青藏高原近南北向裂谷的岩石圈结构及其动力学过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原近南北向裂谷是青藏高原中最显著的构造特征之一。随着人类认识的不断深入,青藏高原近南北向裂谷研究近年来已成为青藏高原地学研究的主要热点。目前关于近南北向裂谷的成因,有两种截然不同的代表性观点:一是与高原隆升有关。二是与亚洲广泛的裂谷作用有关。对于前者观点,这些南北向裂谷行为应该在整个青藏高原内部广泛存在,且其构造特征形态表现一致。至于后者,山西地堑和贝加尔裂谷是在伸展拉张应力条件下形成的,而这些高原裂谷却发育在造山运动过程中的南北双向挤压环境下,显然二者发育的构造背景有所不同。
     为了揭示这一科学奥秘,国内外学者近年来通过地质考察、地震机制解、遥感影像和地球化学分析等方法手段展开了研究。尽管取得了许多重要的成果和认识,但是这些成果大多涉及浅层构造。而裂谷的深层结构和构造一直未被研究。这些深层次结构和构造是理解和认识隆升高原中的裂谷成因关键所在。为此,亟待回答下面的关键科学问题。
     (一)、地表广泛分布的南北向裂谷在深部是否存在,如何分布?(二)、在青藏高原内部的岩石圈中是否存在一个控制这些裂谷分布的深部构造,以及位于何处?是否受控于沿着班公湖—怒江缝合带中段展布的喀喇昆仑—嘉黎断裂带?(三)、这些裂谷是高原隆升到最高后坍塌的标志,还是强烈挤压变形的单一结果,抑或是在南北向挤压下的青藏高原向东“逃逸”所致?(四)、青藏高原的裂谷作用是局部范围内的,还是与发生在东亚的山西地堑和北亚的贝加尔裂谷等裂谷构成了一个泛东亚伸展体系?如果是同一个体系,那么它们又是通过哪种机制联系起来的呢?
     青藏高原目前仍在强烈活动、抬升和变形,而南北向裂谷是青藏高原地质时代较新的构造事件。因此,研究青藏高原裂谷深部结构,并了解裂谷作用的深部动力学过程,有助于我们更好地理解和认识大陆的碰撞、俯冲以及变形机制,进而认识地球演化变形的复杂过程。
     由于青藏高原已有的地球物理探测成果大多关注青藏高原的东西向构造特征,所以已有的探测工作大多沿着裂谷的南北走向展开的。因此,能够反映裂谷的横向变化的深部地球物理探测成果甚少。为了充分利用现有的布格重力异常资料,作者给出了一种有效的技术手段——群条小波变换方法,用于提取南北向裂谷的深部构造特征信息。
     样条小波变换,不仅具有小波变换的基本性质,而且还充分利用了样条函数的光滑、可导和显式性质,这些性质便于构造完备正交小波基。在重、磁场异常理论中,异常一般与源体的位置、形状及其埋深有关,其数学解析表达式多为高斯型函数。利用样条函数来构建高斯函数,并利用小波变换的多重分解和一阶导数性质实现了位场信息的提取与分离,进而提取和判别地质体的边缘特征。根据小波变换中的Liptiszh准则,定性地描绘断裂构造的倾向、延深等构造特征信息。为了克服位场中的优势边缘体效应的干扰和影响,借鉴常规的位场资料处理中的方向滤波思想,进一步实现了样条小波变换中的方向导数算法。在一系列的局部模型和区域模型正演试验和验证的基础上,给出了提取线性构造信息的小波变换特征规律。这些模型试验表明,在满足采样定理的前提下,为了能够更好地判别边缘特征的位置,必须保证采样精度。此外,区域模型与局部模型试验的差异性表明,我们在认识区域异常场时,必须持慎重态度去解译某些区域特征现象。基于上述的认识,利用样条小波的一阶导数变换性质,对青藏高原1:250万区域布格重力异常场进行了分离和构造特征提取,取得了很好的效果。这些模型正演与实践表明,样条小波变换对于刻划和提取重力场中的线性构造信息具有独特的优越性。
     基于现有的裂谷资料,为了全方位研究裂谷特征,使用了多种技术手段,如重力、磁力、人工地震以及天然地震等多种地球物理方法,并结合了遥感影像、GPS观测、地表地质、构造和地球化学及年代学等方法和资料。借助各学科的优势从不同角度去认识和理解裂谷的构造特征、变形及其动力学过程。裂谷研究的复杂性,决定了此次研究大致思路。所展开的研究工作大致如下:(一)、对于1:250万的区域布格重力异常,结合常规数据处理方法,作者采用了样条小波变换新方法来提取线性构造特征。对于1:200万的区域航磁ΔT异常,利用了多种常规方法,如匹配滤波、向上延拓和方向导数来提取线性构造特征。综合二者结果并结合地表地质特征分析,给出青藏高原的区域构造空间展布特征,及其与南北向裂谷的空间关系;结合地表地质,对与裂谷有关的青藏高原的区域构造进行了划分。(二)、尽管前人已对青藏高原裂谷展开了研究,但是全局宏观性的研究成果还是一片空白。为了获取宏观的青藏高原裂谷近地表分布规律,作者通过遥感影像研究裂谷构造与其它地表构造的接触关系,更进一步地了解裂谷构造的专属性。(三)、在综合分析研究区内的GPS观测、地震活动性和地震各向异性的成果,给出了青藏高原裂谷区内从地表到深部的不同层次构造的活动性和区域应力场特征,进而得到了裂谷区的内在活动变形机制。(四)、作者利用重震联合反演手段,结合深地震测深成果,进一步详细研究了拉萨地体内的近南北向裂谷的深部结构和区域深部构造特征。(五)、作者通过总结青藏高原裂谷的地质、地球物理场特征,并与世界典型大陆裂谷构造进行对比,就青藏高原裂谷构造特征给出了一个明确的表达,并对青藏高原裂谷进行了明确分类。针对不同类型裂谷,给出了其相应的裂谷形成机制。作者还用了现有的实测地震测深资料对这些机制模型特征进行了地震学检验。(六)、最后,总结全部研究成果,提出了基于裂谷构造的青藏高原裂谷作用的动力学伸展模型。结合现有的地质、地球化学和年代学资料,描述了青藏高原裂谷作用发生的可能动力学过程。至此,关于青藏高原裂谷研究取得了如下所述的几点初步认识。
     (1)、在青藏高原内部没有发现构造特征形态表现一致的裂谷。即使青藏高原内部裂谷规模最大的亚东—谷露裂谷也被分为两段,喜马拉雅地体内的亚东—康马表层裂谷和拉萨地体内部的尼木—谷露裂谷。因此,青藏高原内部的裂谷具有专属性,即这些裂谷与其所在的地体性质、结构和单元组成及其所在的区域应力场特征等综合因素有关。发育在青藏高原内部的近南北向裂谷主要集中在拉萨地体内,其构造特征较为复杂。北东向裂谷主要发育在羌塘地体内部,且与其基底构造性质有关。而喜马拉雅地体内发育的裂谷虽然大都为近南北向,但其深度仅仅位于上地壳部分。
     (2)、东西向展布的裂谷主要与位于冈底斯岩基北缘的革吉—改则南—措勤北—申扎隐伏断裂有关,而并非与前人认识的班公湖—怒江缝合带中段有关。地震活动性表明,班公湖—怒江缝合带的中段现在明显不具有活动性,而革吉—改则南—措勤北—申扎隐伏断裂具有较强的活动性且大多具有右旋走滑性质。该隐伏断裂终止了拉萨地体内部的南北向裂谷的北向延伸。根据地表地质,沿革吉—改则南—措勤北—申扎隐伏断裂的地表处出露了一些中新世的花岗岩。在该断裂带的北缘,展布了一系列由北北西走向断陷盆地组成的近东西向裂谷。结合前人的研究成果综合表明,革吉—改则南—申扎断裂可能为一个隐伏块体的边界断裂带。
     (3)、依据拉萨地体内部的南北向裂谷的延深深度,可将其分为两类:一是主要位于中上地壳的地壳型裂谷,其中有申扎—谢通门裂谷、当惹容错—古错裂谷、夏冈江—杰萨错裂谷和仑木错—帕龙错裂谷。另一类是延深已经切穿了整个地壳的地幔型裂谷,只有尼木—谷露裂谷。不论是地壳型裂谷还是地幔型裂谷,它们都被限于拉萨地体的内部。它们的南端并没有切穿雅鲁藏布江缝合带,而地壳型裂谷的北端收敛于革吉—改则南—措勤北—申扎隐伏断裂带。
     (4)、拉萨地体内部的南北向裂谷东部与西部的区域背景构造特征也有所不同。大致以东经88°为界,东部的区域背景构造大多为北北东向为主,而西部则以北北西向为主。
     (5)、深地震测深资料显示,拉萨地体的莫霍面都比其两侧地体为深,主体呈下凹特征。在拉萨地体内部的色林错—雅安多东西向剖面显示,地壳中的低速层明显具有被拉断现象,且莫霍面东深西浅也具有下凹特征。横过尼木—谷露裂谷的重震联合反演结果表明,岩石圈地幔的下底界形态具有东深西浅,南深北浅的特征。而尼木—谷露裂谷刚好位于岩石圈地幔底界遭受强烈改造的顶部。在岩石圈地幔中发生的数次地震和地震各向异性特征表明,其岩石圈地幔在强烈地活动着。拉萨地体的GPS横向观测结果、尼木—谷露裂谷的这种岩石圈地幔特征及其活动性和其东侧的地震各向异性特征表明,拉萨地体东部较之西部具有很强的东西向拉张伸展作用。
     (6)、羌塘地体内部的北东向裂谷与地体内的基底构造特征和区域应力场有关。相比之下,拉萨地体内所发育的裂谷形成机制较为复杂。其东部的尼木—谷露裂谷是岩石圈地幔中的物质定向流动、地壳部分的剪切走滑及其所处的地理位置共同作用的结果;而西部的裂谷大多位于中、上地壳内,可能是上地壳沿低速层的不均匀韧性滑动和上地壳的脆性和地形高程效应的产物。
