Aβ损伤对大鼠脑内神经甾体合成代谢的影响及孕酮保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(Alzheimer’s disease,AD)又称老年痴呆症,是老年期痴呆症最常见的类型。AD临床表现为进行性记忆障碍,认知功能损伤,以及日常生活能力减退,同时可伴有幻觉、妄想、行为紊乱、人格异常等多种精神症状和行为障碍。AD常发生于65岁以上的老年人,发病率随年龄增长而迅速增加。据世界卫生组织统计,目前全球以AD为主的痴呆症患者约有3560万,并以每年770万的速度递增;预计到2050年,每85人中将有1人罹患此病。因此,对AD进行有效的预防和治疗不仅为医学界所重视,同时也倍受全社会的关注。AD典型病理改变为细胞外β-淀粉样蛋白(β-amyloid,Aβ)过度沉积形成老年斑(senile plaque,SP),胞内Tau蛋白过度磷酸化形成神经纤维缠结(neurofibrillary tangles,NFT),以及弥漫性神经元变性、缺失和全脑萎缩。在AD病例中,家族遗传性病例约占5%,其他绝大部分散发病例的致病机理尚不明确。研究认为,AD与Aβ过度沉积、Tau蛋白异常修饰、早老素(presenilin,PS)基因突变等有关。其中,Aβ作为AD发病始动因子的观点得到广泛认可,即:淀粉样蛋白斑块的主要成分Aβ在AD发生过程中发挥至关重要的作用。Aβ是淀粉样蛋白前体蛋白(amyloid precursor protein,APP)经过β-分泌酶(BACE-1)和γ-分泌酶(γ-secretase)顺序剪切后的产物。正常情况下,Aβ为可溶解状态,不具有毒性;而在病理状态下,Aβ聚集形成寡聚体、多聚体、原纤维,进一步沉积形成斑块,产生损伤作用。Aβ产生损伤作用的机制包括:引起氧化应激,引发炎症反应,诱导细胞凋亡等。胞外Aβ过量生成、过度沉积是邻近胶质细胞过度活化,神经元死亡,进而导致AD临床症状的主要原因。因此,减轻Aβ的损伤作用是治疗AD的策略之一。
     神经甾体(neurosteroid)是中枢神经系统中的甾体类物质及其代谢产物的总称,可由神经元或胶质细胞在中枢神经系统合成,也可由外周腺体合成后通过血脑屏障进入中枢神经系统,神经甾体在脑组织中的含量高于外周血中的含量。神经胶质细胞和神经元合成的神经甾体主要包括:孕烯醇酮(pregnenolone,PREG)、孕烯醇酮硫酸酯(pregnenolone sulfate,PREGS)、脱氢表雄酮(dehydroepiandrosterone,DHEA)、脱氢表雄酮硫酸酯(dehydroepiandrosterone sulfate,DHEAS)、孕酮(progesterone,PROG)、别孕烯醇酮(allopregnanolone,ALLO),以及雌二醇(estradiol,E2)等。研究显示,神经甾体具有镇静催眠、抗惊厥、抗焦虑、抗精神分裂症、改善学习记忆,以及神经保护等作用,在中枢神经系统功能调节中发挥广泛作用。研究显示,神经甾体的表达调控改变与包括AD在内的多种神经退行性疾病的发生有关,AD时神经甾体含量及合成代谢酶表达发生改变。对AD患者神经甾体水平变化的研究多为神经甾体水平与AD易患倾向关系的分析研究,其研究对象多为AD患者外周血、脑脊液或尸脑,研究对象来源有限。AD患者血浆或脑组织中神经甾体水平的变化为长时间、多种因素共同作用的结果,而在AD进程中,神经甾体含量的变化与学习记忆能力受损的关系尚不明确。
     目的:本研究采用单一损伤因素Aβ25-35诱导AD样学习记忆障碍大鼠模型,通过液液萃取结合高效液相色谱-串联质谱(high performanceliquid chromatography-tandem mass spectrometry,HPLC-MS/MS)方法分析Aβ损伤大鼠学习记忆相关脑区(前额叶皮质及海马)中主要神经甾体的含量,通过RT-PCR、 Western blot和免疫组织化学(immunohistochemistry,IHC)分析神经甾体合成代谢酶的表达;筛选与学习记忆障碍关系密切的神经甾体,观察其对Aβ损伤大鼠学习记忆能力的改善作用,探讨其学习记忆保护作用的机制。利用原代培养的海马神经元,进一步在细胞水平研究Aβ25-35对海马神经元细胞活力的影响及神经甾体孕酮对抗Aβ损伤的保护作用。本实验为神经甾体尤其是孕酮在AD等学习记忆障碍类疾病中的应用提供理论依据及实验基础。
     方法:
     1Aβ所致学习记忆障碍大鼠模型的制备
     将30只体重210-230g雄性Spague-Dawley(SD)大鼠随机分为3组,分别为:假手术组、溶剂对照组(假手术+蒸馏水)、以及Aβ损伤组,每组10只。Aβ损伤模型制备方法如下:动物经腹腔注射麻醉后,固定于脑立体定位仪,沿颅骨中线切开皮肤,暴露前囟。参照图谱海马CA1区位置,于前囟后3.5mm,中线左右2.0mm处,开直径1mm的骨窗,垂直颅骨表面进针2.7mm,缓慢注入5μL(2g/L)Aβ25-35溶液,留针10min使注射物充分扩散,缓慢撤针,缝合切口。溶剂对照组注入等体积蒸馏水。术后7天-12天进行Morris水迷宫行为学测试,观察大鼠空间学习记忆能力。行为学测试结束后,动物经多聚甲醛心脏灌流进行预固定,之后取脑组织,外固定,石蜡包埋,制备病理切片,通过硫堇尼氏体染色进行组织病理学分析。
     行为学测试:术后7天-12天进行Morris水迷宫(the Morris watermaze)行为学测试。实验开始前将动物置于行为学测试房间,使其适应环境1h。行为学测试于每天14:30开始,室温25℃,水温22℃-24℃,动物测试顺序保持不变,测试开始象限随机选取。Morris水迷宫行为学测试历时6天,前5天进行定位航行实验(the navigation trial),每天训练4次。记录大鼠入水至寻找到隐匿平台所需的时间,即逃避潜伏期(escapelatency)。第6天进行空间探索实验(the probe trial),撤去平台,将大鼠从平台相对的象限面壁放置入水,记录动物90s内穿越平台区的次数(number of platform crossings)以及在平台所在象限(第四象限)停留的时间百分比(Ⅳ time ratio)等行为学指标。
     组织病理学分析:预固定的脑组织经4%多聚甲醛固定至少48h,石蜡包埋,常规脑组织切片(5μm),硫堇尼氏体染色观察海马组织学改变。选取相同海马截面的切片进行硫堇尼氏体染色。每张切片随机选取CA1区3个400倍视野,计数海马CA1区每1mm区段内细胞膜完整、胞核饱满、核仁清晰的锥体细胞数目,每张切片海马各计数3个区段取平均数。
     2Aβ损伤大鼠学习记忆相关脑区(前额叶皮质及海马)神经甾合成代谢的改变
     将90只体重210-230g雄性SD大鼠随机分为3组,分别为:假手术组、溶剂对照组、以及Aβ损伤组,每组30只。动物处理同上。分别于术后7天及12天断头处死每组中的10只动物,迅速取脑,冰浴分离前额叶皮质及海马,-70℃存放,通过HPLC-MS/MS分析神经甾体孕烯醇酮、孕酮、别孕烯醇酮、及17β–雌二醇的含量;其余动物于术后12天取材,每组中的5只动物断头处死,迅速取脑,冰浴分离海马,-70℃存放,通过RT–PCR及Western blot分析神经甾体合成代谢酶CYP11A1、3β-HSD及aromatase的表达改变;其余动物经多聚甲醛心脏灌流进行预固定,之后取脑组织,外固定,石蜡包埋,制备病理切片,通过免疫组化分析神经甾体合成代谢酶aromatase的表达改变。
     神经甾体提取:参考本实验室已有方法略加改进,通过液液萃取提取神经甾体。脑组织样品(双侧海马组织或前额叶皮质)加入PBS及MT(内标),制备组织匀浆。乙酸乙酯/正己烷(9:1)萃取3次,转移并合并有机相,50℃水浴下N2吹干;60℃水浴中用丹酰氯衍生40min,离心后取上清,4℃保存。
     神经甾体含量测定:色谱条件:色谱柱Agilent XDB C18分析柱(4.6mm×50mm);保护柱Agilent XDB C18(4.6mm×12mm);柱温40℃;流动相:A水(含0.1%甲酸),B甲醇(含0.1%甲酸);流速:0.5mL/min;洗脱梯度:0-6.5min,36%A;6.5-6.6min,30%A;6.6-17min,10%A;17-18min,36%A。进样量30μL,每针运行18min。质谱条件:离子化方式:大气压化学离子源(atmospheric pressure chemical ionization,APCI);喷雾电压:4500V;鞘气(N2)压力:30L/min;辅助气(N2)压力:5L/min;离子检测方式:正离子多反应监测;用于定量分析的离子反应分别为:(m/z)299.03→(m/z)158.86、280.9(PREG),(m/z)315.03→(m/z)97、109.01(PROG),(m/z)301→(m/z)188.9、282.85(ALLO),(m/z)254.97→(m/z)132.9、158.9(17β-E2),(m/z)303.1→(m/z)97.04、109.06(MT)。
     RT-PCR:按照Invitrogen公司产品手册,采用TRIzol一步法,提取组织总RNA。每50-100mg脑组织加入1mL TRIzol试剂,匀浆器内冰浴研磨、裂解组织。将裂解液移至0.1%DEPC处理并高压灭菌的1.5mL离心管中,加入0.5mL氯仿,剧烈震荡15s,室温孵育,离心,静置,加等体积异丙醇,颠倒混匀,室温静置,离心,弃上清,75%乙醇洗沉淀,室温晾干,20μL DEPC水溶解。按照Promega逆转录试剂盒说明,取等量组织总RNA,70℃水浴10min,之后迅速置于冰上;加入逆转录体系各组分,涡旋混匀,瞬时离心,42℃孵育1h,合成cDNA,95℃加热3min终止反应。参考Genbank中mRNA序列设计引物,以反转录产物为模板,进行PCR扩增。PCR扩增产物经1.5%琼脂糖凝胶电泳分离,扫描成像。凝胶成像分析软件进行相对定量分析。
     组织总蛋白提取与Western blot分析:组织加入RIPA裂解液,制备组织匀浆。离心取上清(即蛋白提取液),分装,-20℃保存。以牛血清白蛋白为标准物,采用考马斯亮蓝蛋白测定试剂盒进行蛋白定量。取等量蛋白提取液,RIPA裂解液补齐体积,与5×SDS上样缓冲液混合,沸水浴加热使蛋白变性,冷却后上样。稳压电泳,溴酚蓝移动至凝胶底部时,停止电泳。切去浓缩胶,剪取与凝胶相同大小的PVDF膜,甲醇活化后,与滤纸、凝胶一起浸入转膜缓冲液,平衡15min。依次放置滤纸、PVDF膜、凝胶、滤纸,20V恒压半干转膜。将PVDF膜置于含5%脱脂奶粉的TTBS中,37℃封闭2h。之后进行一抗结合反应,4℃缓慢摇动过夜。洗膜后,进行二抗结合反应。洗膜后,用化学发光试剂盒检测PVDF膜上抗原抗体结合区带。凝胶成像分析软件进行相对定量分析。
