验室指标之一,且有可能作为评价治疗亚临床绒毛膜羊膜炎预后实验室指标之一;
     3.亚临床绒毛膜羊膜炎孕妇胎盘胎膜组织中NF-κB P65蛋白表达增高,提示NF-κB P65在亚临床绒毛膜羊膜炎发病机制中起到重要的作用。
     Ik-8预测亚临床绒毛膜羊膜炎价值的研究
     目的:研究IL-8在亚临床绒毛膜羊膜炎孕妇母血、脐血、胎盘胎膜组织中的表达水平的变化,探讨其在亚临床绒毛膜羊膜炎发病机制中的作用,评价其早期预测感染性早产的价值。
     方法:选择早产临产组36例,先兆早产组14例,足月妊娠自然临产组37例,足月妊娠同期对照组38例,早产同期对照组18例。通过ELISA、HE染色、免疫组织化学3种实验方法,观察IL-8蛋白在早产亚临床绒毛膜羊膜炎孕妇母血、脐血、胎盘胎膜组织中的表达变化。
     结果:
     1.各组孕妇胎盘胎膜组织病理检查结果
     孕妇胎盘胎膜组织病理检查结果同第一章。
     2.免疫组织化学测定各组孕妇IL-8蛋白在胎盘胎膜组织表达比较
     用免疫组织化学法测定妊娠合并亚临床绒毛膜羊膜炎组与妊娠无亚临床绒毛膜羊膜炎组两组孕妇IL-8蛋白表达水平。其的平均染色强度变化在妊娠合并亚临床绒毛膜羊膜炎组的中位数和范围为4.00(2.00~8.00),妊娠无亚临床绒毛膜羊膜炎组的中位数和范围为2.00(2.00~6.00),两组间比较差异有统计学意义(P<0.001)。
     3.IL-8在脐血清中的表达
     用ELISA法测定妊娠合并亚临床绒毛膜羊膜炎组与妊娠无亚临床绒毛膜羊膜炎组两组孕妇脐血清IL-8中表达水平。IL-8在妊娠合并亚临床绒毛膜羊膜炎组(33.43±12.98ng/ml)比妊娠无亚临床绒毛膜羊膜炎组(20.21±11.47ng/ml)高,两组间比较差异有统计学意义(P<0.001)。
     4.IL-8在母血清中的表达
     用ELISA法测定妊娠合并亚临床绒毛膜羊膜炎组与妊娠无亚临床绒毛膜羊膜炎组两组孕妇母血清IL-8中表达水平。IL-8在妊娠合并亚临床绒毛膜羊膜炎组中的中位数和范围为45.14(25.15~63.21)ng/ml,妊娠无亚临床绒毛膜羊膜炎组的中位数和范围为24.18(0.57~65.13)ng/ml,两组间比较差异均有统计学意义(P<0.001)。
     5.胎盘胎膜组织、脐血及母血中IL-8表达的相关性比较
     分析胎盘胎膜组织、脐血及母血中IL-8的表达三者间的相互关系,发现盘胎膜组织IL-8的表达与脐血IL-8的表达存在正相关性,相关系数r=0.296,P<0.01;胎盘胎膜组织IL-8的表达与母血中IL-8的表达存在正相关性,相关系数r=0.304,P<0.01;脐血IL-8的表达与母血中IL-8的表达存在正相关性,相关系数r=0.532,P<0.01。
     6.IL-8的ROC曲线
     6.1产妇脐血清中IL-8的ROC曲线
     显示出脐清中IL-8的临界点为25.40ng/ml,为最适预测有无亚临床绒毛膜羊膜炎的值。曲线下IL-8的积分面积为0.773。其敏感性为85.3%,特异性为70.1%。
     6.2母血清IL-8的ROC曲线
     显示出母血清IL-8的临界点为34.76na/m1,为最适预测有无绒毛膜羊膜炎的值。曲线下IL-8的积分面积为0.798。其敏感性为79.4%,特异性为79.2%。
     结论:
     1.亚临床绒毛膜羊膜炎孕妇母血清中IL-8表达增高,可能作为预测早产亚临床绒毛膜羊膜炎实验室指标之一,且有可能作为评价早产亚临床绒毛膜羊膜炎治疗效果实验室指标之一;
     2.亚临床绒毛膜羊膜炎胎儿脐血中IL-8表达增高,可能作为预测亚临床绒毛膜羊膜炎实验室指标之一,且有可能作为评价治疗亚临床绒毛膜羊膜炎预后实验室指标之一;
     3.亚临床绒毛膜羊膜炎孕妇胎盘胎膜组织中IL-8表达增高,提示IL-8因子参与亚临床绒毛膜羊膜炎发病。
     4.亚临床绒毛膜羊膜炎胎儿脐血中IL-8蛋白表达增高,可能作为预测新生儿感染性疾病的实验室指标之一,有助于早期协助诊断新生儿感染性疾病并及时指导临床治疗;并且可能作为新生儿感染性疾病疗效及愈后评价的实验室指标。
     MMP-9预测亚临床绒毛膜羊膜炎价值的研究
     目的:研究MMP-9在亚临床绒毛膜羊膜炎孕妇母血、脐血、胎盘胎膜组织中的表达水平的变化,探讨其在亚临床绒毛膜羊膜炎发病机制中的作用,评价其早期预测感染性早产的价值。
     方法:选择早产临产组36例,先兆早产组14例,足月妊娠自然临产组37例,足月妊娠同期对照组38例,早产同期对照组18例。通过ELISA、HE染色、免疫组织化学3种实验方法,观察MMP-9蛋白在早产亚临床绒毛膜羊膜炎孕妇母血、脐血、胎盘胎膜组织中的表达变化。
     结果:
     1.各组孕妇胎盘胎膜组织病理检查结果孕妇胎盘胎膜组织病理检查结果同第一章。
     2.免疫组织化学测定各组孕妇MMP-9蛋白在胎盘胎膜组织表达比较
     用免疫组织化学法测定妊娠合并亚临床绒毛膜羊膜炎组与妊娠无亚临床绒毛膜羊膜炎组两组孕妇MMP-9蛋白表达水平。其的平均染色强度变化在妊娠合并亚临床绒毛膜羊膜炎组的中位数和范围为6.00(2.00~8.00),妊娠无亚临床绒毛膜羊膜炎组的中位数和范围为2.00(2.00~6.00),两组间比较差异有统计学意义(P<0.001)。
     3.MMP-9在脐血清中的表达
     用ELISA法测定妊娠合并亚临床绒毛膜羊膜炎组与妊娠无亚临床绒毛膜羊膜炎组两组孕妇脐血清MMP-9中表达水平。MMP-9在妊娠合并亚临床绒毛膜羊膜炎组(368.41±110.55ng/m1)比妊娠无亚临床绒毛膜羊膜炎组(281.67±96.73ng/ml)高,两组间比较差异有统计学意义(P<0.001)。
     4.MMP-9在母血清中的表达
     用ELISA法测定妊娠合并亚临床绒毛膜羊膜炎组与妊娠无亚临床绒毛膜羊膜炎组两组孕妇母血清MMP-9中表达水平。MMP-9在妊娠合并亚临床绒毛膜羊膜炎组的中位数和范围为458.19(315.52~522.15)ng/ml,妊娠无亚临床绒毛膜羊膜炎组307.15(181.29~533.30)ng/ml,两组问比较差异有统计学意义(P<0.001)。
     5.胎盘胎膜组织、脐血及母血中MMP-9表达的相关性比较
     分析胎盘胎膜组织、脐血及母血中MMP-9的表达三者间的相互关系,发现胎盘胎膜组织MMP-9的表达与脐血MMP-9的表达存在正相关性,相关系数r=0.420,P<0.01;胎盘胎膜组织MMP-9的表达与母血中MMP-9的表达存在正相关性,相关系数r=0.412,P<0.01;脐血MMP-9的表达与母血中MMP-9的表达存在正相关性,相关系数r=0.561,P<0.01。
     6.MMP-9的ROC曲线6.1产妇脐血清中MMP-9的ROC曲线
     显示出脐清中MMP-9的临界点为317.50ng/m1,为最适预测有无亚临床绒毛膜羊膜炎的值。曲线下MMP-9的积分面积为0.720。其敏感性为73.5%,特异性为71.4%。
     6.2产妇母血清MMP-9的ROC曲线显示出母血清MMP-9的临界点为360.81ng/ml,为最适预测有无亚临床绒毛膜羊膜炎的值。曲线下MMP-9的积分面积为0.823。其敏感性为87.4%,特异性为72.0%。
     结论:
     1.亚临床绒毛膜羊膜炎孕妇母血清中MMP-9蛋白表达增高,可能作为预测亚临床绒毛膜羊膜炎实验室指标之一,且有可能作为评价亚临床绒毛膜羊膜炎治疗效果实验室指标之一;
     2.亚临床绒毛膜羊膜炎胎儿脐血中MMP-9蛋白表达增高,可能作为预测亚临床绒毛膜羊膜炎实验室指标之一,且有可能作为评价治疗亚临床绒毛膜羊膜炎预后实验室指标之一;
     3.亚临床绒毛膜羊膜炎孕妇胎盘胎膜组织中MMP-9蛋白表达增高,提示MMP-9蛋白参与亚临床绒毛膜羊膜炎发病。
Prematurity is a common complication of pregnancy. The incidence rate is about 5% to 15%.The morbidty and case fatality of premature infant are more than the normal ,which is about 2/3 in perinatal mortality rate . So prematurity is always the focus of Obstetrics. The intrauterine infection is related with premature delivery. About 58 to 88 percent pregnant women of preterm delivery have histological change of chorioamnionitis. But most of pregnant women persent subclinical manifestation,which has not typical clinical symptoms, and great difficulty diagnosis. In the past, the diagnosis of prematurity associated with infection depended on positive outcome of bacterial culture of the amniotic fluid or the histology diagnosis. But both of them could not achieve the purpose of early diagnosis, because the first one took a long time, the later could be later diagnosed after parturition. For the past few years, some researchers predicted preterm delivery by detecting C-reactive pretein(CRP), complement or IgM、IgG、IgA、IgS in maternal blood. But these index had lower sensibility and specificity in clinical application. It is focus for researches begin with the pathogenesy of the preterm delivery that we search the sensitive and specific indexs to reflect amniotic cavity inflection.
     NF-kappa B is a kind'of nuclear factor, which can start and regulate the transcripion of related gene such as inflammation ,immune reaction ,apoptosis ,cell increase and differentiation.Many inflammatory factor, such as IL-8 and so on who participate the onset course of immature labour and accouchement are regulated by NF-kappa B. It is reported that the up stream regulatory element of MMP-9 gene contain the binding site of NF-kappa B, which can binding NF-kappa B to promote the transcription
     Interleukin-8 is a kind of important inflammatory cytokine, which participate the inflammatory reaction in organism and mediate the amniotic cavity infection and reflect the infection extent objectively. The high level of IL-8 presents the intrauterine infection. A great quantity study presume IL-8 may promote MMPs excrete by stimulating polycyte infiltrating.
     Matrix metalloproteinases is a family of Zinc dependent proteolytic which can mainly participate the metabolism of extracellular matrix. MMP-9(matrix metalloproteinase, MMP-9) is one of MMPs family which specially degrade typeⅣcollagen. TypeⅣcollagen mainly reside in basal layer of chorion and amnion. The investigation shows that the activity of MMP-9 increased has close relationship with fetal membrane degradation. MMP-9 also participate the development of rupture of membranes in term labor. Further search demonstrate that the level of MMP-9 is obviously higher than normal in premature rupture of membranes(PROM) with amniotic cavity infection. But the relation between MMP-9 and infection is still not clear.
     NF-κB promote the expression of IL-8or MMP-9. IL-8 enhance the secrete of MMP-9. The abnormal high expression will induce membrane rupture. But if NF-κB, IL-8, MMP-9 are related in development of subclinical chorioamnionitis in preterm delivery? What are they expression in maternal blood ,afterbirth tissue or cord blood? These is no reports about it upto now.
     So, we select immature labor as the object to research, which is a frequent complication of cyophoria. To observe the expression and changes of histomorphology, and compare the level of NF-κB, IL,8 and MMP-9 in peripheral blood and cord blood of mother.To investigate the contents of NF-κB, IL-8 and MMP-9,whose relationship with subclinical chorioamnionitis and the effect in pathogenesy.It is helpful for offering theory of infective immature labor to estimate and set up therapeutic regimen.
     Objective: To investigate the change of the p65 submit of the nuclear factor kappa B family in maternal blood, umbilical cord blood, placenta and fetal membrane in subclinical Chorioamnionitis, and analyze its effect on the pathogenesis of subclinical Chorioamnionitis , then to estimate its clinical value and therapeutic efficacy in predicting subclinical Chorioamnionitis.
     Methods: To chose 36 cases of preterm birth patients in labor , 14 of cases threatened premature labor , 37 cases of full term gravida with spontaneous inlabor, 38 cases of full term gravida without threatened labor and 18 cases who have the identical gestational age with preterm birth patients. To observe the change of the p65 submit of the nuclear factor kappa B family in maternal blood, umbilical cord blood, placenta and fetal membrane in preterm birth patients with subclinical Chorioamnionitis by five methods,which were HE staining ,immunohistochemical staining , immunocytochemical staining,Western Blotting and RT-PCR.