     (7)、拉萨地体中的南北向裂谷在地质、地球物理特征方面与世界典型裂谷对比后发现,拉萨地体内的裂谷行为并不完全具有在纯粹伸展环境下形成的裂谷的典型地质、地球物理场特征。为了与之区别,将青藏高原内部的裂谷事件称为“碰撞隆升过程中的裂谷”(Colliding-Raising Rift)或者“造山作用裂谷”(Orogenic Rift)也许更为恰当。因此,青藏高原裂谷事件不能与发生在东亚的山西地堑和北亚的贝加尔裂谷构成一个泛东亚的伸展体系。
     (8)、拉萨地体内的地壳型裂谷作用是拉萨地体西部中、上地壳沿着壳内的某一滑脱面韧性滑动和脆性上地壳部分的高程效应综合作用的结果。地幔型裂谷作用可能是岩石圈地幔的韧性变形、均衡调整和地幔物质的蠕变以及整个区域构造应力场变化导致的结果。这两种裂谷机制都可归因于印度板块岩石圈的斜向俯冲作用。印度板块岩石圈的斜向俯冲作用力不仅导致了青藏高原内部的持续的向北挤压应力存在,而且还使拉萨地体内部发生了东西向的不均匀伸展。
     (9)、整体而言,拉萨地体以及羌塘地体内部发生的裂谷作用可能是由于印度板块的斜向碰撞下的持续向北推挤和其在帕米尔地区的西构造结受到相对稳定的塔里木地块的强烈阻挡以及青藏高原东部具有相对自由边界等条件下,青藏高原内部物质自西向东蠕变流动的结果。在这个向东蠕变流动过程中,由于青藏高原内部的各地体的物质结构、构造及其所处的构造应力场不同,其内部的物质在不同层次上呈不均匀的伸展。这种差别导致了发生在青藏高原内部的拉萨地体和羌塘地体内部的裂谷类型也不同。而拉萨地体西部的地壳型裂谷与羌塘地体内部的北东向裂谷则是通过隐伏的革吉—改则南—申扎右旋走滑断裂调节着。
     (10)、综上所述,青藏高原裂谷作用的形成环境较为复杂,单一的高原隆升到最高后坍塌、强烈挤压变形或者是在南北向挤压下的青藏高原物质的纯粹向东“逃逸”并不能用来解释青藏高原内部发生的裂谷作用。青藏高原裂谷的独特构造环境和深部构造特征表明,高原裂谷构造并不能够与发生在东亚的山西地堑和北亚的贝加尔裂谷构成一个泛东亚伸展体系。印度板块指向东的斜向俯冲—碰撞作用、存在于东部的自由边界条件以及高原内部地体间与各地体内部属性组成差异等综合因素,导致了整个青藏高原裂谷作用的发生。
     (11)、青藏高原伸展时间的上限在20M a±3M a,其表现为嘉黎断裂从左旋转变为右旋走滑以及藏东南的红河—哀牢山断裂带左旋剪切转变为右旋剪切,表明应力场发生了根本性的改变。最强裂谷作用发生时间也与所在地体有关。喜马拉雅地体内的裂谷作用时间大致在15Ma~13Ma。在拉萨地体内部的裂谷中,研究较为详细的尼木—谷露裂谷自南向北逐渐变得年轻,大约在8Ma左右。羌塘地体内的北东向裂谷作用开始的时间,尚有争议。有些学者认为是13.5Ma前,也有学者认为是约4Ma。
Near north-south striking rifts in Tibetan plateau is one of the most obvious tectonic styles in TibetPlateau. With continuous study and cognition, Rifts in Tibetan plateau have recently become the hot focus onTibetan Plateau. At present, there are two main completely different arguments about mechanisms of those rifts.One viewpoint is that the formation mechanism of rifts is relative to uplifting of Tibetan Plateau. The otherrelates to far-ranging rifting in Asian. According to the first viewpoint to rift mechanism, some behavior ofthose north-south strike rifts must exist in the whole plateau, and its tectonic features is all the same. To thelater one, it is all known that Shanxi Graben and Bakal Rifts form under extending environment. But, thosenorth-south strike rift in the plateau form under south-north extrusion tectonic condition during orogeny. Thetwos have different regional tectonic backgrounds.
     To post the scientific mystery of formation mechanisms of rifts in Tibet Plateau, many earth scientistsfrom all of the world have intensively focused on the problem, surveyed and researched it by geologicalobservation, focus solution to earthquakes, Remote Sense Images and geochemistry analysis. Although manyachievements and cognitions have acquired, they mainly reflected near surface structures. And, the deepsubsurface structure and tectonics backgrounds of those rifts is less known. However, those features is the keyto understand and acknowledge its cause of formation about those rifts. So, some key scientific problem asfollowing had to answer at first.
     (1)、How do those rifts extensively exist in the surface to distributes distribute in the deep crust? (2)、Doesexist the deep tectonics that control those rifts' distributions in the inner lithosphere under Tibet Plateau ? If itdoes, where it is? Either Karakulum-Jiali faults along the middle parts of Bankong Co-Nujiang Suture or not?(3)、Those rifts are the mark of plateau collapsing when it uplift to an extent or the single result from intenseextrusion-deformation, or the escaping to east under extrusions from northern and southern sides of Tibetplateau? (4)、Rifting in the plateau is local range, or regional one that belong to the extending system in thewhole of East Asian, which include ShanXi Graben and Bakal Rifts? If they were one, Tibetan rifts have thethe same extending mechanism as extensive extension in east Asian? Or what is mechanism of the plateaurifts?