     免疫组织化学染色分析:脑组织标本经4%多聚甲醛固定后,梯度乙醇脱水,石蜡垂直定向包埋,5μm厚度连续切片。SP三步法进行免疫组织化学染色,即:石蜡切片脱蜡至水,微波抗原修复,自然冷却;滴加H2O2去离子水,室温孵育10min,消除内源性过氧化物酶影响;PBS冲洗,滴加山羊血清工作液,封闭非特异结合位点;倾去血清,滴加以PBS适当比例稀释的一抗,4℃过夜;PBS冲洗,滴加生物素化二抗工作液,室温孵育15min,PBS冲洗;滴加辣根酶标记链霉卵白素工作液,室温孵育15min,PBS冲洗;滴加DAB试剂显色,镜下控制显色时间,自来水冲洗终止反应;苏木精复染,常规脱水、透明、封片。阴性对照以PBS替代一抗,其余步骤同上。显微镜下随机选取3个视野,计数阳性细胞数。以细胞中出现棕褐色浓染颗粒作为阳性细胞的判定标准。
     3孕酮对Aβ损伤大鼠行为学及组织病理学改变的影响
     将50只体重210-230g雄性SD大鼠随机分为5组,分别为溶剂对照组(假手术+蒸馏水)、Aβ损伤组、以及Aβ损伤+孕酮低、中、高剂量保护组。溶剂对照组大鼠双侧海马CA1区注射5μL蒸馏水,其余组大鼠注射5μL(2g/L)Aβ25-35溶液,模型制备方法同第一部分。孕酮保护组于术后6天-12天13:30皮下注射不同剂量(4mg/kg,8mg/kg,16mg/kg)的孕酮,溶剂对照组和Aβ损伤组皮下注射等体积注射用油。术后7天-12天进行Morris水迷宫行为学测试。行为学测试结束后取材,每组中的5只动物断头取脑,冰浴分离海马,-70℃存放,通过RT-PCR及Western blot分析炎症因子TNF-α及IL-1β表达改变;其余动物经多聚甲醛心脏灌流进行预固定,之后取脑组织,外固定,石蜡包埋,制备病理切片,进行组织病理学分析。
     4孕酮对Aβ所致原代培养海马神经元损伤的保护作用
     海马神经元原代培养:取新生SD大鼠,75%酒精消毒,无菌条件下断头取脑,分离双侧海马组织。去除被膜,剪碎组织,37℃水浴中胰酶消化15-20min,用含10%FBS(fetal bovine serum)的高糖DMEM(dulbecco minimum essential medium)终止消化。吹打重悬消化后的细胞团,至细胞团基本消失。调整细胞密度为1×106个/mL,接种于多聚赖氨酸预先包被的96孔板中,细胞培养箱中孵育,8h后换为含2%B27neuromix的Neurobasal-A培养液继续培养。培养72h后加入阿糖胞苷(终浓度5μg/mL)抑制胶质细胞生长,孵育48h后完全换液(含2%B27neuromix的Neurobasal-A培养液),之后隔日半量换液。体外培养7天-9天的细胞用于实验。
     实验分组及处理:将1mg Aβ25-35溶于471.6μL蒸馏水中,得2mMAβ25-35溶液;混匀、分装、-20℃冻存。用前将Aβ25-35溶液(2mM)于37℃孵育一周,使其老化、聚合。体外培养7天-9天的细胞,分别加入不同终浓度的Aβ25-35(1μM,10μM,50μM),继续孵育48h,或加入终浓度10μM Aβ25-35孵育不同时间(12h,24h,48h),确定Aβ25-35对体外培养的海马神经元的损伤作用。不同浓度孕酮(0.1μM,0.5μM,1μM)预处理1h或与Aβ25-35同时加入,继续孵育48h,观察孕酮对Aβ细胞损伤作用的影响。
     细胞活力分析:接种于96孔板中的神经元给予不同处理因素后,每孔加入20μL MTT(5mg/mL),于37℃孵育4h,弃去培养基,每孔各加入150μL DMSO,混匀,酶标仪测定各组细胞490nm波长处的吸光度(OD值),以此表示细胞的相对活力。
     5统计学处理
     各组数据以均数±标准误(mean±SEM)表示,实验数据均采用SPSS13.0统计软件进行处理。定位航行实验数据采用重复测量进行方差分析(repeated-measure analysis of variance),其他数据采用单因素方差分析(One-WayANOVA)继以LSD post hoc test进行统计分析,以P <0.05为差异有统计学意义。
     结果:
     1Aβ所致学习记忆障碍大鼠模型的制备
     1.1A25-35对大鼠空间学习能力的影响
     定位航行实验结果显示,各组大鼠逃避潜伏期均随学习天数增加而逐渐缩短;各组大鼠平均游泳速度之间无统计学差异;假手术组大鼠与溶剂对照组大鼠学习成绩无统计学差异;与溶剂对照组相比,Aβ25-35损伤组大鼠逃避潜伏期显著增加(P <0.01)。
     1.2Aβ25-35对大鼠空间记忆能力的影响
     空间探索实验结果显示,假手术组与溶剂对照组大鼠穿越平台区的次数及在平台所在象限停留时间百分比无统计学差异;与溶剂对照组相比,Aβ25-35损伤组大鼠穿越平台区的次数及在平台所在象限停留时间百分比均显著减少(P <0.01)。
     1.3Aβ25-35对大鼠海马CA1区神经元形态及数量的影响
     硫堇尼氏体染色显示,假手术组及溶剂对照组大鼠海马CA1区神经元有3-4层,排列整齐、紧密,细胞形态清晰、完整,可见大量突起,尼氏体呈紫色,含量丰富,细胞核不着色,核仁深染、清晰、居中;Aβ25-35损伤组大鼠海马CA1区神经元层数减少,排列紊乱,细胞失去原有形态,可见断裂的突起和不完整的胞体。细胞计数结果显示,假手术组与溶剂对照组大鼠海马CA1区完整锥体细胞的数量无统计学差异;与溶剂对照组相比,Aβ25-35损伤组大鼠海马CA1区完整锥体细胞数量显著减少(P <0.05)。
     2Aβ损伤大鼠学习记忆相关脑区神经甾体合成代谢的改变
     2.1Aβ损伤大鼠前额叶皮质及海马内神经甾体含量的改变
     Aβ25-35注射后7天,前额叶皮质中孕酮显著下降(P <0.01),17β-雌二醇显著升高(P <0.05),孕烯醇酮及别孕烯醇酮含量无统计学差异;Aβ25-35注射后12天,前额叶皮质中孕酮显著下降(P <0.01),孕烯醇酮、别孕烯醇酮及17β-雌二醇含量无统计学差异。
     Aβ25-35注射后7天,海马组织别孕烯醇酮显著下降(P <0.05),孕酮显著下降(P <0.01),17β-雌二醇显著升高(P <0.05)。Aβ25-35注射后12天,海马组织孕烯醇酮显著下降(P <0.05),孕酮显著下降(P <0.01),17β-雌二醇显著升高(P <0.05)。
     2.2Aβ损伤大鼠海马内CYP11A1、3β-HSD、aromatase表达的改变
     RT-PCR结果显示,与溶剂对照组相比,Aβ损伤大鼠海马内CYP11A1、3β-HSD、aromatase表达均显著(P <0.01)增加。Western blot结果与RT-PCR结果一致。免疫组化结果显示,假手术组与溶剂对照组大鼠海马组织中aromatase主要表达于胶质细胞,aromatase阳性细胞数较少,Aβ损伤大鼠海马内aromatase阳性细胞数显著增加(P <0.01)。
     3孕酮对Aβ损伤大鼠空间学习记忆能力的改善作用及机制
     3.1孕酮对Aβ损伤大鼠空间学习记忆能力的改善作用
     定位航行实验结果显示,各组大鼠逃避潜伏期均随学习天数增加而逐渐缩短。孕酮部分逆转Aβ损伤引起的逃避潜伏期增加,作用呈浓度依赖性。空间探索实验结果显示,孕酮浓度依赖性改善Aβ损伤大鼠平台区穿越次数减少及平台所在象限停留时间百分比减少的现象。同时,定位航行及空间探索实验显示,孕酮不影响正常大鼠的学习记忆能力。提示,孕酮特异性改善Aβ损伤大鼠的空间学习记忆能力。
     3.2孕酮对Aβ损伤大鼠海马CA1区神经元形态及数量的影响
     硫堇尼氏体染色结果显示,Aβ损伤大鼠海马CA1区域可见断裂的突起和不完整的胞体,细胞数减少,尼氏体减少。孕酮浓度依赖性改善Aβ损伤大鼠海马锥体细胞的损伤,增加其CA1区锥体细胞存活数(P <0.01)。
     3.3孕酮对Aβ损伤大鼠海马组织炎症因子表达的影响
     RT-PCR结果显示,Aβ损伤大鼠海马组织内炎性因子TNF-α及IL-1β表达显著增加(P <0.01)。孕酮可抑制Aβ损伤大鼠TNF-α及IL-1β表达上调的现象,作用呈浓度依赖性。Western blot结果与RT-PCR结果一致,即:孕酮抑制Aβ损伤大鼠海马组织内TNF-α及IL-1β表达上调。
     4孕酮对Aβ所致原代培养海马神经元损伤的保护作用
     4.1Aβ以浓度、时间依赖的方式降低原代培养海马神经元活性
     MTT结果显示,不同浓度的Aβ作用于体外培养7天的海马神经元48h后,神经元活力下降,其中10μM及50μM Aβ使神经元活力显著下降(P <0.05,P <0.01)。10μMAβ作用于海马神经元不同时间后神经元活力下降,其中作用24h及48h后,细胞活力显著下降(P <0.05)。
     4.2孕酮对抗Aβ的细胞损伤作用
     MTT结果显示,10μM Aβ作用于神经元48h后,细胞活力显著下降(P <0.05);孕酮可对抗Aβ引起的海马神经元活力下降,作用呈浓度依赖性。与Aβ损伤组相比,1μM孕酮处理组海马神经元活力显著增加(P<0.05);与Aβ损伤组相比,0.5μM及1μM孕酮预处理组细胞活力显著增加(P <0.05,P <0.01)。
     结论:
     1双侧海马CA1区注射Aβ25-35损伤大鼠海马CA1区锥体细胞,引起大鼠空间学习记忆能力显著下降,Aβ所致学习记忆障碍大鼠模型制备成功。
     2Aβ损伤大鼠脑组织中孕烯醇酮及孕酮含量降低,17β–雌二醇含量增加,同时,神经甾体合成代谢酶CYP11A1、3β-HSD、aromatase表达上调。推测,Aβ上调3β–HSD及aromatase表达,孕烯醇酮及孕酮分解加快,引起二者含量下降,其代谢产物雌二醇含量上升;机体通过增加神经甾体合成限速酶CYP11A1的表达代偿孕烯醇酮及孕酮含量的下降,Aβ促进神经甾体代谢向生成雌二醇的方向进行。
     3外源性给予孕酮改善Aβ损伤大鼠的空间学习记忆能力,对抗Aβ损伤大鼠海马CA1区锥体细胞损伤,抑制Aβ损伤大鼠海马组织中的炎症反应。抑制炎症反应,发挥细胞保护作用可能是孕酮改善Aβ损伤大鼠学习记忆能力的机制之一。