     Results:
     1. The pathematology results of placenta and fetal membrane in each groups:
     There were 24 cases who were subclinical chorioamnionitis patients in 36 cases ofpreterm birth patients in labor (66.67%) . 12 cases are mild,10 cases are midrange,2 cases are severe among them. There were 7 cases who were subclinical chorioamnionitis patient in 37 cases of the full term gravida with spontaneous inlabor group (18.92%). 5 cases are mild,2cases are midrange,none is severe among them. There were 3 cases who were subclinical chorioamnionitis patient in 38 cases of the full term gravida without threatened labor group (7.89%). 3 cases are mild, none is midrange and severe..
     2. The expression of NF-κB P65 in placenta and fetal membrane:
     2.1 Compared the expression of NF-κB P65 in placenta and fetal membrane by IHC in each groups:
     The expression of NF-κB P65 were detected in placenta and fetal membrane by im_munohistochemistry staining method in 2 groups,which included pregnant with subclinical chorioamnionitis group and pregnant without subclinical chorioamnionitis group.The median and range of the average staining intensity of NF-κB P65 was [8.00 (2.00~8.00) ] in pregnant with subclinical chorioamnionitis group,and [4.00(2.00~6.00)] in pregnant without subclinical chorioamnionitis group.There was significant difference between the two groups(P<0.001).
     2.2 Compared the expression of NF-κB P65 in placenta and fetal membrane by Western Blotting in each groups:
     The median and range of the average staining intensity of NF-κB P65 was 48.43 (7.75~97.27) in pregnant with subclinical chorioamnionitis group, and 27.98 (7.75~61.83)in pregnant without subclinical chorioamnionitis group.There was significant difference between the two groups(P<0.001).
     2.3 Compared the expression of NF-κB P65 mRNA in placenta and fetal membrane by RT-PCR in each groups:
     The average staining intensity of NF-κB P65 was 47.51±17.21 in pregnant with subclinical chorioamnionitis group, and 31.30±13.60 in pregnant without subclinical chorioamnionitis group.There was significant difference between the two groups(P<0.001).
     3. The expression of NF-κB P65 in umbilical cord blood in each groups:
     3.1 The expression of NF-κB P65 in umbilical cord blood by ICC in each groups:
     The expression of NF-κB P65 were detected in umbilical cord blood by immunocytochemical staining method in 2 groups, which included pregnant with subclinical chorioamnionitis group and pregnant without subclinical chorioamnionitis group. The median and range of the expression of NF-κB P65 was 4.00 (2.00~8.00) in pregnant with subclinical chorioamnionitis group, and 2.00 (2.00~6.00) in pregnant without subclinical chorioamnionitis group. There was significant difference between the two groups(P<0.001).
     3.2 The expression of NF-κB P65 in umbilical cord blood by Wstern Blotting in each groups:
     The median and range of the expression of NF-κB P65 was 27.38 (17.89~69.40) in pregnant with subclinical chorioamnionitis groupthan, and 25.18 (13.92~32.46) in pregnant without subclinical chorioamnionitis group.There was significant difference between the two groups(P<0.001).
     3.3 The expression of NF-κB P65 mRNA in umbilical cord blood by RT-PCR in each groups:
     The median and range of the expression of NF-κB P65 was30.76 (17.79~74.72) in pregnant with subclinical chorioamnionitis group, and 22.67 (13.57~30.12) in pregnant without subclinical chorioamnionitis group. There was significant difference between the two groups(P<0.001).
     4. The expression of NF-κB P65 in maternal blood in each groups:
     4.1 The expression of NF-κB P65 in maternal blood by ICC in each groups:
     The expression of NF-κB P65 were detected in maternal blood by immunocytochemical staining method in 2 groups, which included pregnant with subclinical chofioamnionitis group and pregnant without subclinical chorioamnionitis group. The median and range of the expression of NF-κB P65 in pregnant with subclinical chofioamnionitis group is 8.00 (3.00~8.00), and 4.00 (2.00~6.00) in pregnant without subclinical chofioamnionitis group. There was significant difference between the two groups(P<0.001).
     4.2 The expression of NF-κB P65 in maternal blood by Wstern Blotting in each groups:
     The median and range of the expression of NF-κB P65 was 34.22 (19.24~88.49) in pregnant with subclinical chorioammionitis group, and 31.45 (11.33~48.44) in pregnant without subclinical chorioamnionitis .group.There was significant difference between the two groups(P<0.001).
     4.3 The expression of NF-κB P65 mRNA in maternal blood by RT-PCR in each groups:
     The expression of NF-κB P65 mRNA were detected in maternal blood by RT-PCR method in pregnant with subclinical chorioamnionitis group and pregnant without subclinical chorioamnionitis group. The median and range of the expression of NF-κB P65 was the higher in pregnant with subclinical chorioamnionitis group[42.58 (28.57~81.11) ] than those in Pregnant without subclinical chorioamnionitis group[23.56 (14.92~42.87) ].There was significant difference between the two groups(P<0.001).
     5. The correlation of NF-κB P65 in placenta and fetal membrane, umbilical cord blood, maternal blood:
     5.1 The correlation of NF-κB P65 in placenta and fetal membrane, umbilical cord blood, maternal blood by IHC/ICC:
     To compare the correlation of NF-κB P65 in placenta and fetal membrane, umbilical cord blood, maternal blood ,we found that the concentration of NF-κB P65 in placenta and fetal membrane was positively correlated with that of umbilical cord blood (r=0.498,p<0.01); the concentration of NF-κB P65 in placenta and fetal membrane was positively correlated with that of maternal blood (r=0.581 ,p<0.01); the concentration of NF-κB P65 in umbilical cord blood was positively correlated with that of maternal blood (r=0.769,p<0.01).
     5.2 The correlation of NF-κB P65 in placenta and fetal membrane, umbilical cord blood, maternal blood by Western Blotting:
     To compare the correlation of NF-κB P65 in placenta and fetal membrane, umbilical cord blood, maternal blood by Western Blotting, we found that the concentration of NF-κB P65 in placenta and fetal membrane was positively correlated with that of umbilical cord blood (r=0.583,p<0.01); the concentration of NF-κB P65 in placenta and fetal membrane was positively correlated with that of maternal blood (r=0.714,p<0.01); the concentration of NF-κB P65 in umbilical cord blood was positively correlated with that of maternal blood (r=0.803,p<0.01).
     5.3 The correlation of NF-KB P65 mRNA in placenta and fetal membrane, umbilical cord blood, maternal blood by RT-PCR:
     To compare the correlation of NF-κB P65 in placenta and fetal membrane, umbilical cord blood, maternal blood by RT-PCR,, we found that the concentration of NF-κB P65 in placenta and fetal membrane was positively correlated with that of umbilical cord blood (r=0.522,p<0.01); the concentration of NF-κB P65 in placenta and fetal membrane was positively correlated with that of maternal blood (r=0.571,p<0.01); the concentration of NF-κB P65 in umbilical cord blood was positively correlated with that of maternal blood (r=0.892,p<0.01).
     6. The ROC curve of NF-κB P65
     6.1 The ROC curve of NF-κB P65 in umbilical cord blood:
     The critical point of NF-κB P65 in umbilical cord blood were 3.50, 25.64 and 22.83 respectively by ICC、Western Blotting、RT-PCR, which is the optimization value to estimate subclinical chorioamnionitis. The area under the curve were 0.728, 0.653 and 0.749 respectively. There was significant difference between any groups of the three (P<0.05). It was NF-KB P65 tested by ICC that had better sensitivity(79.4%) and specificity(51.9% )for diagnosing chorioamnionitis.