     Presently, Tibet plateau is still strongly active, uplifting and deformation. And the plateau rifts is one ofthe youngest tectonic action in Tibet and its adjacent at geological time scale. So, Recognition of riftsgeodynamic process is to help us with understanding some mechanism of continent-continent collision,continental underthrusting and deformation. Further, we can comprehend the complex dynamical process ofthe earth's formation and evolution.
     Now, The existing deep sounding data surveyed in Tibet plateau mainly focused on the east-west strikestructure. So, there are very little data that do reflect transvers characteristics cross south-north strike rifts. Inorder to make all use of low-precision Bouguer gravity anomaly data, the author give a bran-new and effectmethod of B-spline Wavelet Transformation to extract veracious deep structure information of those plateaurifts.
     B-spline Wavelet Transformation have all the basic feature of the ordinary wavelet transformation, but also it well utilize the basic behavior of B-spline function that include smooth, derivative and explicit functionrelationship, by which feature some normal orthogonal wavelet-base is easy to construct. In the potentialtheory, magnitude and intension of some potential anomaly be relative to the location, shape and deep of itssource. And potential representation expression commonly is Guass function that can get the same result byB-spline function. So, utilizing B-spline to construct Gauss function, multiscale-decomposition and the firstorder derivation of the wavelet to extraction and separation of the potential fields in order to achieve marginalfeature of geological objects. According to Liptiszh law that exist in wavelet transformation, we canqualitatively describe dip and approximate depth of fault zones. To overcome disturb and influence frompreponderant margins of three dimensional cube in potential theory, the author reference an idea of directionfilter extensively used in general data process of potential theory to extrude structure information of thedirection. Based on forward analysis of local and regional models, the author explicitly give general regularityfor extracting linear structure information by B-spline wavelet transform. Those models suggest that dataprecision for analysis must be sure to clearly distinguish the marginal variety of object on the basis of Sampletheorem. Moreover, the difference between local model and regional model in various feature indicate that wemust cautiously explain some regional anomalous in potential fields. On the base of above cognitions, weutilize the fast order derivation of B-spline Wavelet to process regional Bougour gravity anomalous of Tibet(1: 25, 000, 000 scale), and well achieve some deep distributions of the plateau rifts. Those clear distributionsregularities suggest that B-spline wavelet transformation have particular advantage to separate and extractfaults distributions from gravity fields.
     Based on the existing geophysical and geological data, to get all the most information of Tibetan rifts aspossible, the author use many geophysical technologies, such as gravity, areomagnetic, deep seismic soundingsand eqrthquake et all, combined with remote sense image, GPS observation, subsurface geology, tectonicsgeochemistry and geochronology. Thus, we can recognize and understand structures, deformation andgeodynamic process of the inner of the Earth from different way. During this researching for the rifts, we takeaction as following:
     At first, the author adopted B-spline wavelet transform to separate gravity anomalous (1: 25, 000, 000 scale)and to extract linear structure related to rifts. For areomagnetic anomalous (1: 20, 000, 000 on scale), the authoruse many ways, such as match filter, upward continuation and horizontal derivative to extract linear structureof areomagnetic anomaly. The two results, combined with tectonics from surface geology, depict distributionsof regional structures in rifts areas of Tibetan platean, and analyses the relationship between those lineardistributions and near north-south striking rifts in Tibetan. Second, to acknowledge the regularity of all of riftdistribution, the author study touching relationship between rift and surface tectonics by remote sense imageand learn the local property of rifts. Thirdly, on the base of collecting achievement from GPS observations, seismic activity, seismic anisotropy in the researching area, the author describe the features of structure activityand regional stress fields in rifting area of Tibetan plateau, from surface crust to deeper lithospheric mantle.Consequently, the mechanism of active rift in Tibetan plateau be acquired. Fourth, the author study deepcrustal structure of Yadong-Gulu rifts located in eastern Lassha Terrene. and regional deep structure in wholeof Lassha Terrene with gravity fits integrated with seismic sounding and with seimic sounding achievements.Fifthly, comparing geological and geophysical features of Tibetan rifts with some typical continental riftswhich form in pure extending environments, the author give a specific concepts of those rift formed in Tibetan.And, those rifts are classified according to their features. The author analyses formation mechanism of thosedifferent kinds of rifts and verifies those concept model of rifts mechanisms by seismic soundings data. At last, the author summarizes above-mentioned results and provide the unity geodynamical model of rifts in Tibetanplateau. Combined with surface geology, geochemistry and chronology, the author simply tell the geodynamical process of those rifts. According to this results of Tibetan rifts, the author acquire basicacknowledges as follows for above-mentioned scientific problems about rifts.
     (1) Rifts with completely coherent characteristics of tectonics do not exist in Tibetan plateau. BecauseYadong-Gulu rift, as the greatest scale in Tibet plateau, is divided into two parts by YaLung Zangbo Suture, namely Yadong-Kangma rift located in Himalaya Terrene and Nimu-Gulu rift related to mantle in LasshaTerrene. Therefore, all of those rifts in Tibetan plateau are limited by those terrenes boundary. Rifts in Tibetanplateau are related to some characteristics of corresponding terrenes, ant its structure and regional stress fields.North-east trending rift in Qiangtang terrene be related to the basement property of Qiangtang Terrene. Andnear north-south striking rift main located in Lassha Terrens, and those rifts are very complex, and are studiedas main objects
     (2) East-western striking rifts are mainly related to Geji-south Gaize- North Cuoqen-Shenzha insidiousfaults (abbreviated, GGCSF) that located in the north margin of Gangdse batholith, not the middle part ofBangong Cuo-Nujiang suture which are presently accepted at large. The results from seismic activity suggestthat the fore have strong active at presently. Instead, the later have not clearly active. Combined with existingacknowledge, Geji-south Gaize- North Cuoqen-Shenzha insidious faults perhaps become boundary faultzones.
     (3) According to the vertically extending depth of those rifts in Lassha Terrene, they are divided into twokinds. One is crustal rift, which means the rifts only are located in upper and middle crust. They are mainlylocated in western Lassha Terrene, such as Shenzha-Xietongmen Rift, Dangrerong Cuo-Gu Cuo Rift and soon. Correspondingly, the other kind is mantle rift that relates to mantle activity, and cut through the whole crust.The south end of all rifts in Lassha Terrene are limited by Yalur Zangbo Suture. And, the north end of crustalrift are truncated by east-west trending GGCSF.
     (4) The strike of pre-existing tectonics in Lassha Terreen are different. The strike of pre-exiting tectonic inwestern Lassha Terrene is mainly north-west strike, and one of that in eastern Lassh Terrene is north-east strike.The boundary is 88E. Rifts in Lassha terrene succeeded to those pre-existing regional tectonics.
     (5) the depth of Moho under Lassha Terrene is deeper than its south side Himalaya Terrens and the northside Qiangtang Terrene, and mainly become down concave. Moreover, the depth of Moho under eastern LasshTerrene is deeper than western Lassha Terrene. The low velocity zone is snapped as the result of extension inLassha Terrene. Those characteristics reveal that extension in Lassha Terrene is not equal. And the east part ofLassha Terrene is stronger than the west one.
     (6) North-east trending rift in Qiangtang terrene be related to the basement of Qiangtang Terrene and tocorresponding regional stress field. Rifts located in Lassha Terrene have complex mechanism of theirformation. The mechanism of Nimu-Gulu Rift in eastern Lassha Terrene results from directional fluxion ofsubtance in lithospheric mantle, shearing-slipping in curst and the location. And the mechanism of crustal riftsis the consequences of inhomogeneous ductile slipping of LVZ under extending environments and the effectsof brittle upper ernst and topography.