     4孕酮浓度依赖性对抗Aβ引起的原代培养海马神经元活力下降,从细胞水平进一步证实孕酮对Aβ损伤具有保护作用。
Alzheimer’s disease (AD), characterized clinically by progressivelycognitive impairment and pathologically by the appearance of senile plaquesand neurofibrillary tangles, is the most prevalent senile dementia. Amyloid β(Aβ), a β-sheet peptide fragment produced by the proteolytic cleavage ofamyloid precursor protein (APP) by γ-and β-secretases, is the majorcomponent of senile plaques. Both in vivo and in vitro studies have shown thataccumulation of Aβ fibrils trigger neurodegeneration, supporting the view thatAβ aggregation is of importance in AD. Aβ causes oxidative damage,inflammatory responses, and memory impairment, all of which may lead tothe neuronal dysfunction and degeneration responsible for the cognitivedeficits observed in AD.
     Steroids hormones and their metabolites within the central nervoussystem (CNS) are commonly defined as neuroactive steroids or neurosteroids.They can be either synthesized de novo in the CNS by glial cells and neuronsfrom cholesterol or synthesized in the periphery by the adrenals and gonads.The concentration of neurosteroid was higher in CNS than in periphery.Neurosteroids mainly include pregnenolone (PREG), dehydroepiandrosterone(DHEA), their sulfate derivatives pregnenolone sulfate (PREGS) anddehydroepiandrosterone sulfate (DHEAS), and progesterone (PROG),5α-dihydroprogesterone (5α-DHP),3α,5α-tetrahydroprogesterone(allopregnanolone/ALLO), deoxycorticosterone (DOC),tetrahydrodeoxycorticosterone (THDOC), estradiol (E2), etc. Neurosteroidsplay an important role as endogenous modulators in altering neuronalexcitability rapidly; however, no specific receptor has been reported to datefor neurosteroids. Most of their actions in the nervous tissue were reported tomodulate membrane neurotransmitter receptors, such as GABAA, NMDA, and sigma1receptors, and thus affect neuronal plasticity, anxiety, responses tostressful stimuli, and neuropsychiatric symptoms represented during AD.Some neurosteroids were reported to improve learning and memory abilityand protect against Aβ peptide-induced neurotoxicity, thus exerting neuronalprotection. However, changes in the metabolic pathway of neurosteroidsduring AD and their role in Aβ-mediated impairment remain relativelyelusive given the limitations in sample sizes and analysis methods.
     Objective: We have reported previously that the concentration ofprogesterone decreased in the media of Aβ25-35-induced cortical neurons, andprogesterone treatment inhibited the declination of cell viability as well as theapoptosis induced by Aβ25-35. The present study was designed to investigatethe levels of neurosteroids in encephalic regions related to learning andmemory (the prefrontal cortex and hippocampus) of Sprague-Dawley (SD)rats injected with Aβ25-35as well as the expression of neurosteroidogenesisenzymes. Furthermore, the effect of progesterone administration againstAβ25-35induced impairment was investigated in vivo and in vitro. The presentstudy provided a potential therapeutic strategy for disorders with learning andmemory impairment, such as AD.
     Material and Methods:
     1Effect of Aβ micro-injection on the spatial learning and memory of ratsTo investigate the effect of Aβ25-35administration on spatial learning andmemory of rats, a total of thirty SD rats were divided into three groups (shamgroup, vehicle group, and Aβ group) randomly with ten in each. Afteranesthetized with2%pentobarbital sodium (40mg/kg weight, intraperitonealinjection), the animals were placed in stereotaxic apparatus (Jiangwai typeⅠ).Five microliters aggregated Aβ25-35or vehicle (sterile distilled water, forvehicle group) were injected slowly over10min into bilateral CA1hippocampus (anterior/posterior:-3.5mm, media/lateral:±2.0mm, anddorsal/ventral:-2.7mm ventral to the skull surface) with a10μLmicrosyringe, followed by10min remaining to allow the diffusion ofinjection content. The rectal temperature was maintained at36℃to37℃for all animals throughout the surgery. Six-day Morris water maze behavioraltask was employed to test the spatial learning and memory of the animalssince the seventh day after surgery. After the behavioral test, all animals wereanesthetized with pentobarbital sodium and perfused through the ascendingaorta with normal saline followed by4%paraformaldehyde. The brain tissueswere then dissected and fixed for histological examination.