     6.2 The ROC curve of NF-κB P65 in maternal blood:
     The critical point of NF-κB P65 in umbilical cord blood were 5.00, 31.61 and 31.68 respectively by ICC、Western Blotting、RT-PCR three methods, which is the optimization value to estimate subclinical chorioamnionitis. The area under the curve were 0.899, 0.676 and0.920 respectively. There was significant difference between any groups of the three (P<0.05). It was NF-KB P65 tested by RT-PCR that had better sensitivity (87.9 %)and specificity (89.3 %)for diagnosing chorioamnionitis.
     Conclusion:
     1. The high expression of the p65 submit of the nuclear factor kappa B family in maternal blood in subclinical Chorioamnionitis, which could be one of an biochemical marker in predicting subclinical Chorioamnionitis patients and in evaluating the therapeutic effect on patients with subclinical Chorioamnionitis.
     2. The high expression of the p65 submit of the nuclear factor kappa B family in umbilical cord blood in subclinical Chorioamnionitis, which could be one of an biochemical marker in predicting subclinical chorioamnionitis patients and in evaluating the therapeutic effect on patients with subclinical chorioamnionitis.
     3. It was high expression of the p65 submit of the nuclear factor kappa B family in placenta and fetal membrane in subclinical Chorioamnionitis. which indicates that the p65 submit of the nuclear factor kappa B plays an important part in the pathogenetic of subclinical Chorioamnlonitis patients.
     Objective: To investigate the change of the interleukin-8 in maternal blood, umbilical cord blood, placenta and fetal membrane in subclinical Chorioamnionitis patients,, to analyze its effect on the pathogenesis of subclinical Chorioamnionitis , to estimate clinical value in predicting subclinical Chorioamnionitis
     Methods: To chose 36 cases of preterm birth patients in labor, 14 cases of threatened premature labor, and 37 cases full term gravida with spontaneous in labor, 38 cases full term gravida without threatened labor and 18 cases who have the identical gestational age with preterm birth patients. It were enzyme-linked immunosorbentassay, HE staining, immunohistochemical staining that used to observe the change of the interleukin-8 in maternal blood, umbilical cord blood, placenta and fetal membrane in subclinical Chorioanmionitis.
     Results:
     1. The pathematology results of placenta and fetal membrane in each groups:
     The pathematology results of placenta and fetal membrane were the same that of the ChapterⅠ.
     2. Compared the expression of IL-8 in placenta and fetal membrane by IHC in each groups:
     The expression of IL-8 were detected in 2 groups by immunohistochemistry staining method, which included pregnant with subclinical chorioamnionitis group and pregnant without subclinical chorioamnionitis group. The median and range of the average staining intensity of IL-8 was the higher in pregnant with subclinical chorioamnionitis group[4.00 (2.00~8.00)] than those in pregnant without subclinical chorioamnionifis group[2.00 (2.00~6.00) ]. There was significant difference between the two groups(P<0.001)
     3. The expression of IL-8 in unbilical cord blood in each groups:
     The expression of IL-8 were detected in umbilical cord blood by enzyme-linked immunosorbent assay method in 2 groups, including pregnant with subclinical chorioamnionitis group and pregnant without subclinical chorioamnionitis group. The expression, of IL-8 was the higher in pregnant with subclinical chorioamnionitis group (33.43±12.98ng/ml) than those in pregnant without subclinical chorioamnionitis group (20.21±11.47ng/ml) .There was significant difference between the two groups(P<0.001).
     4. The expression of IL-8 in maternal blood in each groups:
     The expression of IL-8 were detected in maternal blood by enzyme-linked immunosorbent assay method in 2 groups, which included the pregnant with subclinical chorioamnionitis group and pregnant without subclinical chorioamnionitis group. The median and range of the expression of IL-8 was the higheer in pregnant with subclinical chorioamnionitis group[45.14 (25.15~63.21) ng/ml]than those in pregnant without subclinical chorioamnionitis group[24.18 (0.57~65.13) ng/ml].There was significant difference among the two groups(P<0.001).
     5. The dependable comparison of IL-8 in placenta and fetal membrane, umbilical cord blood, maternal blood:
     To analyze the correlation of IL-8 in afterbirth, umbilical cord blood and maternal blood ,we found that the positive correlation was exist in placenta and fetal membrane and umbilical cord blood in expression of IL-8(r=0.296,p<0.01); The concentration of IL-8 in placenta and fetal membrane was positively correlated with that of maternal blood (r=0.304,p<0.01); The concentration oflL-8 in umbilical cord blood was positively correlated with that of maternal blood (r=0.532,p<0.01);
     6. The ROC curve of IL-8
     6.1 The ROC curve of IL-8 in umbilical cord blood:
     The critical point of IL-8 in umbilical cord blood is 25.40ng/ml, which is the optimization value to estimate subclinical chorioamnionitis. The area under the curve is 0.773. The sensitivity and specificity were 85.3% and 70.1% respectively.
     6.2 The ROC curve of IL-8 in maternal blood:
     The critical point of IL-8 in maternal blood is 34.76ng/ml, which is the optimization value to estimate chorioamnionitis. The integral area under the curve is 0.798. The sensitivity and specificity were 79.4% and 79.2% respectively.
     Conclusion:
     1. The high expression of the interleukin-8 in maternal blood in subclinical Chorioamnionitis, could be one of an biochemical marker in predicting subclinical Chorioamnionitis and in evaluating the therapeutic effect on subclinical Chorioamnionitis patients.
     2. The high expression of the interleukin-8 in umbilical cord blood in subclinical Chorioamnionitis, could be one of an biochemical marker in predicting subclinical chorioamnionitis and in evaluating the therapeutic effect on subclinical chorioamnionitis patients.
     3. It was high expression of the interleukin-8 in placenta and fetal membrane in subclinical Chorioamnionitis that indicates the participation of the morbility of subclinical Chorioamnionitis.
     4. The high expression of the interleukin-8 in core blood in fetals with subclinical Chorioamnionitis, which could be one of an biochemical marker in predicting and assisting to the early diagnostic of infectious of newborn, and also could be one of an biochemical marker in evaluating the therapeutic effect on infectious of newborn.
     Objective: To investigate the change of the matrix metalloproteinase-9 in maternal blood, umbilical cord blood, placenta and fetal membrane in subclinical Chorioamnionitis, to analyze its effect on the pathog.enesis of subclinical Chorioamnionitis, to estimate the clinical value of the matrix metalloproteinase-9 anticipation in predicting subclinical Chorioamnionitis.
     Methods: To Chose 36 cases ofpreterm birth patients in labor , 14 cases of threatened premature labor, and 37 cases full term gravida with spontaneous in labor, 38 cases full term gravida without threatened labor and 18 cases who have the identical gestational age with preterm birth patients . It were enzyme-linked immunosorbentassay, HE staining, immunohistochemical staining that used to observe the change of the matrix metalloproteinase-9 in maternal blood , umbilical cord blood, placenta and fetal membrane in preterm birth patients with subclinical Chorioamnionitis.
     Results:
     1. The pathematology results of placenta and fetal membrane in each groups:
     The pathematology results of placenta and fetal membrane were the same as that of the Chapter I.
     2. Compared the expression of MMP-9 in placenta and fetal membrane by IHC in each groups:
     The expression of MMP-9 were detected in 2 groups by immunohistochemistry staining method in 2 groups, which included pregnant with subclinical chorioamnionitis group and pregnant without subclinical chorioamnionitis group.The median and range of the average staining intensity of MMP-9 was the higher in pregnant with subclinical chorioamnionitis group[6.00 (2.00~8.00) ] than those in pregnant without subclinical chorioamnionitis group[2.00 (2.00~6.00)].There was significant difference between the two groups(P<0.001).
     3. The expression of MMP-9 in umbilical cord blood in each groups:
     The expression of MMP-9 were detected in umbilical cord blood by enzyme-linked immunosorbent assay method in 2 groups, including pregnant with subclinical chorioamnionitis group and pregnant without subclinical chorioamnionitis group. The expression of MMP-9 was the higher in pregnant with subclinical chorioamnionitis group (368.41±110.55ng/ml) than those in pregnant without subclinical chorioamnionitis group (281.67±96.73ng/ml) .There was significant difference between the two groups(P<0.001).
     4. The expression of MMP-9 in maternal blood in each groups:
     The expression of MMP-9 were detected in maternal blood by enzyme-linked immunosorbent assay method in 2 groups, which included pregnant with subclinical chorioamnionitis group and pregnant without subclinical chorioamnionitis group. The median and range of the expression of MMP-9 was the higheer in pregnant with subclinical chorioamnionitis group[458.19 (315.52~522.15) ng/ml]than those in pregnant without subclinical chorioamnionitis group[307.15 (181.29~533.30) ng/ml].There was significant difference among the two groups(P<0.001).
     5. The correlation of MMP-9 in placenta and fetal membrane , umbilical cord blood, maternal blood:
     To compare the correlation of MMP-9 in placenta and fetal membrane, umbilical cord blood, maternal blood ,we found that the concentration of MMP-9 in placenta and fetal membrane was positively correlated with that of umbilical cord blood (r=0.420,p<0.01); the concentration of MMP-9 in placenta and fetal membrane was positively correlated with that of maternal blood (r=0.412,p<0.01); the concentration of MMP-9 in umbilical cord blood was positively correlated with that of maternal blood (r=0.561,p<0.01).
     6. The ROC curve of MMP-9
     6.1 The ROC curve of MMP-9 in umbilical cord blood:
     The critical point of MMP-9 in umbilical cord blood is 317.50ng/ml, which is the optimization value to estimate subclinical chorioamnionitis. The area under the curve is 0.720, the sensitivity and specificity were 73.5% and 71.4%,respectively.
     6.2 The ROC curve of MMP-9 in maternal blood:
     The critical point of MMP-9 in maternal blood is 360.81ng/ml, which is the optimization value to estimate chorioamnionitis.The area under the curve is 0.823. The sensitivity and specificity were 87.4% and 72.0% respectively.
     Conclusion:
     1. The high expression of the matrix metalloproteinase-9 in maternal blood in subclinical Chorioamnionitis, which could be one of an biochemical marker in predicting subclinical Chorioamnionitis and in evaluating the therapeutic effect on subclinical Chorioamnionitis patients.
     2. The high expression of the matrix metalloproteinase-9 in umbilical cord blood in subclinical Chorioamnionitis, which could be one of an biochemical marker in predicting subclinical chorioamnionitis and in evaluating the therapeutic effect on subclinical chorioamnionitis patients.
     3. It was high expression of the matrix metatloproteinase-9 in placenta and fetal membrane in subclinical Chorioamnionitis. which indicates that it is the important pathogenetic reason for subclinical Chorioamnionitis.
引文
[1] 曹泽毅.中华妇产科学,第二版:人民卫生出版社,2004,362
    [2] Lauricella-Lefebvre MA, Castronovo V, Sato H, etal. Stimulation of the 92-kD type Ⅳcollagenase promoter and enzyme expression in human melanoma cells. Invasion Metastasis. 1993, 13(6):289-300
    [1] 丰有吉主编.妇产科学,北京:人民卫出版社,2002:88.
    [2] Eliyahu S, Weiner E, Nachum Z, et al. Epidemiologic risk factors for preterm delivery.Isr Med Assoc J. 2002,4(12): 1115-7.
    [3] Jay D,Iam,MD.Prediction and early detection of preterm labor.Obstet Gynecol,2003; 101:402-12
    [4] Roman AS, Rebarber A, Lipkind H,Vaginal fetal fibronectin as a predictor of spontaneous preterm delivery after multifetal pregnancy reduction. Am J Obstet Gynecol. 2004 Jan; 190(1): 142-6.
    [5] Shennan A, Jones G, Hawken J,et al.Fetal fibronectin test predicts delivery before 30 weeks of gestation in high risk women, but increases anxiety. BJOG. 2005 Mar;112(3):293-8.
    [6] Gonzalez Bosquet E, Ferrer I, Vails C, et al.The value of interleukin-8, interleukin-6 and interleukin-lbeta in vaginal wash as predictors of preterm delivery. Gynecol Obstet Invest. 2005;59(3): 175-8.
    [7] M. Karen Campbell, John R.G. Challisd, Orlando DaSilva et al. A cohort study found that white blood cell count and endocrine markers predicted preterm birth in symptomatic women. Journal of Clinical Epidemiology. 2005(58) 304--310
    [8] Ojeda MO, van't Veer C, Fernandez Ortega CB,et al. Dialyzable leukocyte extract differentially regulate the production of TNFalpha,IL-6,and IL-8 in bacterial component-activated leukocytes and endothelial cells. Inflamm Res,2005,54(2):74-81.
    [9] Kusunoki K, Sugai m, Gonda H, et al. CpG inhibits IgE class switch recombination though suppression of NK kappa B activity, but not though Id2 or Bc16.Biochem Biophys Res Commun,2005,328(2):499-506.
    [10] Tsai SY, Ardelt B, Hsieh TC,et al. Treatment of jurkat acute T-lymphocytic leukemia cells by onconase is accompanied by an altered nucleocytoplasmic distribution and reduced expression of transcription factor NF-kappa B. Int J Oncol,2004,25(6): 1745-1752.
    [11] RolandMS,GuidoA.NF-kB/Rel/IkB:Implicationsingastrointestinaldiseases [J] Gastroentero,2000,118(6): 1208.
    [12] EricGL,DavidLB,SophiaC,etal.FailuretoregulateTNFinducedNF-kBandcelld eathresponsesinA20deficientmice[J].Scie,2000,289(5488):2350.
    [14] ShinichiK,MasashiS,FutoshiT,etal.Evidencethatdenovoproteinsynthesisisdis pensableforanti apoptoticeffectsofNF kB[J].Oneogene,2000,19,(17):2233.
    [15] Futamura Y, Kajikawa S, Kaga N, Shibutani Y. Protection against preterm delivery in mice by urinary trypsin inhibitor. Obstet Gynecol. 1999 Jan;93(1): 100-8.
    [16] Heusch M, Lin L, Geleziunas R & Greene WC. The generation of nfkb2 p52: mechanism and efficiency. Oncogene.1999,18:6201-6208.
    [17] May MJ,Ghosh S.Signal transduetion through NF-kB [J]. Immunol Today. 1998,19(2):80-88.
    [18] Pentikainen V, Suomalainen L, Erkkila K, Martelin E, Parvinen M,Pentikainen MO, Dunkel L. Nuclear factor-kappa B activation in human testieular apoptosis. Am J Pathol. 2002,160:205-218.
    [19] Edward R,Chorioamnionitis and intraamniotic infection.Chin Obstet Gynecol, 1993,36:795.
    [20] Fox H,Langley FA.Leucocytic of the placenta and ambilical cord:a clinicpathologic study[J].Obstet Gynecol,1971,37(3):451-8.
    [21] Rebecca A B, Catherine L N, Tracy T B,et al.Statistical Considerations for Immunohistochemistry Panel Development after Gene Expression Profiling of Human Cancers.Journal of Molecular Diagnostics, Vol. 7, No. 2, May 2005
    [22] Rite G S,Grasa U J M,Ruiz D L,et al.Interleukin-6 and tumonecrosisfactor-alphaas markers of vertically-transmitted neonata bacterial infection[J].An Pediatr(Barc),2003,59(3):246-251
    [23] Grisinger G,Saleh L, Bauer S.Production of pro-and anti-inflammatory cytokines of human placental tropholasts in response to pathogenic bacteria[J].J Soc Gynecol Investing,2001,8(6):334-340.
    [24] Trebichavsky I,Splichal I,Zah Radnieko Va M,et al.Lipopoly Saccharide induces in-dlammatory cytokiles in the pigamnion[J].Veter Immunollmmunopatol ,2002,87(1-2): 11-18.
    [25] Yan,Sun M, Gibb W. Localization of nuclear factor-kappa B(NF KaPPa B) and inhibitory factor-kappa B(I kappa B)in human fetal membrances and deciduas at term and preterm delivery. Place.2002Apr,23(4):288-293.