     (7) Compared geological and geophysical features of Tibetan rifts with some typical continental riftswhich form in pure extending environments, rifts in Tibetan plateau are named colliding-raising rift orOrogenic Rift. So, rifting in Tibetan plateau is not a part of extending system in far-large East Asian whichinclude Shanxi Graben and Baikal Rifts.
     (8) Crustal rifting in Lassha Terrene is the result of inhomogeneous ductile slipping along LVZ in themiddle of crust under extending environments and the effects of brittle upper crust and topography. Andmantle rifting formed by lithospherie ductile deformation, isostatic adjust, creeping of substance in uppermantle regional variation of tectonic stress fields. This two mechanism all contribute to oblique subduction of India plate. It lead not only to progressive extrusion stress to north in Tibetan Inner, but to asymmetriceast-west stretching in Lassha Terrene.
     (9) As for the whole, rifting that happen in Lassha Terrene and Qiangtang Terrene maybe attribute tooblique subduction of India Plate into Asia plate, and being blocked by Tarim Block at Pamir Plateau syntax, and having free boundary at east margin of Tibet, and Tibetan inner matter creeping from west to east. Incourse of creeping, the matter of Tibet stretch asymmetry, because of different material fabric, structure andtectonic stress field. It is the distinction that lead to different rifts kinds between Lassha Terrene andQiangtang. Terrene. The crust rift in west of Lassha Terrene and N-E rift in Qiangtang Terrene are controlled byGGCSF dextral strike-slip.
     (10)All in a word, some condition under which the rifts form are complicated. All the models that themechanism of uplift, collapse and later strong deformation under extrusion conditions, or matter escaping toeast by extrusions from two sides (north side and south side) in Tibet have single tectonic circumstanc anddepth structure feature. Rifts in Tibet do not belong to fan-asian spread system with Shanxi graben and Bakalrifts. Tibetan rifts results from oblique subduction-collision of India plate, free eastern boundary of Tibet andsome differences among terrenes in Tibet plateau and among inner terrene.
     (11) The oldest age of Tibet plateau extrusion is 20±3Ma. During this term, the strike-slip dirction ofJiali Faults had been changed latral into dextral, and Honghe-Ailaoshan latral shear faults into dextral shear.The evidence indicate that regional stress fields had radically happened during the term. The time that thestrongest rifting happened be related with corresponding to terrene where it form. Rifting in Himalaya Terrenehappened about 15~13Ma. The time of Nimu-Gulu Rift, which be studied in detail among those rifts in Tibet, happened about 8 Ma, and become more and more younger form south to north. It is disputable that the time ofN-E striking Rifting began. Some scientists considered 13.5 Ma, others is 4Ma.
引文
格拉切夫著.陈家振等译.地球裂谷带,北京:地震出版社,1982
    Aiming Lin, Bihong Fu, Jianming Guo, et. Al. Co-Seismic Strike-Slip and Rupture Length Produced by the 2001 Ms 8.1 Central Kunlun Earthquake[J]. Science, 2002, 296: 2015~2017
    Armijo R., Auaternary extension in southern Tibet: field observations and tectonic implication[J]. JGR, 1986, 91: 13803~13872
    Armijo R. Tapponnier P and Han T, Late Cenozoic right-lateral strike-slip faulting across southern Tibet, JGR., 1989a, 94: 2787~2838
    Armijo R, and Tapponuier, P., Late Cenozoic right-lateral strike-slip faulting in southern Tibet, J.G.R., 1989b, 94(B3): 2787~2838
    Argand E. La Tectonique de L'Asie. Proc. 13th Int.Geol.Congress, 1924, 7: 171~372
    Avouac J. P. Tapponnier P., Bai M, et al., Active thrusting and folding along the northern Tien shah and Late Cenozoic rotation of the Tarim relative to Dzungeria and Kazakhstan, JGR, 1993, 98: 6755~6804
    Biomedical Imaging Group. B-Spline based Continous Wavelet Transform. http://bigwww.epfl.ch
    Blisniuk P M, Hacker B R, Glodny J, et al, Normal faulting in central Tibet since at least 13.5Myr ago Nature, 412: 628~632
    Burclffiel B. and Royden G. North-south extension within the convergent Himalayan region. Geology, 1985, 13: 679~682
    Bird P. Initiation of intracontinental subduction in the himalaya. J. Geophys. Res., 1978, 83: 4975~4987
    Coleman M. Hodges KV. Evidence for Tebetan Plateau uplift before 14 Ma ago from a new minimum age for east—west extension [J]. Nature, 1995. 4: 49~52
    Davis P., P. England and G. Houseman, Comparison of shear wave splitting and finite strain from the India-Asia collision zone, J. Geophys. Res., 1997, 102(B12): 27511~27522
    Debao Chen, CARDINAL SPLINE WAVELETS [Dissertaiton], The University of Texas at Austin, 1994
    Dimitri Van De Ville, The Wavelet Digest, http://www.wavelet.org
    Dimitrios Sokoutis, Marco Bonini, Sergei Medvedev et al., Indetation of a continent with a built-in thickness change:experiment and nature, Tectonophysics, 2000, 320: 243~270
    Dobretsov NL, Blueshists and eclogites: a possible plate tectonic mechanism for their emplacement from the upper mantle. Tectonophysics, 1991, 186: 253-268
    Douglas Alsdorf, Larry Brown, K. Douglas Nelson et al. Crustal deformation of the Lhasa terran, Tibet plateau from Project INDEPTH deep seismic reflection profiles, TECTOTINCS, 1998, Vol. 17, No.4, 501-519
    Dziewonski, A. M., T.-A. Chou and J. H. Woodhouse, Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res. 86, 2825-2852, 1981.
    Esther A, Masson H, Steck A. Nappe geometry in the Western Swiss Alps[J]. J Struct Geol, 1993, 15(3-5): 501-509
    Esther A, Hunziker J, Marthaler M, et al. Geologic framework and structural evolution of the Western Swiss-ItalianAlps[A]. In: Pfiffner O A, Lehner P, heitzmann P, et al Eds. Deep Structrue of the Swiss Alps Results of the National Research Program 20(NRP 20)[C]. Basel: Birkhauser, 1997. 205-222
    Esther A, Beaumont C. Formation, burial and exhumation of basement nappes at crustal scale: a geometric model based on the Western Swiss-Italian Alps[J]. J Struct Geol, 1997, 19(7): 955-974
    England P. and Houseman G., The mechanics of the Tibet plateau. Phil. Tans. R. Soc, 1986, 326: 301~320
    England, P.C. & Houseman, G.A., 1988. The mechanics of the Tibetan Plateau. Philos. Trans. R. Soc., London, A, 326, 301-319.
    England P., Searle Houseman G.A., Extension during continental convergence, with application to the Tibetan plateau. J. Geophysics Research, 94: 17561~17579, 1989
    England P C, Molnar P. Right lateral shear and rotation as the explanation for strike slip faulting in eastern Tibet[J]. Nature, 1990, 334: 140~142
    E. Sandvol, J. Ni, R. Kind et al., Seismic anisotropy beneath the Southern Himalayas-Tibet collision zone, 1997, Journal of Geophysical Research[J]. Vol.102(B8): 17813~17823.