     Behavioral Tests: The Morris water maze (JLBehv-MWM, Shanghai,China) consisted of a black pool (180cm diameter,60cm high) filled withwater (40cm,23±1℃), and was divided into four quadrants with fourequidistant release points around the edge, with a circular black platform (10cm diameter) submerging1cm below the water surface and remaining thesame position of the target quadrant. The behavior of rats in the pool wastracked with a camera which allowing us to measure the swim distance andtime to find the platform. Rats were trained four trials each day, with aninterval of20min at least, for five consecutive days. The starting quadrantwas randomized every day with all animals according to the same order. Theanimals were faced towards the pool wall before being released, and allowedto stay on the platform for10s after finding the platform within60s, orguided to the platform to stay for10s if failed to reach the platform in60s.The time needed to reach the platform (escape latency) was analyzed asindices of spatial learning. The probe trial was conducted on the sixth day,when each subject allowed90s to search the water from which the platformhad been removed. The number of times the animal crossed the platform(number of platform crossings) and time ratio in platform quadrant (Ⅳ timeratio) were used as index of spatial memory retention. A camera was used totrack the time to find the platform as well as to measure the swim speed anddistance travelled.
     Histological Examination: The brain tissues were fixation in4%paraformaldehyde in phosphate buffer (pH7.4), dehydration in a series ofethanol, embedded in wax and sectioned into5-micrometer-thick sections.Tissue sections were then deparaffinized, dehydrated, and stained with thionin, followed by differentiation, dehydration and clearance before they weremounted. The number of intact pyramidal cells (per1mm linear length of thesame section of CA1hippocampus) was then counted by three experimentersand analyzed.
     2The metabolism alteration of neurosteroids in the prefrontal cortex andhippocampus of Aβ treated rats
     To investigate the effect of Aβ25-35on neurosteroids level in brain, a totalof ninety SD rats were divided into three groups (sham group, vehicle group(sterile distilled water), and Aβ group) randomly with thirty in each group andtreated the same as above. Ten rats in each group were sacrificed (viadecapitation) during16:00-18:00on the seventh day and the twelfth dayafter Aβ injection respectively, with the prefrontal cortex and hippocampusremoving (on ice) and stored in-70℃until neurosteroids detectionthroughhigh performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis. On the twelfth day after Aβ injection, five rats in eachgroup were sacrificed (via decapitation) with hippocampus removed (on ice)and stored at-70℃for steroidogenesis enzymes analysis through RT-PCR,Western blot, and immunohistochemisty. The rests were anesthetized withpentobarbital sodium and perfused through the ascending aorta with normalsaline followed by4%paraformaldehyde. The brain tissues were thendissected and fixed for histological examination.
     Sample Preparation and HPLC-MS/MS Analysis: Samples (about100mg) were added with10μL30ng/mL MT (internal standards), homogenizedin1mL of phosphate buffered saline (PBS) using an ultrasonic homogenizer(Heidolph, Germany), mixed with2mL ethyl acetate/n-hexane (9:1, v/v)and centrifuged at12000rpm for10min. The pellet was extracted three timeswith2mL ethyl acetate/n-hexane (9:1, v/v), and the organic phases werecombined and dried with a gentle stream of nitrogen in a50℃water bath.The samples were derivatized with dansyl chloride in a60℃water bath for40min, concentrated at12000rpm for10min and then transferred inautosampler vials before the high performance liquid chromatography- tandem mass spectrometry (HPLC-MS/MS) analysis.
     The HPLC-MS/MS system (Thermo Fisher Scientific, Waltham, MA,USA) consisted of Surveyor MS Pump Plus, Surveyor AS Plus, TSQQuantum Access triple quadrupole mass spectrometer and Xcalibur DataSystems (Thermo Fisher Scientific). Separation was achieved on a XDB C18analytical column (4.6mm×50mm, Agilent, Palo Alto, CA, USA) fittedwith a XDB C18guard column (4.6mm×12mm, Agilent). The HPLC mobilephases were (A) H2O/0.1%formic acid and (B) MeOH/0.1%formic acid,and the flow rate was0.5mL/min. The gradient was as follows:0-6.5min,36%A;6.5-6.6min,30%A;6.6-17min,10%A;17-18min,36%A.The column temperature was40℃and the injection volume was30μL. AMSD quadrupole mass spectrometer equipped with atmospheric pressurechemical ionization (APCI) source (Thermo Fisher Scientific) was used forthe detection of analytes in the positive ion mode. The optimized conditionswere as follows: the spray voltage,4500V; the vaporizer temperature,400℃; the sheath gas,30L/min; the aux gas,5L/min; the capillary temperature,270℃. The quantification was performed using multiple-reaction monitoring(MRM) method with the transitions of (m/z)299.03→(m/z)158.86and280.9for PREG,(m/z)315.03→(m/z)97and109.01for PROG,(m/z)301→(m/z)188.9and282.85for ALLO,(m/z)254.97→(m/z)132.9and158.9for17β-E2,(m/z)303.1→(m/z)97.04and109.06for MT, respectively.
     RT–PCR: Total RNA was isolated from cells using TRIzol Reagent(Invitrogen, CA, USA) and equal amounts were reverse transcribed intocDNA using the oligo dT primer, then the cDNAs were used as DNAtemplates for PCR. GAPDH was used to ensure equal loading. The PCRproducts were separated on1.5%agarose gel and visualized by ethidiumbromide.
     Western Blot: Lysates from brain tissue were prepared with lysis buffer(1%Triton X-100,150mM NaCl,10mM Tris-HCl, pH7.4,1mM EDTA,pH8.0,0.2mM Na3VO4,0.2mM phenylmethylsulfonyl fluoride, and0.5%NP-40). Equal amounts of protein (40μg) were separated by10%SDS- PAGE, and electrotransferred to a PVDF membrane (Millipore, Billerica, MA,USA). Membranes were blocked with5%BSA for2h at room temperature,and incubated with the primary antibodies,1:1000mouse anti-TNF-α(Abcam),1:500rabbit anti-IL-1β (Abcam),1:500rabbit anti-CYP11A1(anbobio,),1:500rabbit anti-3β-HSD (Epitomics),1:500rabbit anti-aromatase (Abcam), and1:5000rabbit anti-β-actin (Santa Cruz) overnight,respectively, and then with the respective secondary antibody for2h. Proteinswere detected using the Chemiluminescence Plus Western blot analysis kit(Santa Cruz). The experiments were replicated three times.
     Immunohistochemistry: Five-micrometer-thick sections weredeparaffinized, dehydrated, followed by Antigen retrieval (microwave). Thensections were in turn incubated with3%H2O2for10min, with primaryantibody overnight at4℃, with diluted biotinylated IgG secondary antibody,with DAB, followed by being differentiated, dehydrated, cleared, andmounted.
     3The effect of progesterone on behavioral and cellular impairment in Aβtreated rats
     To investigate the effect of PROG on cognition impairment induced byAβ25-35CA1hippocampus injection, a total of fifty SD rats were dividedrandomly into five groups: vehicle group (sterile distilled water), Aβ group, PLgroup (Aβ+progesterone4mg/kg weight), PMgroup (Aβ+progesterone8mg/kg weight), and PHgroup (Aβ+progesterone16mg/kg weight). During6-12days after Aβ injection described above, animals were injected withdifferent dosages of progesterone (PL,PM,and PHgroup) or vehicle (sesame oilfor vehicle group and Aβ group) daily at13:30. Behavioral tests wereconducted during7-12days after Aβ injection beginning at14:30.Immediately after behavior tests, five rats in each group were sacrificed (viadecapitation) with hippocampus removed (on ice) and stored at-70℃forinflammatory factors analysis through RT–PCR and Western blot. The restanimals were anesthetized with pentobarbital sodium and perfused through theascending aorta with normal saline followed by4%paraformaldehyde. The brain tissues were dissected and fixed for histological examination.
     Behavioral tests, RT–PCR, Western blot and histological examinationwere conducted as mentioned above.
     4The effect of PROG on Aβ25-35induced cell impairment in vitro
     Hippocampus cells of newborn SD rat were cultured and treated asdescribed. In brief, bilateral hippocampus newborn rat were dissociated with0.125%trypsin/HBSS for15min at37℃, followed by trypsin quenchingwith DMEM-HG containing10%FBS. Cell suspensions were centrifuged(5min,200×g), resuspended, dissociated by repeated passage through a fire-polished Pasteur pipette, and then filtered through a sterile cell strainer. Thedissociated hippocampus cells plated on poly-L-lysine (Sigma,50μg/mL)coated96-well plates at a density1×106cells/mL were grown in Neurobasalmedium-A supplemented with5units/mL penicillin,5mg/mL streptomycin,1%GlutaMAX I and2%B27neuromix at37℃in humidified5%CO2/95%air atmosphere for7days to9days before experimentation.
     The cultures were treated with or without Aβ (1μM,10μM, or50μM)for48h, or10μM Aβ for12h,24h, or48h. In the following experiment,cultures were pre-treated with or without PROG (0.1μM,0.5μM, or1μM)for60min followed by exposure to10μM aggregated Aβ for48h, or treatedsimultaneously with different dosages of PROG and Aβ for48h. Cellviability was assessed by MTT analysis. The results were presentedgraphically as a percentage of live cells in the control group.
     Assessment of Cell Viability: Loss of cell viability was measured by theMTT (methyl thiazolyl tetrazolium) assay. In brief,2×105cells per well wereseeded in triplicate onto96-well plates in Neurobasal-A medium and allowedto grow for7days. The cells were treated according to the experimentaldesign. After drug treatment, cells were incubated with5mg/mL MTT for2h,and subsequently solubilized in dimethyl sulfoxide (DMSO). The absorbencyat570nm was then measured using ELIASA (BMG Labtech, Germany). Theresults were expressed as the mean of the absorbance relative to the controlgroup. The experiments were replicated three times.