    [26] Lee Y, Allport V, Sykes A, Lindstrom T, Slater D, Bennett P. The effects of labour and of interleukin 1 beta upon the expression of nuclear factor kappa B related proteins in human amnion. Mol Hum Reprod. 2003 Apr,9(4): 213-218.
    [27] Ell,iott CL,Allport VC,Loudon JA,et al. Nuclear factor-kappa B is essential for the up-regulation of interleukin-8 expression in human amnion and cervical epithelial cells.Mol Hum Reprod,2001,7:787-90.
    [28] 潘凤,史源,李华强,等.新生鼠败血症时核因子-KB的表达[J].中华儿科杂志,2003,41(8):582-585.
    [29] 倪倩,朱保权,崔毅.核因子-kappaB与新生儿败血症的早期诊断.兰州大学学报(医学版).2005年6月,31(2):110—112.
    [30] Caksen H,Kurtoglu S,Hallac I K,et al·The relation ship between scoring systems and cytokine levelsin neonatalsepsis[J]·Ann A cad Med Singapore,2003,32 (3):418-420·
    [31] Rite G S,Grasa U J,Ruiz C,et al.Interleukin-6 and tumor necrosis factor-alphaas markers of vertically-transmitted neonatal bacterial infection[J].An Pediatr(Barc),2003,59(3):246-251.
    [32] Gonzalez B E,Mercado C K,Johnson L,et al.Early markers of late-onsetsepsis in premature neonates:clinical,hematological and cytokine profile[J].J Perinat Med,2003,31 (1):60-68.
    [1] Huber AR, Kunkel SL, Todd RF, etal. Regulation of transendothelial neutrophil migration by endogenous interleukin-8. Science, 1991, 254(5028):99-102
    [2] Fujiwara Y, Arakawa T, Fukuda T, et al. Interleukin-8 stimulates leukocyte migration across a monolayer of cultured rabbit TNF-α,IL-1β,IL-8,and IL-Ra in Monosodium Urate Crystal-induced rabbit arthritis. Lab Inwest, 1998,78(5):559-569
    [3] Keelan JA,et al.Biol Reprod, 1997,57:1438-1444
    [4] Singer M, Sansonetti PJ. IL-8 is a key chemokine regulating neutrophil recruitment in a new mouse model of Shigella-induced colitis. J Immunol. 2004 Sep 15;173(6):4197-206.
    [5] Sennstrom MB, Ekmam G, Westergren-Thorsson G, etal. Human cervical ripening an inflammatory process mediated by cytokines[J]. Mol Hum Reprod, 2000, 6(4):375-381
    [6] Sakamoto Y, Moran P, Searle RF, etal. Interleukin-8 is involved in cervical dilatation but not in prelabour cervical ripening. Clin Exp Immunol, 2004, 138(1):151-7
    [7] Witczak W, Torbe A, Czajka R. Maternal serum and amniotic fluid IL-1alpha, IL-lbeta, IL-6 and IL-8 levels in preterm and term labor complicated by PROM. Ginekol Pol. 2003, 74(10): 1343-7)
    [8] Martha L, Michael P, Harry M, etal. Nuclear factor kappa B regulation of proinflammatory cytokines in human gestational tissue in vitro. Biology OF Reprod, 2002, 67:668-673。
    [9] Ogawara K, Kuldo JM, Oosterhuis K, etal. Functional inhibition of NF-kappaB signal transduction in alphavbeta3 integrin expressing endothelial cells by using RGD-PEG-modified adenovirus with a mutant IkappaB gene. Arthritis Res Ther. 2006;8(1):R32. Epub 2006 Jan 13.
    [10] Elliott CL, Allport VC, Loudon JAZ, etal. Nuclear factor-kappa B is essential for up-regulation of interleukin-8 expression in human amnion and cervical epithelial cells. Molecular Human Repro, 2001, 7:787-790
    [11] Figueroa R, GarryD, Elimian A, etal. Evaluation of amniotic fluid eytokines in preterm labor and intact membranes. J Matern Fetal Neonatal Med. 2005 Oct; 18(4):241-7.
    [12] Malamitsi-Puchner A, Protonotariou E, Boutsikou T, etal. The influence of the mode of delivery on circulating cytokine concentrations in the perinatal period. Early Hum Dev. 2005 Apr;81(4):387-92. Epub 2004 Dec 1.
    [13] Gessler P, Dahinden C. Increased respiratory burst and increased expression of complement receptor-3 (CDllb/CD18) and of IL-8 receptor-A in neutrophil granulocytes from newborns after vaginal delivery. Biol Neonate. 2003;83(2): 107-12.
    [14] Sakai M, Ishiyama A, Tabata M, etal. Relationship between cervical mucus interleukin-8 concentrations and vaginal bacteria in pregnancy. Am J Reprod Immunol. 2004 Aug;52(2): 106-12.
    [15] Lindstrom TM, Bennett PR. 15-Deoxy- {delta} 12,14-prostaglandin j2 inhibits interleukin-1{beta}-induced nuclear factor-{kappa}b in human amnion and myometrial cells: mechanisms and implications. J Clin Endocrinol Metab. 2005 Jun;90(6):3534-43. Epub 2005 Mar 8.
    [16] Abramov Y, Ezra Y, Elchalal U, etal. Markedly elevated levels of inflammatory cytokines in maternal serum and peritoneal washing during arrested labor. Acta Obstet Gynecol Scand. 2004 Apr;83(4):358-63.
    [17] Weiyuan Z, Li W. Study of interleukin-6 and tumor necrosis factor alpha levels in maternal serum and amniotic fluid, of patients with premature rupture of the membranes. J Perinat, 1998, 26(6):49-54
    [18] Kalinka J, Krajewski P, Sobala W, etal. The association between maternal cervicovaginal proinflammatory cytokines concentrations during pregnancy and subsequent early-onset neonatal infection. J Perinat Med. 2006;34(5):371-7.
    [19] Hebisch G, Neumaier-Wagner PM, Huch R, etal. Maternal serum interleukin-1 beta, -6 and -8 levels and potential determinants in pregnancy and peripartum. J Perinat Med. 2004;32(6):475-80.
    [20] 王丽,门艳,张艳丽等.母血、羊水中IL-8和IL-8水平与绒毛膜羊膜炎关系的研究。中国实验诊断学, 1998,12(2):303—305
    [21] Nitsos I, Rees SM, Duncan J, etal. Chronic exposure to intra-amniotic lipopolysaccharide affects the ovine fetal brain. J Soc Gynecol Investig. 2006 May; 13(4):239-47.
    [22] Babnik J, Stucin-Gantar I, Komhauser-Cerar L, etal. Intrauterine inflammation and the onset of peri-intraventricular hemorrhage in premature infants. Biol Neonate. 2006;90(2): 113-21. Epub 2006 Mar 17.
    [23] Huang HC, Wang CL, Huang LT, etal. Association of cord blood cytokines with prematurity and cerebral palsy. Early Hum Dev. 2004 Apr;77(1-2):29-36.
    [24] Cayabyab RG, Jones CA, Kwong KY, etal. Interleukin-lbeta in the bronchoalveolar lavage fluid of premature neonates: a marker for maternal chorioamnionitis and predictor of adverse neonatal outcome. J Matern Fetal Neonatal Med. 2003 Sep;14(3):205-11.
    [25] Wang X, Athayde N, Trudinger B. A proinflammatory cytokine response is present in the fetal placental vasculature in placental insufficiency. Am J Obstet Gynecol. 2003 Nov; 189(5): 1445-51.
    [26] Hagberg H, Wennerholm UB, Savman K. Sequelae of chorioamnionitis. Curt Opin Infect Dis, 2002, 15:301-306
    [27] Bracci R, Buonocore G, Chorioamniontis: a risk factor for fetal and neonatal morbidity. Biol Neonate, 2003, 83:85-96
    [28] Speer CP. Pre and postnatal inflammatory mechanisms in chronic lung disease ofpreterm infants. Paediatr Respir Rev, 2004, 5:S241-244
    [29] Athayde N, Wang J, Wang X, etal. Fetuses delivered following preterm prelabor rupture of the membranes are capable of stimulating a proinflammatory response in endothelial cells. J Soc Gynecol Investig. 2005 Feb;12(2): 118-22.
    [30 Barton L, Hodgman JE, Pavlova Z. Causes of death in the extremely low birth weight infant. Pediatrics, 1999, 103:446-451
    [31] Scott RJ, Peat D, Rhodes CA. Investigation of the fetal pulmonary inflammatory reaction in chorioamnionitis, using an in situ Y chromosome marker. Pediatr Pathol, 1994, 14:997-1003
    [32] 谭斌.新生儿缺氧缺血性脑病与NO、IL-6、IL-8水平相关性研究。广州药学院学报,2005,21(5):629—630
    [33] 梁秀云,潘革,吴曙粤等.新生儿高间接胆红素血症IL-6、IL-8水平变化及其意义,2005,25(1):4—10
    [1] 丰有吉等.妇产科学.七年制规划教材.北京大学卫生出版社, 2002:90-91
    [2] polzin WJ, Brady K. The etiology of premature rupture of the membrance. Clin Obstet Gynecol, 1998,(4):810
    [3] 顾美皎.现代妇产科学.人民军医出版社, 2002,460—465
    [4] Nagase H, Moessnet, JFJ. Matrix metalloproteinase[J]. J Biol Chem, 1999, 274:21491-
    [5] Nabha SM, Bonfil RD, Yamamoto HA, etal. Host matrix metalloproteinase-9 contributes to tumor vascularization without affecting tumor growth in a model of prostate cancer bone metastasis. Clin Exp Metastasis. 2006 Nov 30; [Epub ahead of print]
    [6] Iniesta P, Moran A, De Juan C, etal. Biological and clinical significance of MMP-2, MMP-9, TIMP-1 and TIMP-2 in non-small cell lung cancer. Oncol Rep. 2007 Jan; 17(1):217-23.
    [7] Lakka SS, Rajan M, Gondi C, Adenovirus-mediated expression of antisense MMP-9 in glioma cells inhibits tumor growth and invasion. Oncogene. 2002 Nov 14;21(52):8011-9.
    