    Flesch L.M., Haines A.J., Holt W.E., Dynamics of the India-Eurasia collision zone, JGR., 2001, 16(B8): 16435~16460
    Frederik Tilmann, James Ni, INDEPTH Ⅲ Seismic Team, Seismic imaging of the downwelling indian lithophere beneath central tibet., Science, 2003, 300: 1424~1426
    Gao Rui Liu Hongbin, Li Qiusheng et al., A deep seismic reflection profile across Altun fault belt, Earth Sciences Frontiers (地学前缘), 2000, 7 (Supper): 205
    Garzione, C.N., Dettman, D.L., Quade, J., et al., High times on the Tibetan plateau: Paleo-elevation of Thakkola graben, Nepal. Geology 28: 339~342, 2000
    Gerard Wittlinger, Frederic Masson, Georges Poupinet et al. Seismic fomography of northern Tibet and Kunlun: Evidence for crustal blocks and mantle velocity contrasts, Earth and Planetary Science letters, 139(1996): 263-279
    Gerard Wittlinger, Paul Tappormier, Georges poupinet et al., Tomogrphie evidence for localized lithospheric shear along the Altyn Tagh Fault, Science, 1998, Vol.282, pp.74-76
    G. Kosarev, R. Kind, S.V. Sobolev et al., Seismic evidence for a detached Indian lithospheric mantle beneath Tibet, Science, 1999, Vol.283, pp. 1306-1309
    Haines S.S., S.L.Klemperer, L.Brown et al., INDEPTH Ⅲ seismic data: From surface observations to deep crustal processes in Tibet, Tectonics 2003, 22(1): 1~18
    Harrison, T.M., Copeland, P et al., Raising Tibet, Science, 1992, 255
    Harrison T M, Copeland P, Kidd w S F et Al. Activation of the Nyainqent anghla shear zone: implications for uplift of the southern Tibetan plateau[J]. Tectonics, 1995, 14: 658~676
    Hideo T., Kazunori A., Takashi S. et al., Kinematic history of the Main Central Thrust zone in the Langtang area, Nepal, Tectonophysics, 2003, 366: 151~163
    Huang, Wei-Chuang; Ni, James E; Tilmann, Frederik et al., Seismic polarization anisotropy beneath the central Tibetan plateau, J. Geophys. Res., 2000, 105: 27979~27989
    Holt, W. E., and A. J. Haines, Reply to comment by R. Westaway on 'Velocity fields in deforming Asia from the inversion of earthquake-released strains, Tectonics, 12, 1489-1491, 1993
    Houseman G., and P. England, A lithospheric thickening model for the Indo-Asian collision, in the Tectonic Evolution of Asia, edited by A. Yin and M. Harrison, Cambridge Univ. Press, New York, 3~17
    Jean Boulin, Structure in Southwest asia and evolution of the eastern tethys, Tectonophysics, 196(1991): 211~268
    J.L. Mercier, Rolando Armijo, Paul Tapponnier et al. Change form Late Tertiary compression to Quaternary extension in Southern Tibet during the India-Asia collision, Tectonics, 1987, Vol.6, P.275-304
    J. Vergne, G. Wittlinger; Qiang Hui, et al., Seismic evidence for stepwise thickening of the crust across the NE Tibetan plateau, Earth and Planetary Science Letters, 2002, 203: 25-33
    Larson K, Burgmann R, Bilham R, et al., Kinematics of the India-Eurasia collision zone from GPS measurements., J. Geophys, Res, 1999, 104: 1077~1093
    Keselev A I. and Popov A M.. Asthenospheric diapir beneath the Baikal rift: petrological constraints, Tectonopysics, 1992, 208: 287~295
    K. D. Nelson, Wenjin Zhao, L. D. Brown et al., Partially molten middle crust beneath Southern Tibet: Synthesis of Project INDEPTH Results, SCIENCE, 1996, Vol. 274(6): 1684-1688
    Kidd W. Coward, M. P., P. Yun, R. et al., The structure of the 1985 Tibet Geotraverse, Lhasa to Golmud. In: The Geological Evolution of Tibet. London: The Royal Society, 1988 pp. 307-306.
    K.R. McClay and M. J. White, Marrine Pertoleum Geology, 1995, 12: 137~151,正向和斜向裂谷作用试验模拟,吴李泉陈福巨译.世界地质,1997,16(1):30~38
    L. Nielson and B.H. Jacobsen, Integrated gravity and wide-angle seismic inversion for two-dimensional crustal modeling, Geophys. J. Int., 2000, 140: 222~232
    Lave, J., J. P. Avouac, R. Lacassin, P. Tapponier, and J. P. Montagner, Seismic anisotropy beneath Tibet: Evidence for eastward extrusion of the Tibetan lithosphere?, Earth Planet. Sci. Lett., 140, 83-96, 1996
    Leshou Chen, John R. Booker, Alan G. Jones et al., Electrically conductive crust in Southern Tibet from INDEPTH Magnetelluric Surveying, SCIENCE, 1996, Vol. 274 (6): 1694-1696
    L.D. Brown, Wenjin Zhao, K. D. Nelson, et al., Bright Spots, Structure, and magmatism in Southern Tibet from INDEPTH Seismic Reflection Profiling, SCIENCE, 1996, Vol. 274 (6): 1688-1690
    Leloup P H, Harrison T M et al, Structural, petrological and thermal evolution of a Tertiary duetiles trike slip shearzone, DiancangShan, Yuunan[J]. J. Geophys. Res, 1993, 98(B4): 6715~6743
    L.利布特里著,孙坦译.大地构造物理学和地球动力学.北京:地质出版社,1986
    Lysak S V. Heat flow variations in continental rifts. Tectonophyscis, 1992, 208: 309~323
    Marchant R. the underground of the Western Alps[J]. Mem Geol Lausanne, 1993, 15: 1-137