     5Statistical Analysis
     The data were expressed as mean±standard error of the mean (SEM).The mean escape latency of the Morris water maze behavioral tests collectedduring the training days were analyzed by repeated-measure analysis ofvariance (ANOVA). Other data were statistically analyzed by one-wayANOVA, followed by between-group comparisons using LSD post hoc test.Statistical significance was concluded with a value of P <0.05for all analyses.Data analyses were performed with the SPSS software version13.0.
     Results:
     1Effect of Aβ micro-injection on the spatial learning and memory of rats
     The Morris water maze behavioral task was employed to examinehippocampus-dependent spatial learning and memory. The mean swimspeeds did not differ across the groups. The mean escape latency in the Morriswater maze behavioral task was significantly (P <0.01) higher in Aβ group(47.9±2.3,39.1±3.0,37.4±2.9,33.3±2.6, and29.4±3.0; Day1to Day5,respectively) compared with those of the vehicle group (47.3±1.3,28.6±2.7,21.1±2.7,15.8±1.9, and12.8±1.4; Day1to Day5, respectively.).Moreover, the number of platform crossings (48.7%) and the staying timeratio in platform quadrant (32.7%) of Aβ group in the probe test wereconsiderably (P <0.01) lower compared with those of vehicle group, thusconfirming spatial learning and memory impairment in Aβ25-35treated rats.Overall, no difference was observed between sham and vehicle group.
     Histological examination showed that Aβ25-35significantly (P <0.01)decreased (37.6%) the intact pyramidal cell number in the CA1hippocampuscompared with the vehicle group.
     2The metabolism alteration of neurosteroids in the prefrontal cortex andhippocampus of Aβ treated rats
     High performance liquid chromatography-tandem mass spectrometrywas employed to simultaneously quantify the level of neurosteroids indifferent encephalic region. Levels of neurosteroids were altered in theprefrontal cortex and hippocampus of Aβ treated rats7and12days after surgery. Levels of PREG in the hippocampus of Aβ group were significantly(P <0.05) lower (66.1%and70.8%)7days and12days after surgerycompared with those of vehicle group, while levels of PREG in the prefrontalcortex did not differ compared with those of vehicle group on either timepoint. Furthermore, levels of PROG were significantly (P <0.01) reduced inboth the prefrontal cortex and hippocampus (63.8%and61.8%for7daysand12days after surgery in the prefrontal cortex;44.3%and42.2%for7days and12days after surgery in hippocampus, respectively) compared withthose of vehicle group. However, the hippocampus of Aβ treated ratscontained significantly (P <0.05) elevated (146.2%and137.9%) levels of17β-E27days and12days after surgery compared with those of vehiclegroup, while the prefrontal cortex of Aβ treated rats contained significantly (P<0.05) higher (171.8%) levels of17β-E2only on7days after surgerycompared with those of vehicle group. The level of ALLO did not differ ineither brain regions on both time points. The level of PREG, PROG and17β-E2did not differ between sham and vehicle group in either brain region onboth time points.
     The expression of neurosteroidogenesis enzymes was altered inhippocampus of Aβ treated rats. RT-PCR showed that gene expression ofCYP11A1,3β-HSD, and aromatase in hippocampus were significantly (P <0.01) higher in Aβ group (149.0%,247.6%, and159.5%) compared withthose of vehicle group. The up-regulation of CYP11A1,3β-HSD, andaromatase were confirmed when the protein level of CYP11A1,3β-HSD,and aromatase were significantly (P <0.01) increased in Aβ group (142.3%,219.9%, and145.0%) compared with those of vehicle group, showed byWestern blot. Results of immunohistochemisty analysis confirmed the up-regulation of aromatase in hippocampus of Aβ treated rats (113.6%, P <0.01,compared with vehicle group).
     3The protective effect of progesterone against the behavioral and cellularimpairment in Aβ treated rats
     Administration of PROG enhanced the cognitive performance of Aβ treated rats in a dose-dependent manner (4mg/kg,8mg/kg,16mg/kg for PL,PM, PHgroups, respectively). The mean swim speeds did not differ across thegroups. The mean escape latency of PL, PMand PHgroups were significantly(P <0.05for PL; P <0.01for PMand PH) lower compared with Aβ group. Therestoration of cognitive impairment was confirmed when the number ofplatform crossings of the PMand PHgroup was significantly increased by170.6%(P <0.05) and217.7%(P <0.01), compared with those of Aβ group.Meanwhile, the Ⅳ time ratio of PL, PM, and PHgroup was significantly (P <0.01) increased by170.6%,190.13%, and217.7%, compared with Aβgroup.
     PROG reversed Aβ25-35-induced cell loss in CA1hippocampus dosedependently. Compared with vehicle group, the intact pyramidal cell numberof Aβ group significantly (P <0.01) decreased by35.9%. Compared with Aβgroup, the intact pyramidal cell number of PL, PM, and PHgroups weresignificantly (P <0.01) increased by130.9%,190.1%, and241.3%,respectively.
     On the cellular level, PROG reversed Aβ25-35injection induced up-regulation of TNF-α and IL-1β. RT-PCR showed that that gene expressionof TNF-α and IL-1β in hippocampus were significantly (P <0.01) higher inAβ group (176.4%and176.4%) compared with those of vehicle group. Theup-regulation of TNF-α and IL-1β were confirmed when the protein levelof TNF-α and IL-1β were significantly (P

p (162.7%and158.3%) compared with those of vehicle group, showedby Western blot. The gene expression of TNF–α (83.6%,71.9%, and55.5%for PL, PM, and PHgroups, P <0.01, respectively) and IL-1β (90.9%,80.2%, and67.5%for PL(P <0.05), PM(P <0.01), and PHgroups (P <0.01),respectively) in hippocampus were significantly lower in the PROG-treatedgroup compared with Aβ group. The down-regulation of TNF-α and IL-1βby PROG were confirmed when the protein level of TNF–α (86.4%,73.8%,and58.1%for PL, PM, and PHgroups, P <0.01, respectively) and IL-1β(91.9%,81.8%, and69.6%for PL(P <0.05), PM(P <0.01), and PHgroups (P <0.01), respectively) were significantly decreased in the PROG-treatedgroup compared with Aβ group, showed by Western blot.
     4The protective effect of progesterone against Aβ25-35-induced culturedhippocampus cells viability decrease in vitro
     The MTT assay was used to evaluate the viability of culturedhippocampus cells. Aβ25-35decreased cell viability dose and time dependently.Compared with vehicle group, the cell viability of Aβ treated group (48h)significantly (P <0.05for Aβ10μM, and P <0.01for Aβ50μM) decreasedby66.6%and55.4%. Compared with vehicle group, the cell viability of Aβtreated group (10μM) significantly (P <0.05for Aβ24h, and P <0.01forAβ48h) decreased by68.2%and66.9%. Meanwhile, PROG protectedagainst Aβ25-35-induced impairment dose dependently. PROG (1μM)treatment simultaneously with Aβ25-35significantly (P <0.05) reversed Aβ25-35-induced cell viability decrease. Moreover, PROG treatment1h prior toAβ25-35incubation significantly (P <0.05for PROG0.5μΜ, and P <0.01forPROG1μM) reversed Aβ25-35-induced cell viability decrease, confirming theprotection of PROG against Aβ25-35-induced cultured hippocampus cellsviability decrease in vitro.
     Conclusions:
     1Injection of Aβ25-35into the CA1hippocampus sub-region impairedthe spatial learning and memory of rats. Aβ-induced learning and memeoryimpairment model was successfully established.
     2The present study showed, for the first time, that injection of Aβ25-35into the CA1hippocampus sub-region of rats decreased levels of PREG andPROG and increased the level of17β-E2in the prefrontal cortex andhippocampus simultaneously quantified by HPLC-MS/MS. Moreover, theexpression of neurosteroidogenesis enzymes CYP11A1,3β-HSD, andaromatase was up-regulated in Aβ treated rats. Increased expression of3β-HSD and aromatase accelerated the metabolism of PREG and PROG thusreduced the levels of PREG and PROG and increased the level of E2.Meanwhile, the expression of CYP11A1was up-regulated to compensate the decreased level of PREG and PROG.
     3Administration of PROG reversed the up-regulation of pro-inflammatory cytokines TNF-α and IL-1β, as well as the behavioral andcellular impairment of Aβ treated rats, thus exerting neuronal protection.
     4PROG protectived against Aβ25-35-induced cells viability decrease ofcultured hippocampus neurons in vitro, comfirming the protection of PROGagainst Aβ25-35-induced neural impaiment.