    [8]Hirose T, Reife RA, Smith JGJ, etal. Characterization of type V collagenase(gelatinase) in synovial fluid of patients with inflammatory arthtitis[J]. J Rheumatol, 1992, 19(4):593-9
    
    [9]He C. Molecular mechanism of transcriptional activation of human gelatinase B by proximal promoter. Cancer Lett. 1996, 106(2): 185-91
    
    [10]Vadillo-Ortega F, Hernanderz A, Gonzalez-Avila G, etal. Am J Obstet Gynecol, 1996,174:1371-1376
    
    [11]McLaren J, Taylor DJ, Bell SC. Increased concentration of pro-matrix metalloproteinase-9 in term fetal membranes overlying the cervix before labor: implications for membrane remodeling and rupture[J]. Am J Obstet Gynecol. 2000, 182(2):409-16
    
    [12]Fortunato SJ, Menon R, Lombardi SJ, etal. Role of tumor necrosis factor-a in premature rupture of membranes and preterm labor pathways[J]. Am J Obstet Gynecol, 2002, 187(5): 1159-1162
    
    [13]Vadillo OF, Sandowsky DW, Haluska GJ, etal. Identification of matrix metalloproteinase-9 in amniotic fluid and amniochorion spontaneous labor and after experimental intrauterine infection or interleukin-β infusion in pregnant rhesus monkeys[J]. Am J Obstet Gynecol, 2002,186(1):128-138
    
    [14]Arechavaleta-Velasco F, Mayon-Gonzalez J, Gonzalez-Jimenez M, Association of type II apoptosis and 92-kDa type IV collagenase expression in human amniochorion in prematurely ruptured membranes with tumor necrosis factor receptor-1 expression. J Soc Gynecol Investig. 2002 Mar-Apr;9(2):60-7.
    
    [15]Diaz-Cueto L, Cuica-Flores A, Ziga-Cordero F, etal. Vaginal matrix metalloproteinase levels in pregnant women with bacterial vaginosis. J Soc Gynecol Investig. 2006 Sep;13(6):430-4. Epub 2006 Jul 26.
    
    [16]Zaga-Clavellina V, Merchant-Larios H, Garcia-Lopez G, etak. Differential secretion of matrix metalloproteinase-2 and -9 after selective infection with group B streptococci in human fetal membranes. J Soc Gynecol Investig. 2006 May;13(4):271-9.
    
    [17]Mccawley LJ, Matrisian LM. Matrix metalloproteinases: multifunctional contributors to tumor progression[J]. Mol Med Today, 2000, 6:149-156
    
    [18]Nagase H, Woessner JFJ. Matrix metalloproteinases [J]. J Biol Chem, 1999, 274:21491-21494
    
    [19]Collier IE, Brans GA, Goldberg GI, etal. On the structure and chromosome location of the 72-and-92kD ahuman type IV collagenase genes. Genomics 1991 ,9 , 429
    
    [20]St Jean PL, Zhang XC, Hart BK, et al. Characterization of a dinucleotide repeat in the 92 kDa type IV collagenase gene (CLG4B), localization of CLG4B to chromosome 20 and the role of CLG4B in aortic aneurismal disease. Am Hum Genet. 1995,59:17-24
    [21]Huhtala P, Tuuttila A, Chow LT, etal. Complete structure of the human gene for 92-kDa type IV collagenase. Divergent regulation of expression for the 92-and72-kilodalton enzyme genes, in HT-1080 cells. J · Biol Chem. 1991, 266(25): 16485-90
    
    [22]He C. Molecular mechanism of transcriptional activation of human gelatinase B by proximal promoter. Cancer Lett. 1996,106(2): 185-91
    
    [23]Lauricella-Lefebvre MA, Castronovo V, Sato H, etal. Stimulation of the 92-kD type IVcollagenase promoter and enzyme expression in human melanoma cells. Invasion Metastasis. 1993,13(6):289-300
    
    [24] Karabudak R, Kurne A, Guc D, etal. Effect of interferon beta-1a on serum matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase(TIMP-1) in relapsing remitting multiple sclerosis patients One year follow-up results[J]. J Neurol. 2004,251(3):279-83
    
    [25JVettraion IM, Roby J, Tolley T, et al. Placenta, 1996; 17:557-63
    
    [26]Weiss A, Goldman S, Shalev E.The matrix metalloproteinases (MMPS) in the deciduas and fetal membranes. Front Biosci. 2007 Jan 1; 12:649-59.
    
    [27]Vadillo-Ortega F, Hemanderz A, Gonzalez-Avila G, etal. Am J Obstet Gynecol, 1996,174:1371-1376
    
    [28]Maymon E, Romero R, Pacora P,etal. Evidence of in vivo differential bioavailability of the active forms of matrix metalloproteinases 9 and 2 in parturition, spontaneous rupture of membranes, and intra-amniotic infection. Am J Obstet Gynecol. 2000 Oct;183(4):887-94.
    
    [29]Lu D, Wang ZX, Wang XL,etal. Clinical significance of matrix metalloproteinase-9/tissue inhibitors of matrix metalloproteinase -1 imbalance in maternal serum, amniotic fluid, umbilical cord serum in patients with premature rupture of the membranes. Zhonghua Fu Chan Ke Za Zhi. 2006 Jan;41(1):20-4. Chinese.
    [30] Knight RL, Rice GE, Permezel M. Are alterations in plasma protease concentrations during labor associated with poor obstetric outcomes? Am J Obstet Gynecol. 2005 Jul; 193(1):283-8.
    [31] Menon R, Lombardi SJ, Fortunato SJ, etal. TNF-alpha promotes caspase activation and apoptosis in human fetal membranes. J Assist Reprod Genet, 2002, 19(4):201-4
    [32] Arechavaleta-Velasco F, Ogando D, Parry S, Vadillo-Ortega F. Production of matrix metalloproteinase-9 in lipopolysaccharide-stimulated human amnion occurs through an autocrine and paracrine proinflammatory cytokine-dependent system. Biol Reprod. 2002 Dec;67(6): 1952-8.
    [33] Choi SJ, Oh SY, Kim JH,etal. Changes of nuclear factor kappa B (NF-kappaB), cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9) in human myometrium before and during term labor, Eur J Obstet Gynecol Reprod Biol. 2006 Sep 28; [Epub ahead of print]
    [34] Li W, Challis JR. Corticotropin-releasing hormone and urocortin induce secretion of matrix metalloproteinase-9 (MMP-9) without change in tissue inhibitors of MMP-1 by cultured cells from human placenta and fetal membranes. J Clin Endocrinol Metab. 2005 Dec;90(12):6569-74. Epub 2005 Sep 20.
    [35] St-Pierre Y, Van Themsche C, Esteve PO. Emerging features in the regulation of MMP-9 gene expression for the development of novel molecular targets and therapeutic strategies. Curr Drug Targets Inflamm Allergy. 2003 Sep;2(3):206-15. Review.
    [36] Ambalavanan N, Carlo WA. Bronchopulmonary dysplasia: new insights[J]. Clin Perinatol, 2004, 31 (3):613-628
    [37] Schock BC, Sweet DG, Ennis M, etal. Oxidative stress and increased type-Ⅳ collagenase levels in bronchoalveolar lavage fluid from newborn babies[J]. Pediatr Res, 2001, 50(1): 29-33
    [38] 容志惠、常立文、钱莉玲等.支气管肺发育不良不同时期基质金属蛋白酶基质金属蛋白酶特异性组织抑制物及核转录因子kB表达的变化。实用儿科临床杂志,2005,20(5):440—442
    [1] Shimoya K, etal. Int J Obstet Gynecol, 1997;57:153-159
    [2] Kenyon S, Boulvain M, Neilson I. Antibiotics for preterm rupture of the membranes a systematic review[J]. Obstet Gynecol, 2004,104(5 pt 1): 1051-1057
    [3] Ramsey PS, Lieman JM, Brumfield CG, etal. Chorioamnionitis increase neonatal morbidity in pregnancies complicated by preterm premature rupture of membranes[J]. Am J Obstet Gynecol, 2005,192(4): 1162-1166
    [1] 丰有吉主编.妇产科学,北京:人民卫出版社,2002:88.
    [2] Roland M S,Guido A. NF-kB/Rel/IkB: Implication singastrointestinal diseases[J].Gastroentero, 2000,118(6):1208.
    [3] Eric G L,David L B,Sophia C,et al. Failure toregulate TNF induced NF-kB and cell death responses in A20 deficientmice[J].Scie,2000,289(5488):2350.
    [4] ShinichiK,MasashiS,FutoshiT,et al.Evidencethatdenovoproteinsynthesisisdispen sableforanti apoptoticeffectsofNF kB[J].Onco,gene,2000,19,(17):2233.
    [5] Ojeda MO, van't Veer C, Fernandez Ortega CB,et al. Dialyzable leukocyte extract differentially regulate the production of TNFalpha,IL-6,and IL-8 in bacterial component-activated leukocytes and endothelial cells. Inflamm Res,2005,54(2):74-81.
    [6] Sen R, Baltimore D. Multiple nuclear factor interact with the immunoglobulin enhancer sequences[J].Cell, 1986,46(5):705-716.
    [7] Papouli E, Defais M, Larminat F. Overexpression of metallothionein-Ⅱ sensitizes rodent cells to apoptosis induced by DNA cross-linking agent through inhibition of NF-kappa B activation. J Biol Chem 2002,277:4764-4769.
    [8] 吴丽娟,蒋建新,朱佩芳,等.NF-JB信号转导途径研究进展[J].国外医学临床生物化学与检验学分册,2002,23(5):260—262
    [9] Lin L, DeMartino GN & Greene WC. Cotranslational biogenesis ofNF-kB p~(50) by the 26S proteasome. Cell.1998, 92: 819-828.
    [10] Heusch M, Lin L, Geleziunas R & Greene WC. The generation of nfkb2 p~(52): mechanism and efficiency. Oncogene. 1999,18:6201-6208.
    [11] May MJ,Ghosh S.Signal transduction through NF-kB [J]. Immunol Today. 1998,19(2):80-88.
    [12] Huxford T, Huang DB, Malek S & Ghosh G. The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell. 1998,95:759-770.
    [13] Harhaj EW & Sun SC Regulation of RelA subcellular localization by a putative nuclear export signal and p~(50). Molecular and Cellular Biology. 1999,19: 7088-7095.
    [14] Huang TT, Kudo N, Yoshida M & Miyamoto S. A nuclear export signal in the N-terminal regulatory domain of IkappaBalpha controls cytoplasmic localization of inactive NF-kappaB/IkappaBalpha complexes. PNAS. 2000,97:1014-1019.
    [15] Lee SH & Hannink M. Characterization of the nuclear import and export functions of Ikappa B(epsilon). Journal of Biological Chemistry. 2002,277: 23358-23366.
    [16] Malck S, Chen Y, Huxford T & Gbosh G. IkappaBbeta, but not IkappaBalpha, functions as a classical cytoplasmic inhibitor of NfkappaB dimers by masking both NF-kappaB nuelear localization sequences in resting cells. Journal of Biological Chemistry.2001, 276:45225-45235.
    [17] Fujita T, Nolan GP, Lieu HC, Scott ML & Baltimore D. The candidate proto-oncogene bcl-3 encodes a transcriptional coactivator that activates through N-F-kappa B p~(50) homodimers. Genes & Development. 1993,7 : 1354-1363.
    [18] Yarnamoto M, Yamazaki S, Uematsu S, Sate S, Hemmi H, Hoshino K, Kaisho T, Kuwata H, Takeuchi O & Takeshige K et al. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IkappaBzcta. Nature .2004,430:218-222.
    [19] 张劲松,王兴宇,单佑安,等.转录因子NF-JB的研究进展[J].科学通报,2002,47(5):323—329.
    [20] 王文珊.TNF-A 信号转导通路的研究进展[J].福建医科大学学报,2005,39(1):27-31.
    [21] Pentikainen V, Suomalainen L, Erkkila K, Martelin E, Parvinen M,Pentikainen MO, Dunkel L. Nuclear factor-kappa B activation in human testicular apoptosis. Am J Pathol. 2002,160:205-218.
    [22] Chen F,Casetranova V, Shiidemters LM. NF-kappaB activation is involves in regulation of cystic fibrosis transmembrane conduetance regulator (CFTR) by interleukin- 1beta. J Biol Chem. 2001,276:15441-15444.
    [23] Hayden MS & Ghosh S . Signaling to NF-kappaB. Genes & Development .2004,18:2195-2224.
    [24] Huang TT & Miyamoto S. Postrepression activation of NF-kappaB requires the amino-terminal nuclear export signal specific to IkappaBalpha. Molecular and Cellular Biology .2001,21:4737-4747.
    [25] Claudio E, Brown K, Park S, Wang H & Siebenlist U. BAFFinduced NEMO-independent processing of NF-kappa B2 in maturing B cells. Nature Immunology .2002,3: 958-965.
    [26] Dejardin E, Droin NM, Delhase M, Haas E, Cao Y, Makris C, Li ZW,Karin M, Ware CF & Green DR. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity .2002,17 : 525-535.
    [27] Kato T Jr, Delhase M, Hoffmann A & Karin M . CK2 Is a C-Terminal IkappaB Kinase Responsible for NF-kappaB Activation during the UV Response. Molecular Cell. 2003,12: 829-839.
    