    Marchant R, Steck A, Esther A, et al. An interpretation of the deep seismic lines from the Penninic Alps of Valais(Swithzerland)[J]. Bull Soc Geol Fr, 1993, 164: 81-100
    Makovsky, Y., Klepperer, S., Huang, L. Y., et al., Structural elements of the southern Tethyan Himalaya crust from wide-angle seismic data, Geophys. Res. Lett., 1995
    Mattauer M., Intracontinental subduction, crust mantle decollement and crustal stacking wedge in the Himalaya collision belts. Spec. Publ J Geol soc London, 1986, 19: 37~50
    Mercier J L, Armijio R P, Tapponnier P et al., Change from Late tertiary compression to Quaternary extension in southern Tibet during the India-Asia collision, Tectonics, 1987, 6: 275~304
    M. Blisniuk, R. Hacker Johannes Glodny et al., Normal faulting in central Tibet since at least 13.5 Ma ago, Nature, 2001, Vol.412: 628~632
    McNamara, D., T. Owens, P. Silver and F. WU, Shear wave anisotropy beneath the Tibetan Plateau, J. Geophysics, Res., 1994, 99: 13655~13665
    McNamara, D., W. Walter, T. Owens, and C. Ammon et al, Upper mantle velocity structure beneath the Tibetan Plateau from Pn travel time tomography, J. Geophysics, Res., 1997, 102: 493~505
    M.L. Hauck, K.D. Nelson, L.D. Brown et al., Crustal structure of the Himalaya orogen at ~90° east longitude from Project INDEPTH deep reflection profiles, TECTONICS, 1998, Vol. 17, No.4, 481-500
    M. R. Strecker W. Frisch, M.W. Hanburger et al., Quaternary deformation in the Eastern Pamirs, Tadzhikistan and Kyrgyzstan, Tectonics, 1995, 14(5): 1061~1079
    Molnar P., and Tapponnier P., Cenozoic tectonics of Asia: Effects of a continental collision, Science, 1975, 189: 419~426
    Molnar P and Tapponnier P. Active tectonics of Tibet, J.G.R., 1978, 83: 5361~5375
    Molnar P. Lyon-Caen H. Fault plane solutions of earthquakes and active tectonics of the northern and eastern parts of the Tibetan Plateau., Geophysica Journal International, 99, 123~153, 1989
    Ni J, and York J.E., Late Cenozoic tectonics of the Tibetan plateau, J.G.R.,, 1978, 83(B11): 5377~5384
    Owens. T. J and Zandt. G., Implications of crustal property variations for models of Tibetan plateau evolution, Nature, 1997,387: 37~43
    Pan Y, Kidd W S F, Nyainqentanghla shear zone: a late Miocene extensional detachment in the southern Tibeatn Plateau[J]. Geology, 1992, 20: 775~778
    P. Hornby, F. Boschetti and F.G. Horowitz, Analysis of poteutial field data in the wavelet domain, Geophy. J.Int. (1999), 137,175-196
    Pichon X L., Henry P., Goffe B., Uplift of Tibet: from eclogites to granulites—Implications for the Andean Plateau and the Variscan belt, Tectonics,1997,273: 57~76
    R. Kind, James Ni, Wenjin Zhao et al., Evidence from Earthquake data for a Partially Molten crustal layer in Southern Tibet,, SCIENCE, 1996, Vol. 274 (6): 1692-1694
    R.Kind, X.Yuan J.Saul, D.Nelson et al., Seismic Images of Crust and Upper Mantle Beneath Tibet: Evidence for Eurasian Plate Subduction, Science, 2003,298: 1219~1221
    Ranadi, Rheology of the Earth: Deformation and Flow processes in Geophysics and Geodynamics,1987
    Ridsdill-Smith T.A. and Dentith M.C., The wavelet transform in aeromagnetie processing, Geophysics, 1999,64 (4): 1003~1013
    R. McCaffrey, J. Nabelek. Role of oblique convergence in the active deformation of the Himalayas and southern Tibet plateau, Geology, 1998, 26(8): 691~694
    Robert A. Spicer, Nigel B.W. Hams, Mike Widdowson et al., Constant elevation of southern Tibet over the past 15 million years, 2003,Nature, vol.421622~624
    Robert D, and Hatcher Jr., Structural Geology Principles, Concepts and Problems Second Edition ,Prentice Hall, 1995
    Rosaria Tondi, R.D. Franco, Riccardo Barzaghi. Sequential integrated inversion of refraction and wide-angle. Reflection travetimes and gravity data for two-dimensional velocity structures, Geophys.J.int.,2000,141: 679~698
    Searle M. The rise and fall of Tibet [J]. Nature, 1995, 374: 17~18
    Searle M. Coling history, erosion, exhumation and kinematics of Himalaya-karakoram-Tibet orogenic belt, In: Yin A and Harrision T M. eds, The tectonis evolution of asia, newyork: Cambridge University Press,1996, 109~137
    Silver, P. G, Seismic anisotropy beneath the continents: Probing the depths of geology, Annu. Rev. Earth Planet. Sci., 24, 385-432, 1996
    Teng Jiwen Wei Siyu Sun Kezhang et al., The characteristics of the seismic activity in the Qinghai-Xizang(Tibet) Plateau of China, Tectonophysics, 1987, 134: 129~144
    Tapponnier, P., P. Molnar, Armijo. R., Propagation extrusion tectonics in Asia: new insights from simple experiments with plasticine, 1982, Geology, 10:611~616
    Tapponnier P Mercier J.L. Armijo R.. On the mechanics of the collision between India and Asia[J]. Collision Tectonics, 1986, 115~157
    Tapponnier P. Xu Zhiqin Roger F. et al., Oblique stepwise rise and growth of the Tibet Plateau, Science, 2001,294: 1671~1677