引文
1Eckert A, Keil U, Marques CA, et al. Mitochondrial dysfunction,apoptotic cell death, and Alzheimer's disease. Biochem Pharmacol,2003,66(8):1627-1634
    2Selkoe DJ. Translating cell biology into therapeutic advances inAlzheimer's disease. Nature,1999,399(6738Suppl): A23-31
    3Khairallah MI, Kassem LA. Alzheimer's disease: current status ofetiopathogenesis and therapeutic strategies. Pak J Biol Sci,2011,14(4):257-272
    4Munoz DG, Feldman H. Causes of Alzheimer's disease. Cmaj,2000,162(1):65-72
    5Kim HA, Miller AA, Drummond GR, et al. Vascular cognitiveimpairment and Alzheimer's disease: role of cerebral hypoperfusion andoxidative stress. Naunyn Schmiedebergs Arch Pharmacol,2012,385(10):953-959
    6Broussard GJ, Mytar J, Li RC, et al. The role of inflammatory processesin Alzheimer's disease. Inflammopharmacology,2012,20(3):109-126
    7Schliebs R, Arendt T. The cholinergic system in aging and neuronaldegeneration. Behav Brain Res,2012,221(2):555-563
    8Riazantseva MA, Mozhaeva GN, Kaznacheeva EV. Calcium hypothesisof Alzheimer disease. Usp Fiziol Nauk,2012,43(4):59-72
    9Avila J, de Barreda EG, Pallas-Bazarra N, et al. Tau and neuron aging.Aging Dis,2013,4(1):23-28
    10Zufferey V, Vallet PG, Moeri M, et al. Maladaptive exploratory behaviorand neuropathology of the PS-1P117L Alzheimer transgenic mice. BrainRes Bull,2013,94C:17-22
    11Liu CC, Kanekiyo T, Xu H, et al. Apolipoprotein E and Alzheimerdisease: risk, mechanisms and therapy. Nat Rev Neurol,2013,9(2):106-118
    12Teich AF, Arancio O. Is the amyloid hypothesis of Alzheimer's diseasetherapeutically relevant? Biochem J,2012,446(2):165-177
    13Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics. Science,2002,297(5580):353-356
    14Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration:lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol CellBiol,2007,8(2):101-112
    15Zhang J, Zhen YF, Pu-Bu-Ci-Ren, et al. Salidroside attenuates betaamyloid-induced cognitive deficits via modulating oxidative stress andinflammatory mediators in rat hippocampus. Behav Brain Res,2013,244:70-81
    16Montolio M, Gregori-Puigjane E, Pineda D, et al. Identification of smallmolecule inhibitors of amyloid beta-induced neuronal apoptosis actingthrough the imidazoline I(2) receptor. J Med Chem,2012,55(22):9838-9846
    17Dos Santos VV, Santos DB, Lach G, et al. Neuropeptide Y (NPY)prevents depressive-like behavior, spatial memory deficits and oxidativestress following amyloid-beta (Abeta1-40) administration in mice. BehavBrain Res,2013,244:107-115
    18Abramov AY, Duchen MR. The role of an astrocytic NADPH oxidase inthe neurotoxicity of amyloid beta peptides. Philos Trans R Soc Lond BBiol Sci,2005,360(1464):2309-2314
    19Muresan V, Muresan Z. A persistent stress response to impeded axonaltransport leads to accumulation of amyloid-beta in the endoplasmicreticulum, and is a probable cause of sporadic Alzheimer's disease.Neurodegener Dis,2012,10(1-4):60-63
    20Millucci L, Ghezzi L, Bernardini G, et al. Conformations and biologicalactivities of amyloid beta peptide25-35. Curr Protein Pept Sci,2010,11(1):54-67
    21Bennett BD, Xiong Q, Mukherjee S, et al. A predictive framework forintegrating disparate genomic data types using sample-specific gene setenrichment analysis and multi-task learning. PLoS One,2012,7(9):e44635
    22诸葛启训.大鼠脑立体定位图谱.北京人民卫生出版社,2005,6
    23徐建民,余海燕.不同剂量的东莨菪碱对大鼠学习记忆能力的影响.苏州大学学报(医学版),2006,26(1):53-54
    24魏福堂,何炎,夏春林. KA制备AD动物模型与相关指标及其作用的研究.解剖学杂志-中国解剖学会2002年年会文摘汇编,2002
    25Wang JZ, Wang QB, Li XT. Study on Alzheimer’s disease model. Chin JPathophysiol,2011,17:790-794
    26马玉奎,李莉,刘国宾.知母皂苷对三氯化铝致老年性痴呆模型大鼠的作用.齐鲁药事,2005,24(10):625-627
    27Frautschy SA, Yang F, Calderón L, et al.Rodent models of Alzheimer's disease: rat A beta infusion approaches toamyloid deposits. Neurobiol Aging.1996,17(2):311-321
    28Naldi M, Fiori J, Pistolozzi M, et al. Amyloid beta-peptide25-35self-assembly and its inhibition: a model undecapeptide system to gainatomistic and secondary structure details of the Alzheimer's diseaseprocess and treatment. ACS Chem Neurosci,2012,3(11):952-962
    29Yang L, Zou B, Xiong X, et al. Hypocretin/Orexin neurons contribute tohippocampus-dependent social memory and synaptic plasticity in mice. JNeurosci,2013,33(12):5275-5284
    30Mo L, Yang Z, Zhang A, et al. The repair of the injured adult rathippocampus with NT-3-chitosan carriers. Biomaterials,2010,31(8):2184-2192
    31Choi JY, Cho EJ, Lee HS, et al. Tartary buckwheat improves cognitionand memory function in an in vivo amyloid-beta-induced Alzheimermodel. Food Chem Toxicol,2013,53:105-111
    32Han WN, Holscher C, Yuan L, et al. Liraglutide protects againstamyloid-beta protein-induced impairment of spatial learning and memoryin rats. Neurobiol Aging,2013,34(2):576-588
    1Baulieu EE. Neurosteroids: a new function in the brain. Biol Cell,1991,71(1-2):3-10
    2Tsutsui K. Neurosteroids in the Purkinje cell: biosynthesis, mode ofaction and functional significance. Mol Neurobiol,2008,37(2-3):116-125
    3Vaudry H, Do Rego JL, Burel D, et al. Neurosteroid biosynthesis in thebrain of amphibians. Front Endocrinol (Lausanne),2011,2:79
    4Mellon SH, Griffin LD. Neurosteroids: biochemistry and clinicalsignificance. Trends Endocrinol. Metab,2002,13(1):35-43
    5Corpéchot C, Synguelakis M, Talha S, et al. Pregnenolone and its sulfateester in the rat brain. Brain Res,1983,270:119-125
    6Belelli D, Lambert J. Neurosteroids: endogenous regulators of theGABAAreceptor. Nat Rev Neurosci,2005,6:565-575
    7Tobias J, Per-Anders Fn, Fred N, et al. Molecular Mechanisms forNanomolar Concentrations of Neurosteroids at NR1/NR2B Receptors. JPharmacol Exp Ther,2008,324:759-768
    8Belelli D, Herd MB, Mitchell EA, et al. Neurosteroids and inhibitoryneurotransmission: mechanisms of action and physiological relevance.Neuroscience,2006,138(3):821-829
    9Carta MG, Bhat KM, Preti A. GABAergic neurosteroids: a new frontierin bipolar disorders? Behav Brain Funct,2012,8:61
    10Carroll JC, Rosario ER, Chang L, et al. Progesterone and estrogenregulate Alzheimer-like neuropathology in female3xTg-AD mice. JNeurosci,2007,27(48):13357-13365
    11Frye CA, Walf AA. Effects of progesterone administration andAPPswe+PSEN1Deltae9mutation for cognitive performance ofmid-aged mice. Neurobiol Learn Mem,2008,89(1):17-26
    12Smith CD, Wekstein DR, Markesbery WR, et al.3alpha,5alpha-THP: apotential plasma neurosteroid biomarker in Alzheimer's disease andperhaps non-Alzheimer's dementia. Psychopharmacology (Berl),2006,186(3):481-485
    13Luchetti S, Bossers K, Van de Bilt S, et al. Neurosteroid biosyntheticpathways changes in prefrontal cortex in Alzheimer's disease. NeurobiolAging,2011,32(11):1964-1976
    14于洋,侯艳宁,吴红海, et al.孕酮及别孕烯醇酮对Aβ25-35诱导的神经元损伤作用的影响[J].中国医院药学杂志,2011,31(8):666-669
    15于洋,薛改,吴红海, et al. Aβ25-35对大鼠大脑皮质神经元神经甾体水平的影响.中国药理学通报,2010,26(6):783-786
    16任进民,侯艳宁.液相色谱-质谱法同时测定大鼠血浆中游离型神经甾体.解放军药学学报,2005,21:174-177
    17Luchetti S, Huitinga I, Swaab DF. Neurosteroid and GABA-A receptoralterations in Alzheimer's disease, Parkinson's disease and multiplesclerosis. Neuroscience,2011,191:6-21
    18Lapchak PA. The neurosteroid3-alpha-ol-5-beta-pregnan-20-onehemisuccinate, a selective NMDA receptor antagonist improvesbehavioral performance following spinal cord ischemia. Brain Res,2004,997(2):152-158
    19Roglio I, Bianchi R, Gotti S, et al. Neuroprotective effects ofdihydroprogesterone and progesterone in an experimental model of nervecrush injury. Neuroscience,2008,155(3):673-685
    20Caruso D, Barron AM, Brown MA, et al. Age-related changes inneurosteroid levels in3xTg-AD mice. Neurobiol Aging,2013,34(4):1080-1089
    21Twist SJ, Taylor GA, Weddell A, et al. Brain oestradiol and testosteronelevels in Alzheimer's disease. Neurosci Lett,2000,286(1):1-4
    22Butchart J, Birch B, Bassily R, et al. Male Sex Hormones and SystemicInflammation in Alzheimer Disease. Alzheimer Dis Assoc Disord,2012