    [28]Hoffmann A, Levchenko A, Scott ML & Baltimore D . The IkappaB- NF-kappaB signaling module: temporal control and selective gene activation. Science. 2002,298:1241-1245.
    
    [29]Vermeulen I,De Wilde G,Note baert S,et al.Regulation of the transcriptional activity of the nuclear factor- kappaB P65 subunit[J].Biochem Pharmacol,2002,64(5-6):963-970.
    
    [30]Jijon H,Allard B, Jobin C. Nuclear factor- kappaB inducing kinase activates nuclear factor- kappaB transcriptional activity independently of I kappaB kinase gamma through a P38 MAPK-dependent RelA phosphorylation pathway[J].Cell Signal.2004,16(9): 1023-1032.
    
    [31]Ducut Sigala JL,Bortero V, Young DB,et al. Activation of transcription factor NF- kappaB requires ELKS,an I kappaB kinase regulatory subunit[J].Science,2004,304(5679):1963-1967.
    
    [32]Leonid L. Reznikov, Brian D. Shames, Hazel A. Barton, Craig H. Selzman, Giamila Fantuzzi.et al. Interleukin-1β deficiency results in reduced NF-κB levels in pregnant mice Am J Physiol Regul Integr Comp Physiol. 2000 Jan,278: 263-270.
    
    [33]Belt AR, Baldassare JJ, Molnar M, Romero R, Hertelendy F. The nuclear transcription factor NF-kappaB mediates interleukin-1 beta-induced expression of cyclooxygenase-2 in human myometrial cells. Am J Obstet Gynecol. 1999 Aug, 181(2): 359-366.
    
    [34]Lappas M, Permezel M, Rice GE. N-Acetyl-cysteine inhibits phospholipid metabolism, proinflammatory cytokine release, protease activity, and nuclear factor-kappaB deoxyribonucleic acid-binding activity in human fetal membranes in vitro.J Clin Endocrinol Metab. 2003 Apr,88(4): 1723-1729.
    
    [35]Lappas M, Permezel M, Georgiou HM, Rice GE. Nuclear factor kappa B regulation of proinflammatory cytokines in human gestational tissues in vitro. Biol Reprod. 2002 Aug,67(2):668-673.
    
    [36]Elliott CL, Allport VC, Loudon JA, Wu GD,Bennett PR. Nuclear factor-KaPPa B is essential for up-regulation of interleukin-8 expression in human amnion and cervical epithelial cells. Mol Hum Repord.2001 Aug,7(8): 787-790.
    
    [37] Yan,Sun M, Gibb W. Localization of nuclear factor-kappa B(NF KaPPa B) and inhibitory factor-kappa B(I kappa B)in human fetal membrances and deciduas at term and preterm delivery. Place.2002Apr,23(4):288-293.
    [38] Lee Y, Allport V, Sykes A, Lindstrom T, Slater D, Bennett P. The effects of labour and of interleukin 1 beta upon the expression of nuclear factor kappa B related proteins in human amnion. Mol Hum Reprod. 2003 Apr,9(4): 213-218.
    [39] Elliott CL,Allport VC,Loudon JA,et al. Nuclear factor-kappa B is essential for the up-regulation of interleukin-8 expression in human amnion and cervical epithelial cells.Mol Hum Reprod,2001,7:787-90.
    [40] Muhle RA,Pavlidis P, Grundy WN,et al.A high throtthghput study of gone expression in preterm labor using a subtractive mieroarray approach.American Journal of Obstetrics and Gynecology,2001,185(3):716-24.
    [41] 谢爱兰.宫内感染发生早产的机理[J].国外医学妇幼保健分册,2003,14(4):2162218.
    [42] Grisinger G,Saleh L, Bauer S.Produetion of pro- and anti-inflammatory cytokines of human placental tropholasts in response to pathogenic baeteria[J].J Soc Gynecol Investing,2001,8(6):334-340.
    [43] Trebichavsky I,Splichal I,Zah Radnicko Va M,et al.Lipopoly Saccharide induces in-dlammatory cytokiles in the pigamnion[J].Veter Immunollmmtmopatol ,20 02,87(1-2):11-18.
    [44] Leslie K K, Lee S L,Woodcoc S M, et al.Acute intrauterine infection results in an imbalance between pro-and anti-inflammatory cytokines in the pregnant rabbit[J].Am J Repro Immunol.2000,43(5):305-311.
    [45] Lappas M,Permezel M,Georgiou HM,et al.Nuclear factor Kappa B regulation of proinflammatory cytokines in humn gestational tissues in vitro[J].Biol Repro,2002,67(2):668-673.
    [46] Lappas M,Permezel M,Rice G E.N-Acetyl-eysteine inhibits phospholipid metabolism,proinflammatory cytokine release protease activity ,and nuclear factor-kappa B deoxyribonucleic acidbinding activity in human fetal menbrances in vitro[J].J Crin Endocrinol Metab,2003,88(4): 1723-1729.
    [47] Lappas M,Permezel M,Georgiou H M,et al. Regulation of phospholipase isozymes by nuclear factor-kappa B in human gestational tissues in vitro[J].J Clin Endocrinol Metab,2004,89(5):2365-2372.
    [1] Mulayim Z, Savlu A, Arici A. Regulation of endometrial stromal cell matrix metallo proteinase activity and invasiveness by interleukin-8[J]. Fertil Sterkl, 2004,81(1);904-911)
    [2] Fujiwara Y, Arakawa T, Fukuda T, et al.Interleukin-8 stimulates leukocyte migration across a monolayer of cultured rabbit TNF-α ,IL-1β ,IL-8,and IL-Ra in Monosodium Urate Crystal-induced rabbit arthritis. Lab Inwest,1998,78(5):559-569
    [3] Keelan JA,et al.Biol Reprod, 1997,57:1438-1444
    [4] Laham N,et al.Biol Reprod,1997,57:616-620
    [5] Sennstrom MB, Ekmam G, Westergren-Thorsson G, et al. Human cervical ripening an inflammatory process mediated by cytokines[J]. Mol Hum Reprod, 2000, 6(4):375-381
    [6] Sakamoto Y, Moran P, Searle RF, et al. Interleukin-8 is involved in cervical dilatation but not in prelabour cervical ripening. Clin Exp Immunol, 2004, 138(1):151-7
    [7] Elliott CL, Loudon JA, Brown N, et al. IL-1 and IL-8 in human fetal membranes changes with gestational age, labor and culture conditions[J]. Reprod Immunol, 2001, 46(4):260-267
    [8] Osman I, Young A, Ledingham MA, et al. Leukocyte density and pro-inflammatory cytokine expression in human feta membranes, deciduas, cervix and myometrium before and during labour at term. Mol Hum Reprod, 2003, 9(1):41-5
    [9] Hebisch G, Neumaier-Wagner PM, Huch R, et al. Maternal serum interleukin-1 beta, -6 and -8 levels and potential determinants in pregnancy and peripartum. J Perinat Med, 2004, 32(6):475-80
    [10] Figueroa R, Garry D, Elimian A, et al. Evaluation of amniotic fluid cytokines in preterm labor and intact membrane. J Matern Fetal Neonatal Med, 2005, 18(4):241-7
    [11] Seaward PG. et al. Am J Obstet Gynecol,1997;177:1024-1029
    [12] Olah KS et al. J Reprod Immunol,1996;32;89-98
    [13] Hsu CD et al. Am J Obstet Gynecol, 1998;179:1267-1270
    [14] Shimoya K, et al. Int J Obstet Gynecol, 1997, 57:153-159
    [15] Witt A, Berger A, Gruber CJ, et al. IL-8 concentrations in maternal serum, amniotic fluid and cord blood in relation to different pathogents within the amniotic cavity. J Perinat Med, 2005, 33(1):22-6
    [16] Rizzo G, et al. J Perinat Med, 1997, 25:461-468
    