    Toshihike Shinramoto, Rheology of rocks and plate tectonics, Comprehansive Rock Engineering, 1993: 93~107
    Verma, R.K. and Reddy, Y.S.K., Seismicity, focal mechanisims and their correlation with the geological/tectonic history of the Tibetan plateau, Tectonophysics, 1988,156(1/2): 107~131
    Wang Q, Zhang PZ, Freymueller JT, et. Al., 2001. Present-day deformation in China constrained by global positioning system measurements. Science 294: 574-577
    Wasilewski P J, Thomas H H, Mayhew M A. The Moho as magnetic boundary, GRL, 1979,6(7): 541~544
    Wasilewki P J, Mayhew M AThe Moho as a magnetic boundary revisited, GRL, 1992,19(22): 2259~2262
    Wenjin Zhao, K. D. Nelson Project INDEPTH Team, Deep seismic reflection evidence for continental underthrusting beneath southern Tibet, Nature, 1993,Voi. 366 (9): 557-559
    W.E. Holt, Correlated crust and mantle strain fields in Tibet, GEOLOGY, 2000, Vol.28, No.1, 67-70
    Wei Wenbo, Tan Handong, Jin Sheng et. al. Electrical structures of the crust and upper mantle of Tibetan Plateau from magnetotelluric profiling of INDEPTH-MT. 地学前锋 (中国地质大学,北京), 2000, 7 (增刊): p319
    Wei Wenbo, Unsworth M, Jones A, Booker J,et. al. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science 2001 292: 716-718
    Williams, H., Turner, S., Kelley, S. et al., Age and composition of dikes in southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism, Geology,2001, 29:339-342
    Willett S D.,Beaumount C. Subduction of Asian lithospheric mantl beneath Tibet inferred from models of continental collision. Nature, 1994,369: 642~645
    Wu Changde, Nelson K.D., Wortman G et al., Yadong cross structure and South Tibetan detachment in the east central Himalaya(89°~90°E). Tetonics,1998,17: 28~45
    Wu Gong-Jian, Xiao Xu-Chang, Li Ting-Dong et al., 1991, Yadong to Golmud Transect Qinghai-Tibet Plateau, China, Global Geoscience Transect 3. Cop.by ICL and AGU
    Y. Makovsky, S.L. Klemperer, L.Y. Huang et al., Structure elements of the southern Tethyan Himalaya crust from wide-angle seismic data, Tectonics, 1996, 15 (5): 997~1005
    Y. Makovsky, S.L. Klemperer, Measuring the seismics properties of Tibetan bright spots: Evidence for free aqueous fluids in the Tibetan middle crust, 1999, Journal of Geophysical Research [J], Vol.104(B5): 10795~10825
    Yizhaq Makovsky, Simon L. klemperer, Lothar Ratschbacher et al., INDEPTH Wide-angle reflection observation of P-wave-to-S-wave conversion from crustal Bright Spots in Tibet, SCIENCE, 1996, Vol. 274 (6): 1690-1691
    Yuri V., Fedorenko, Eystein S. husebye. First breaks-automatic phase pickings of P-and S-onsets in seismic records, Geophysical Research Letters, 1999,Vol.26, No.21, pp.3249-3252
    艾印双,郑天愉.青藏高原地震活动及其构造背景.地球物理学进展,1997,12(2):30-40
    安振昌,谭东海,王月华等.利用MAGSAT卫星数据研究青藏高原及其邻近地区磁异常.测绘学报,1996 25(3):221-225
    安振昌.亚洲MAGSAT卫星磁异常.地球物理学报,1996,39(4):461-469
    常承法 郑锡澜.中国西藏南部珠穆朗玛峰地区地质构造特征.1973,地质科学,2:257~265
    程振森,郭新峰。亚东—格尔木地学断面电性结构。地质专报(亚东—格尔木岩石圈地学断面综合研究),第20号,北京:地质出版社,1996
    陈国英,曾融生.用地震面波频散研究喜马拉雅山与西藏高原岩石圈构造的差异.地球物理学报,1985,28(Supp.Ⅰ):161-173
    陈庆宣 孙叶 邵云惠.中国构造体系的现今活动性.国际交流地质学术论文集(1),1980,北京:地质出版社
    崔作舟,尹周勋,高恩元等.亚东—格尔木岩石圈地学断面综合研究,青藏高原速度结构和深部构造,地质专报(五),1992,15
    崔作舟,李秋生,孟令顺等.格尔木—额济纳旗岩石圈结构与深部构造,北京:地质出版社,1999
    费鼎等,1982,航磁所反映的西藏中部区域构造特征及印度板块仰冲问题,青藏高原地质文集,1, 地质出版社
    邓希光 丁林 刘小汉等,藏北羌塘中部冈玛日—桃形错蓝片岩地发现,地质科学,2000,35(2):227~232
    邓希光 丁林 刘小汉等,青藏高原羌塘中部蓝片岩的地球化学特征及其构造意义,岩石学报,2002,18(4):517~525
    丁志峰,何正勤,孙为国等.青藏高原东部及其边缘地区的地壳上地幔三维速度结构.地球物理学报,1999(41):197-205
    冯锐,严惠芬,张若水.三维位场的快速反演方法及程序设计,地质学报,1986,No.4,390~402
    范文科,袁学诚.羊八井至洛扎南北向剖面磁大地电流测深初步成果,中法喜马拉雅考察成果,1984
    高名修,大陆裂谷,国外地质,1974,第9期
    高锐 孟令顺 李莉.青藏高原亚东—格尔木条带布格重力异常数字图像处理与地壳现代构造,中国地质科学院院报 1990第21号:163-174
    高锐.青藏高原岩石圈结构与地球动力学的30个为什么。地质论评,1997,43(5)460-464
    高锐,黄东定,卢德源等,横过西昆仑造山带与塔里木盆地结合带的深地震反射剖面,科学通报,2000,45(17):1874~1879
    高锐 管烨 贺日政等.新疆地学断面(独山子—泉水沟)走廊域及邻区地球物理调查研究,地球学报,2001,22(6):527~533
    国家地震局地学断面编委会.上海奉贤至内蒙古阿拉善左旗地学断面,1992,北京:地震出版社
    郭新峰,张元日,程庆云等.青藏高原亚东—格尔木地学断面岩石圈电性研究.中国地质科学院院报,第21号:191-202
    郝锦绮 黄平章 张天中等.1989,岩石剩余磁化强度的应力效应,地震学报,11:381~391
    贺日政 高锐 李秋生等.新疆天山(独山子)—西昆仑(泉水沟)地学断面地震与重力联合反演地壳构造特征,地球学报,2001,22(6):553~558
    贺日政 邹新民.二维自相关方法在识别地质构造中的应用,物探与与化探 2003,27(2):135~138
    贺绍英,程振炎,耿元生等.1994,结合岩石磁性分析重磁场反演结果的时间信息,地球物理学报,37(增刊Ⅱ):346~355
    何顺东 丁林 吴根耀等.藏南格仁错地区孜桂错断裂的第四纪活动及其构造意义,地质科学,2002,37(1):8~12
    姜枚,吕庆田,史大年等.用天然地震探测青藏高原中部地壳、上地幔结构.地球物理学报,1996,39(4):470-482
    姜枚,A.Hrin,薛光琦等.青藏高原地震剪切波各向异性特征及解释.现代地质,1999,13(Suppl.):56-60
    孔祥儒,王谦身,熊绍柏.西藏高原西部综合地球物理与岩石圈结构的研究.中国科学(D辑),1996,26(4):308-315
    赖绍聪 刘池阳.青藏高原北羌塘榴辉岩质下地壳及富集型地幔源区—来自新生代火山岩地岩石地球化学证据,岩石学报,2001,17(3):459~468
    雷芳,陈玉华,董治平等.银川地堑地震背景与近期地震活动趋势初步分析,高原地震,1997,9(4):58~64
    李才 王天武 杨德明等.西藏羌塘中央隆起区物质组成与构造演化,长春科技大学学报,2001,31(1):25~36
    李才,程立人,胡克等.西藏龙木错—双湖古特提斯缝合线研究,北京:地质出版社,1995
    李才,龙木错—双湖—澜沧江板块缝合带与石炭—二叠纪冈瓦纳北界,长春地质学院学报,1987,17(2):156~166