    23Vest RS, Pike CJ. Gender, sex steroid hormones, and Alzheimer's disease.Horm Behav,63(2):301-307
    24Petrovska S, Dejanova B, Jurisic V. Estrogens: mechanisms ofneuroprotective effects. J Physiol Biochem,2012,68(3):455-460
    25Thornton V, Warden D, Talbot C, et al. Modification of estrogen'sassociation with Alzheimer's disease risk by genetic polymorphisms.Brain Res,2011,1379:213-223
    26Vallée M, Mayo W, Koob GF, et al. Neurosteroids in learning andmemory processes. Int Rev Neurobiol.2001,46:273-321
    1Romero R. Progesterone to prevent preterm birth in twin gestations: whatis the next step forward? Bjog,2013,120(1):1-4
    2Mueck AO. Postmenopausal hormone replacement therapy andcardiovascular disease: the value of transdermal estradiol and micronizedprogesterone. Climacteric,2012,15(Suppl1):11-17
    3Simon JA. What's new in hormone replacement therapy: focus ontransdermal estradiol and micronized progesterone. Climacteric,2012,15(Suppl1):3-10
    4Mani SK, Oyola MG. Progesterone signaling mechanisms in brain andbehavior. Front Endocrinol (Lausanne),2012,3:7
    5Hussain R, El-Etr M, Gaci O, et al. Progesterone and Nestorone facilitateaxon remyelination: a role for progesterone receptors. Endocrinology,152(10):3820-3831
    6Bashour NM, Wray S. Progesterone directly and rapidly inhibits GnRHneuronal activity via progesterone receptor membrane component1.Endocrinology,2012,153(9):4457-4469
    7Thomas P, Pang Y. Membrane progesterone receptors: evidence forneuroprotective, neurosteroid signaling and neuroendocrine functions inneuronal cells. Neuroendocrinology,2012,96(2):162-171
    8Zuloaga DG, Yahn SL, Pang Y, et al. Distribution and estrogen regulationof membrane progesterone receptor-beta in the female rat brain.Endocrinology,2012,153(9):4432-4443
    9Pluchino N, Cubeddu A, Giannini A, et al. Progestogens and brain: anupdate. Maturitas,2009,62(4):349-355
    10Cutler SM, Van Landingham JW, Murphy AZ, et al. Slow-release andinjected progesterone treatments enhance acute recovery after traumaticbrain injury. Pharmacol Biochem Behav,2006,84(3):420-428
    11Guo Q, Sayeed I, Baronne LM, et al. Progesterone administrationmodulates AQP4expression and edema after traumatic brain injury inmale rats. Exp Neurol,2006,198(2):469-478
    12Chan JR, Rodriguez-Waitkus PM, Ng BK, et al. Progesterone synthesizedby Schwann cells during myelin formation regulates neuronal geneexpression. Mol Biol Cell,2000,11(7):2283-2295
    13Buck CR, Seburn KL, Cope TC. Neurotrophin expression by spinalmotoneurons in adult and developing rats. J Comp Neurol,2000,416(3):309-318
    14Luoma JI, Kelley BG, Mermelstein PG. Progesterone inhibition ofvoltage-gated calcium channels is a potential neuroprotective mechanismagainst excitotoxicity. Steroids,2011,76(9):845-855
    15Van Landingham JW, Cekic M, Cutler S, et al. Neurosteroids reduceinflammation after TBI through CD55induction. Neurosci Lett,2007,425(2):94-98
    16Schumacher M, Guennoun R, Stein DG, et al. Progesterone: therapeuticopportunities for neuroprotection and myelin repair. Pharmacol Ther,2007,116(1):77-106
    17Gasperi V, Fezza F, Spagnuolo P, et al. Further insights into the regulationof human FAAH by progesterone and leptin implications for endogenouslevels of anandamide and apoptosis of immune and neuronal cells.Neurotoxicology,2005,26(5):811-817
    18Meffre D, Labombarda F, Delespierre B, et al. Distribution of membraneprogesterone receptor alpha in the male mouse and rat brain and itsregulation after traumatic brain injury. Neuroscience,2013,231:111-124
    19Barha CK, Ishrat T, Epp JR, et al. Progesterone treatment normalizes thelevels of cell proliferation and cell death in the dentate gyrus of thehippocampus after traumatic brain injury. Exp Neurol,2011,231(1):72-81
    20Melcangi RC, Caruso D, Levandis G, et al. Modifications of neurosteroidlevels in an experimental model of nigrostriatal degeneration: potentialrelevance to the pathophysiology of Parkinson's disease. J Mol Neurosci,2012,46(1):177-183
    21Hu Z, Li Y, Fang M, et al. Exogenous progesterone: a potentialtherapeutic candidate in CNS injury and neurodegeneration. Curr MedChem,2009,16(11):1418-1425
    22Smith CD, Wekstein DR, Markesbery WR, et al.3alpha,5alpha-THP: apotential plasma neurosteroid biomarker in Alzheimer's disease andperhaps non-Alzheimer's dementia. Psychopharmacology (Berl),2006,186(3):481-485
    23Rosario ER, Chang L, Head EH, et al. Brain levels of sex steroidhormones in men and women during normal aging and in Alzheimer'sdisease. Neurobiol Aging,2011,32(4):604-613
    24Frye CA, Walf AA. Effects of progesterone administration andAPPswe+PSEN1Deltae9mutation for cognitive performance ofmid-aged mice. Neurobiol Learn Mem,2008,89(1):17-26
    25Caruso D, Barron AM, Brown MA, et al. Age-related changes inneurosteroid levels in3xTg-AD mice. Neurobiol Aging,2012,34(4):1080-1089
    26李祥鹏,姚文,赵杉杉.阿尔茨海默症治疗药物的研究进展.齐鲁药事,2011,30(8):475-477
    27郭起浩,洪震. AD的药物治疗进展.中国处方药,2004,5(26):23-27
    28Li XJ, He RF, Li S, et al. Effects of progesterone on learning and memoryand P2X7receptor expression in the hippocampus after global cerebralischemia/reperfusion injury in rats. Zhongguo Ying Yong Sheng Li XueZa Zhi,2012,28(5):472-475
    29Orr PT, Rubin AJ, Fan L, et al. The progesterone-induced enhancementof object recognition memory consolidation involves activation of theextracellular signal-regulated kinase (ERK) and mammalian target ofrapamycin (mTOR) pathways in the dorsal hippocampus. Horm Behav,2012,61(4):487-495
    30Xu L, Sapolsky RM, Giffard RG. Differential sensitivity of murineastrocytes and neurons from different brain regions to injury. Exp Neurol,2001,169(2):416-424
    31Moorthy K, Yadav UC, Siddiqui MR, et al. Effect of hormonereplacement therapy in normalizing age related neuronal markers indifferent age groups of naturally menopausal rats. Biogerontology,2005,6(5):345-356
    32Drouin-Ouellet J, Cicchetti F. Inflammation and neurodegeneration: thestory 'retolled'. Trends Pharmacol Sci,2012,33(10):542-551
    33Xuan A, Long D, Li J, et al. Hydrogen sulfide attenuates spatial memoryimpairment and hippocampal neuroinflammation in beta-amyloid ratmodel of Alzheimer's disease. J Neuroinflammation,2012,9:202
    34Gibson C, Constantin D, Prior M, et al. Progesterone suppresses theinflammatory response and nitric oxide synthase-2expression followingcerebral ischemia. Exp Neurol,2005,193:522-530
    35Liu SB, Zhao MG. Neuroprotective effect of estrogen: Role ofnonsynaptic NR2B-containing NMDA receptors. Brain Res Bull.2013,93:27-31
    36Peterson TC, Anderson GD, Kantor ED, et al. A Comparison of theEffects of Nicotinamide and Progesterone on Functional Recovery ofCognitive Behavior following Cortical Contusion Injury in the Rat. JNeurotrauma,2012,29(18):2823-2830
    37Hua F, Reiss JI, Tang H, et al. Progesterone and low-dose vitamin Dhormone treatment enhances sparing of memory following traumaticbrain injury. Horm Behav,2012,61(4):642-651
    38Pluchino N, Luisi M, Lenzi E, et al. Progesterone and progestins: effectson brain, allopregnanolone and beta-endorphin. J Steroid Biochem MolBiol,2006,102(1-5):205-213
    39Monnet FP, Maurice T. The sigma1protein as a target for thenon-genomic effects of neuro(active)steroids: molecular, physiological,and behavioral aspects. J Pharmacol Sci,2006,100(2):93-118
    40Dubrovsky BO. Steroids, neurosteroids and neurosteroids inpsychopathology. Prog. Neuropsychopharmacol. Biol. Psychiatry,2005,29:169-192
    41Rupprecht R, Holsboer F. Neurosteroids in neuropsychopharmacology.Int. Rev. Neurobiol,2001,46:461-477
    42Kipp M, Berger K, Clarner T, et al. Sex steroids controlneuroinflammatory processes in the brain: relevance for acute ischaemiaand degenerative demyelination. J Neuroendocrinol,2012,24(1):62-70