    [17]Kayem G, Maillard F, Batteux F, et al. Interleukin-8 m RNA in vaginal secretions: a prenatal marker of congenital infection in case of preterm labor with intact membranes. Prenat Diagn, 2004,24(1):58-62
    
    [18]Kalinka J, Krajewski P, Sobala W, et al. The association between maternal cervicovaginal proinflammatory cytokine concentrations during pregnancy and subsequent early-onset neonatal infection. J Perinat Med, 2006, 34(5):371-7
    
    [19]Kalinka J, Sobala W, Wasiela M, et al. Decreased proinflammatory cytokines in cervicovaginal fluid, as measured in midgestation,are associated with preterm delivery. Am J Reprod Immunol, 2005, 54(2):70-6
    
    [20]Su BH, Chiu HY, Lin TW, et al. Interleukin-8 in bronchoalveolar lavage fluid of premature infants at risk of chronic lun disease. J Formos Med Assoc, 2005, 104(4):244-8
    
    [21]Dembinski J, Behrendt D, Heep A, et al. Cell-associated interleukin-8 in cord blood of term and preterm infants. Clin Diagn Lab Immuunol, 2002,9(2), 320-3
    [1] Mccawley LJ, Matrisian LM. Matrix metalloproteinases: multifunctional contributors to tumor progression[J]. Mol Med Today, 2000, 6:149-156
    [2] Nagase H, Woessner JFJ. Matrix metalloproteinases [J]. J Biol Chem, 1999, 274:21491-21494
    [3] Collier IE, Bruns GA, Goldberg GI, et al. On the structure and chromosome location of the 72-and-92kD ahuman type Ⅳ collagenase genes. Genomics 1991,9,429
    [4] St Jean PL, Zhang XC, Hart BK, et al. Characterization of a dinucleotide repeat in the 92 kDa type Ⅳ collagenase gene (CLG4B), localization of CLG4B to chromosome 20 and the role of CLG4B in aortic aneurismal disease. Am Hum Genet. 1995, 59:17-24
    [5] Huhtala P, Tuuttila A, Chow LT, et al. Complete structure of the human gene for 92-kDa type Ⅳcollagenase. Divergent regulation of expression for the 92-and72-kilodalton enzyme genes in HT-1080 cells. J Biol Chem. 1991, 266(25):16485-90
    [6] He C. Molecular mechanism of transcriptional activation of human gelatinase B by proximal promoter. Cancer Lett. 1996, 106(2): 185-91
    [7] Lauricella-Lefebvre MA, Castronovo V, Sato H, et al. Stimulation of the 92-kD type Ⅳcollagenase promoter and enzyme expression in human melanoma cells. Invasion Metastasis. 1993, 13(6):289-300
    [8] Karabudak R, Kurne A, Guc D, et al. Effect of interferon beta-la on serum matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase(TIMP-1) in relapsing remitting multiple sclerosis patients One year follow-up results[J]. J Neurol. 2004, 251 (3):279-83
    [9] Vettraion IM, Roby J, Tolley T, et al. Placent, 1996; 17:557-63
    [10] Osmers RG, Blaster J, Kuhn W, et al. Obstet Gynecol, 1995; 86:223-9
    [11] Kalantaridou SN, Makrigiannakis A, Zoumakis E, et al. Reproductive functions of corticotropin-releasing hormone. Research and potential clinical utility of antalarmins (CRH receptor type 1 antagonists). Am J Reprod Immunol, 2604,51(4):269-74
    [12] Giannoulias D, Perel FA, Holloway AC, et al. Differential changes in 15-hydroxy prostaglandin dehydrogenase and prostaglandin H synthase (types Ⅰ and Ⅱ) in human pregnant myometrium. J Clin Endocrinol Metab, 2002, 87(3):1345
    
    [13]Weinreb RN, Lindsey JD, Marchenko G, et al. Prostaglandin FP agonists alter metalloproteinase gene expression in sclera. Invest Ophthalmol Vis Sci, 2004,45(12):4368-77
    
    [14]Fortunato SJ, Menon R, Lombardi SJ, et al. Role of tumor necrosis factor-alpha in the premature rupture of membranes and preterm labor pathways. Am J Obstet Gynecol, 2002,187(5): 1159-62
    
    [15]Edwin SS, Romero R, Rathnasabapathy CM, et al. Protein kinase C stimulates release of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 by human decidual cell[J]. J Matern Fetal Neonatal Med. 2002,12(4):231-6
    
    [16]Vadillo-Ortega F, Hernanderz A, Gonzalez-Avila G, et al. Am J Obstet Gynecol, 1996,174:1371-1376
    
    [17]McLaren J, Taylor DJ, Bell SC. Increased concentration of pro-matrix metalloproteinase-9 in term fetal membranes overlying the cervix before labor: implications for membrane remodeling and rupture[J]. Am J Obstet Gynecol. 2000, 182(2):409-16
    
    [18]Fortunato SJ, Menon R, Lombardi SJ, et al. Role of tumor necrosis factor-α in premature rupture of membranes and preterm labor pathways[J]. Am J Obstet Gynecol, 2002, 187(5):1159-1162
    
    [19]Vadillo OF, Sandowsky DW, Haluska GJ, et al. Identification of matrix metalloproteinase-9 in amniotic fluid and amniochorion spontaneous labor and after experimental intrauterine infection or interleukin-β infusion in pregnant rhesus monkeys[J]. Am J Obstet Gynecol, 2002, 186(1):128-138
    
    [20]Tsatas D, Baker MS, Rice, et al. Differential expression of proteases in human gestational tissues before, during and after spontaneous onset labor at term[J]. J Report Fertil, 1999, 116(1):43-49
    
    [21]Maymon E, Romero R, Pacora P, et al. Evidence of in vivo differential bioavailability of the active forms of matrix metalloproteinases-9 and -2 in parturition, spontaneous rupture of membrane, and intra-amniotic infection[J]. Am J Obstet Gynecol, 2000, 183(4):887-894
    
    [22]Biley SC, Webb CJ, Leask R, et al. Involvement of matrix metalloproteinase-2 and -9, tissue inhibitor of metalloproteinase and apoptosis in tissue remodeling in the sheep placenta[J]. J Reprod Fertil, 2000, 118(1): 19-27
    [23] Locksmith GJ, Clark P, Duff P, et al. Amniotic fluid matrix netalloproteinase-9 levels in women with preterm labor and suspected intra-amniotic infection. Obstet Gynecol, 1999, 94:1-6
    [24] Harirah H, Donia SE, Hsu CD. Amniotic fluid matrix metalloproteinase-9 and interleukin-6 in predicting intra-amniotic infection. Obstet Gynecol, 2002, 99(1):80-84
    [25] Sampson JE, Theve RP, Blatman RN, et al. Feral origin of amniotic fluid polymorphonuclear leukocytes. Am J Obstet Gynecol, 1997, 176:77-81
    [26] Curley AE, Sweet DG , Thornton CM, et al. Chorioamnionitis and increased neonatal lung lavage fluid matrix metalloproteinase-9 levels: implications for antenatal originlf chronic disease. 2003, 188(4):871-5
    [27] Tu FF, Goldenberg RL, Tamura T, et al. Prenatal plasma matrix metalloproteinase-9 levels to predict spontaneous preterm birth. Obstet Gynecol, 1998, 92(3)446-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700