    李树德.中国东部山西地堑系的形成机制及构造地貌、地震探讨,北京大学学报(自然科学版),1997,33(4):467~474
    李英康 张中杰 李敬卫等,西藏高原北部的纵、横波速度与弹性结构,见国土资源部实物地质资料中心集刊,15号,北京:地质出版社,2002,122~140
    刘宇平 陈智梁.喜马拉雅造山带南北向伸展构造变质岩地压力—温度(p—T)轨迹证据.特提斯地质,1994,18(18):52~60
    卢德源,黄立言,陈纪平等.青藏高原北部沱沱河—格尔木地区地壳和上地幔的结构模型和速度分布特征.西藏地球物理文集,北京:地质出版社,19990
    吕德徽,青藏高原的板块构造与强震得关系,西北地震学报,1983,5(1):1~8
    吕庆田,姜枚,许志琴等.印度板块俯冲仅到特提斯喜马拉雅之下的地震层析成像证据.科学通报,1998,43(12):1308-1311
    孟令顺 高锐 周富祥等.利用重力异常研究亚东—格尔木地壳构造.中国地质科学院院报1990第21号:149-161
    潘桂棠,王培生,徐耀荣等.青藏高原新生代构造演化[M].北京:地质出版社,1990
    彭聪 高锐.中国大陆及邻近海域岩石圈/软流圈结构横向变化研究.北京:地震出版社,2000
    彭玉华著.小波变换与工程应用[M],北京:科学出版社,2000
    秦建业,T.V.McEvilly.西藏岩石圈结构的地震学新证据.地球物理学报,1985,28(Supp.Ⅰ):135-147
    秦国卿,陈九辉,刘大建等.昆仑山脉和喀喇昆仑山脉地区的地壳上地幔电性结构特征.地球物理学报,1994,37(2):193-199
    秦前清 杨宗凯.实用小波分析[M],西安:西安电子科技大学出版社,1995
    曲晓明 候增谦 李振清.冈底斯铜矿带含矿斑岩的~(40)Ar/~(39)Ar年龄及地质意义,地质学报,2003,77(2):245~252
    史大年,姜枚,马开义等.阿尔今断裂带地壳和上地幔结构的P波层析成像.地球物理学报,1999,42(3):341-350
    沈军 任金卫 汪一鹏等.西藏南部嘉黎断裂带第四纪右旋走滑运动研究,中国大陆现今地壳运动和构造变形——速度场与活动地块现代地壳运动与地球动力学研究,地震出版社,2001,106~122
    沈显杰,张文仁,杨淑贞等.青藏热流和地体构造演化,西藏地球物理文集,1992,北京:地质出版社,83-85
    宋方敏 俞维贤,走滑断裂带中挤压阶区内部剪切构造初探,地震地质,1998,20(4):343~348
    宋仲和,安昌强,陈国英等.中国西部三维速度结构及其各向异性,地球物理学报,1991,34(6):694-707
    孙鸿烈 郑度主编.青藏高原环境资源效应,北京:科学出版社,1999
    孙克忠,滕吉文.由长周期地震面波研究西藏高原地区的地壳和上地幔的速度分布.地球物理学报,1985,28(Supp.Ⅰ):43-53
    孙克忠,滕吉文.西藏高原地区的长周期地震面波与Q值的研究.地球物理学报,1985,28(Supp.Ⅰ):54-59
    谭捍东,陈乐寿,魏文博等.从INDEPTH-MT结果探讨雅鲁藏布江缝合带的电性结构。现代地质,1997,11(3)375~378
    滕吉文 王绍舟 姚振兴等.青藏高原及其邻区的地球物理特征与大陆板块构造,地球物理学报,1980,23(3):254~267
    滕吉文 孙克忠 魏斯禹等.中国青藏高原及其边缘地带的地震活动特征,喜马拉雅地质(Ⅱ),1984,北京:地质出版社
    滕吉文,尹周勋,刘宏兵等.青藏高原岩石层三维和二维结构与大陆动力学.地球物理学报,1994, 37(增刊Ⅱ):117-130
    滕吉文 张中杰,东亚大陆伸展和裂谷作用与动力学,地球物理学进展,1997,12(2):1~29
    滕吉文,张中杰,王光杰等,喜马拉雅碰撞造山带的深层动力过程与陆—陆碰撞新模型,地球物理学报,1999,42(4):481~494
    胥颐,刘富田,刘建华等.中国大陆西北造山带及其毗邻盆地的地震层析成像,中国科学(D辑),2000,30,2,113-122
    胥颐,刘富田,刘建华等.中国西北大陆碰撞带的深部特征及其动力学意义,地球物理学报,2001,44(1),40-47
    徐新忠,齐鹏飞.花石峡—阿克塞人工爆炸地震测深结果.中国地球物理学会年刊,北京:地震出版社,1993
    王懋基 程家印 程振炎.我国地壳深部构造的区域特征,物探与化探,1981,5(4)
    王式.地震测深资料研究西藏高原地壳结构.地质矿产部地球物理地球化学勘查研究所所刊,1985,No.1,143-152
    汪洋.中国及邻区大地热流分布特征。地球学报,1999,20(增刊):51-53
    王勇 许厚泽.青藏高原印度板块向欧亚大陆俯冲速率的研究—GPS观测资料的反演结果,地球物理学报,2003,46(2):185~190
    王泽民,陈俊勇,庞尚益等.珠峰地区及青藏高原地壳垂直运动特征研究,中国大陆现今地壳运动
    和构造变形——速度场与活动地块.现代地壳运动与地球动力学研究,地震出版社,2001.8,p36-43
    魏文博,陈乐寿,谭捍东等.西藏高原大地电磁深探测—亚东—巴木错沿线地区壳幔电性结构。现代地质,1997,11(3)365-374
    吴建平,曾融生.青藏高原Q值结构反演.地震学报,1996,18(2):208-214
    许志琴 杨经绥 姜枚等.大陆俯冲作用及青藏高原周缘造山带的崛起,地学前缘,1999,6(3):139~150
    阎雅芳,夏国辉,张凤玉.区域磁异常与岩石圈结构的研究.见:青藏高原岩石圈结构和动力学.广州:广东科技出版社 1997
    袁学诚,李立,范文科等.西藏洛扎—那曲一带地壳与上地幔的磁大地电流测深研究。西藏地球物理文集,北京:地质出版社,1990
    阮秋琦著.数字图像处理学[M],北京:电子工业出版社,2001
    西藏自治区地质矿产局.西藏自治区区域地质志,北京:地质出版社,1993
    肖序常 李廷栋.青藏高原的构造演化与隆升机制[M].广东科技出版社,2000,193-253.
    杨华 梁月明 王岚等.青藏高原东部航磁特征及其与构造成矿带的关系 地质专报 第7号 1991 北京:地质出版社
    杨华.青藏高原航磁图展示的地球物理特征及其地质构造意义,地球物理学报,1985,28(增刊Ⅰ):185—195
    杨德明 李才 王天五.西藏冈底斯东段南北向构造特征与成因,中国区域地质,2001,20(4):392~397
    Y.马可夫斯基,S.克莱姆佩雷,黄立言等.从宽角地震数据得出得特提斯喜马拉雅南部得速度结构.地球学报,1996,17(2):153-164
    易名初.贝加尔裂陷新构造特征,地质力学学报,1996,2(4):7~14
    尹安.喜马拉雅—青藏高原造山带地质演化——显生宙亚洲大陆生长.地球学报,2001,22(3):1~230
    余钦范,楼海,孙运生等.亚东—格尔木地学断面区域磁异常数据处理与地体划分,中国地质科学院院报1990第21号:174-182
    曾融生,朱介寿,周兵等.青藏高原及其东部邻区的三维地震波速度结构与大陆碰撞模型。地震学报,1992,14(增刊):523-533
    曾融生,丁志峰,吴庆举等,喜马拉雅及藏南的地壳俯冲带—地震学证据,地球物理学报,2000, 43(6):780~797
    曾佐勋 杨巍然 FranzNeubauer等.造山带挤出构造,地质科技情报,2001,Vol.20(1):1—7
    赵文津,纳尔逊,K.D.车敬凯等.深反射地震揭示喜马拉雅地区地壳上地幔的复杂结构,地球物理学报,1996,39(5):615-628
    赵文津及INDEPTH项目组.喜马拉雅山及雅鲁藏布江缝合带深部结构与构造研究,2001,北京:地质出版社
    庄真,傅竹武,吕梓龄等.青藏高原及邻近地区地壳与上地幔剪切波三维速度结构,地球物理学报,1992,35(6):694-709
    张培震 王琪.中国大陆现今地壳运动和构造变形——速度场与活动地块.现代地壳运动与地球动力学研究,地震出版社,2001.8,p21-35
    张国民 李丽.地壳介质的流变性与孕振模型,地震地质,2003,25(1):1~10
    张国伟,周鼎武,于在平.大陆造山带成因研究.见:肖庆辉等著.当代地质科学前沿.武汉:中国地质大学出版社,1993.145-154.
    张明华 蔺启忠.藏北不同地体与南北向壳内构造地球物理解释.现代地质 1999 13(Suppl.):61-65
    张中杰 李英康 王光杰等.藏北地壳东西向结构与“下凹”莫霍面—来自宽角反射剖面的启示,中国科学(D辑),2001,31(11):881~888
    张树勋.青藏高原北部与东缘地震波特征对比及其地球物理意义.西北地震学报,1996,18(2):67-73
    张双全,莫宣学,郭铁鹰等.西冈底斯中段中、新生代火山岩的大地构造意义.1998.5(3):85
    张昌达.由卫星和航空磁测成果推断中国岩石圈的磁性特征.地球物理学进展.2003.18(1):103—110
    张昌达.中国境内卫星磁异常的初步解释见:中国地球学会主编.中国地球物理学会年刊2001.昆明:云南科技出版社.2001.252
    张永生编著.遥感图象信息系统.北京:科学出版社.2000.50~78
    郑斯华.西藏高原及其周围地区地震得地震矩张量及震源参数的尺度关系.地震学报.1992.14(4):423~434
    郑斯华.青藏高原地震的震源深度及其构造意义.中国地震.1995.11(2):99-106
    郑治真 沈萍 杨选辉等.小波变换及其MATLAT工具的应用[M],北京:地震出版社,2001
    郑剑东 郑炳花.从卫星影像探讨西藏地震地质特征.地震地质,1982,4(4):35~44
    郑剑东.西藏高原的地震活动.科学通报.1986,31(23):1815~1818
    祝恒宾 周文虎 武立高.青藏高原重力场特征及其在大地构造上的含义.地球物理学报,1985,28(Supp.Ⅰ):60-69
    朱介寿 曹家敏 蔡学林等,东亚及西太平洋边缘海高分辨率面波层析成像,地球物理学报,2002,45(5):646~664
    朱仁学,胡祥云,陈玉新.格尔木—额济纳旗地学断面电性结构的研究(摘要).中国地球物理年会年刊.北京:地震出版社.1994,p91
    朱亮璞编著.遥感地质学.北京:地质出版社,2001,48~49
    周兵,朱介寿,秦建业.青藏高原及邻近区域的S波三维速度结构.地球物理学报,1991,34(4):426-441
    周建勋.基底不均匀伸展对盆地构造形成特征影响的试验研究.煤田地质与勘探,2000,28(5):12~13
    周勇 丁林 邓万明等.札达盆地构造旋回层及其地质意义,地质科学,2000,35(3):305~315
    钟大赉 丁林.青藏高原的隆起过程及其机制探讨.中国科学(D辑),1996,26(4):289~295

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700