    43Escudero C, Casas S, Giuliani F, et al. Allopregnanolone preventsmemory impairment: effect on mRNA expression and enzymatic activityof hippocampal3-alpha hydroxysteroid oxide-reductase. Brain Res Bull,2012,87(2-3):280-285
    44Jayaraman A, Carroll JC, Morgan TE, et al.17β-estradiol andprogesterone regulate expression of β-amyloid clearance factors inprimary neuron cultures and female rat brain. Endocrinology,2012,153(11):5467-5479
    1Arevalo MA, Ruiz-Palmero I, Scerbo MJ, et al. Molecular mechanismsinvolved in the regulation of neuritogenesis by estradiol: Recent advances.J Steroid Biochem Mol Biol,2012,131(1-2):52-56
    2Manolides LS, Baloyannis SJ. Influence of hydrocortisone, progesteroneand testosterone on dendritic growth in vitro. Acta Otolaryngol,1984,97(5-6):509-522
    3Jayaraman A, Carroll JC, Morgan TE, et al.17β-estradiol andprogesterone regulate expression of β-amyloid clearance factors inprimary neuron cultures and female rat brain. Endocrinology,2012,153(11):5467-5479
    4Ertman N, Andreano JM, Cahill L. Progesterone at encoding predictssubsequent emotional memory. Learn Mem,2011,18(12):759-763
    5Felmingham KL, Fong WC, Bryant RA. The impact of progesterone onmemory consolidation of threatening images in women.Psychoneuroendocrinology,2012,37(11):1896-1900
    6Paris JJ, Walf AA, Frye CA. II. Cognitive performance of middle-agedfemale rats is influenced by capacity to metabolize progesterone in theprefrontal cortex and hippocampus. Brain Res,2011,1379:149-163
    7He L, Yang H, Zhai LD, et al. A preliminary study on progesteroneantioxidation in promoting learning and memory of youngovariectomized mice. Arch Med Sci,2011,7(3):397-404
    8Jung-Testas I, Schumacher M, Robel P, et al. The neurosteroidprogesterone increases the expression of myslineproteins (MBP and CNPase) in ratoligodendrocytes in primary culture.Cell Mol Neurobiol,1996,16(3):439-443
    9Ardeshiri A, Kelley MH, Korner IP, et al. Mechanism of progesteroneneuroprotection of rat cerebellar Purkinje cells following oxygen-glucosedeprivation. Eur J Neurosci,2006,24(9):2567-2574
    10Lorenz L, Dang J, Misiak M, et al. Combined17beta-oestradioland progesterone treatment prevents neuronal cell injury in cortical butnot midbrain neurones or neuroblastoma cells.J Neuroendocrinol,2009,21(10):841-849
    11Aguirre CC, Baudry M. Progesterone reverses17beta-estradiol-mediatedneuroprotection and BDNF induction in cultured hippocampal slices. EurJ Neurosci,2009,29(3):447-454
    12Yao J, Chen S, Cadenas E, et al. Estrogen protection againstmitochondrial toxin-induced cell death in hippocampal neurons:antagonism by progesterone. Brain Res,2011,1379:2-10
    13Murphy DD, Segal M. Progesterone prevents estradiol-induced dendriticspine formation in cultured hippocampalneurons. Neuroendocrinology,2000,72(3):133-143
    14Moralí G, Montes P, Hernández-Morales L, et al. Neuroprotective effectsof progesterone and allopregnanolone on long-term cognitive outcomeafter global cerebral ischemia. Restor Neurol Neurosci,2011,29(1):1-15
    15Kaur P, Jodhka PK, Underwood WA, et al. Progesterone increasesbrain-derived neuroptrophic factor expression and protects againstglutamate toxicity in a mitogen-activated protein kinase-andphosphoinositide-3kinase-dependent manner in cerebral cortical explants.J Neurosci Res,2007,85(11):2441-2449
    16Sanchez AM, Flamini MI, Genazzani AR, et al. Effects of Progesteroneand Medroxyprogesterone on Actin Remodeling and Neuronal SpineFormation. Mol Endocrinol,2013,27(4):693-702
    17Zhao Y, Wang J, Liu C, et al. Progesterone influences postischemicsynaptogenesis in the CA1region of the hippocampus in rats.Synapse,2011,65(9):880-891
    18于洋,侯艳宁,吴红海, et al.孕酮及别孕烯醇酮对Aβ25-35诱导的神经元损伤作用的影响.中国医院药学杂志,2011,31(8):666-669
    19Ishihara Y, Kawami T, Ishida A, et al. Allopregnanolone-mediatedprotective effects of progesterone on tributyltin-induced neuronal injuryin rat hippocampal slices. J Steroid Biochem Mol Biol,2013,135:1-6
    1Ghoumari AM, Baulieu EE, Schumacher M. Progesterone increasesoligodendroglial cell proliferation in rat cerebellar slice cultures.Neuroscience,2005,135(1):47-58
    2Wang JM, Johnston PB, Ball BG, et al. The neurosteroidallopregnanolone promotes proliferation of rodent and human neuralprogenitor cells and regulates cell-cycle gene and protein expression. JNeurosci,2005,25(19):4706-4718
    3Charalampopoulos I, Dermitzaki E, Vardouli L, et al.Dehydroepiandrosterone sulfate and allopregnanolone directly stimulatecatecholamine production via induction of tyrosine hydroxylase andsecretion by affecting actin polymerization. Endocrinology,2005,146(8):3309-3318
    4Wise PM, Dubal DB, Rau SW, et al. Are estrogens protective or riskfactors in brain injury and neurodegeneration? Reevaluation after theWomen's health initiative. Endocr Rev,2005,26(3):308-312
    5Corpechot C, Synguelakis M, Talha S, et al. Pregnenolone and itssulfate ester in the rat brain. Brain Res,1983,270(1):119-125
    6Corpechot C, Collins BE, Carey MP, et al. Brain neurosteroids duringthe mouse oestrous cycle. Brain Res,1997,766(1-2):276-280
    7Robel P, Synguelakis M, Halberg F, et al. Persistence of the circadianrhythm of dehydroepiandrosterone in the brain, but not in the plasma, ofcastrated and adrenalectomized rats. C R Acad Sci III,1986,303(6):235-238
    8Baulieu EE. Neurosteroids: a novel function of the brain.Psychoneuroendocrinology,1998,23(8):963-987
    9Robel P, Baulieu EE. Neurosteroids Biosynthesis and function. TrendsEndocrinol Metab,1994,5(1):1-8
    10Luchetti S, Bossers K, Van de Bilt S, et al. Neurosteroid biosyntheticpathways changes in prefrontal cortex in Alzheimer's disease. NeurobiolAging,2011,32(11):1964-1976
    11Mensah-Nyagan AG, Do-Rego JL, Beaujean D, et al. Neurosteroids:expression of steroidogenic enzymes and regulation of steroidbiosynthesis in the central nervous system. Pharmacol Rev,1999,51(1):63-81
    12Mellon SH, Griffin LD. Neurosteroids: biochemistry and clinicalsignificance. Trends Endocrinol Metab,2002,13(1):35-43
    13Bose HS, Lingappa VR, Miller WL. Rapid regulation of steroidogenesisby mitochondrial protein import. Nature,2002,417(6884):87-91
    14Furukawa A, Miyatake A, Ohnishi T, et al. Steroidogenic acuteregulatory protein (StAR) transcripts constitutively expressed in theadult rat central nervous system: colocalization of StAR, cytochromeP-450SCC (CYP XIA1), and3beta-hydroxysteroid dehydrogenase inthe rat brain. J Neurochem,1998,71(6):2231-2238
    15Inoue T, Akahira J, Suzuki T, et al. Progesterone production and actionsin the human central nervous system and neurogenic tumors. J ClinEndocrinol Metab,2002,87(11):5325-5331
    16Mellon SH, Griffin LD, Compagnone NA. Biosynthesis and action ofneurosteroids. Brain Res Brain Res Rev,2001,37(1-3):3-12
    17Ukena K, Usui M, Kohchi C, et al. Cytochrome P450side-chaincleavage enzyme in the cerebellar Purkinje neuron and its neonatalchange in rats. Endocrinology,1998,139(1):137-147
    18Kimoto T, Tsurugizawa T, Ohta Y, et al. Neurosteroid synthesis bycytochrome p450-containing systems localized in the rat brainhippocampal neurons: N-methyl-D-aspartate and calcium-dependentsynthesis. Endocrinology,2001,142(8):3578-3589
    19Yu L, Romero DG, Gomez-Sanchez CE, et al. Steroidogenic enzymegene expression in the human brain. Mol Cell Endocrinol,2002,190(1-2):9-17
    20Meffre D, Delespierre B, Gouezou M, et al.3beta-Hydroxysteroiddehydrogenase/5-ene-4-ene isomerase mRNA expression in rat brain:effect of pseudopregnancy and traumatic brain injury. J SteroidBiochem Mol Biol,2007,104(3-5):293-300
    21Dumont M, Luu-The V, Dupont E, et al. Characterization, expression,and immunohistochemical localization of3beta-hydroxysteroiddehydrogenase/delta5-delta4isomerase in human skin. J InvestDermatol,1992,99(4):415-421
    22Steffensen SC, Jones MD, Hales K, et al. Dehydroepiandrosteronesulfate and estrone sulfate reduce GABA-recurrent inhibition in thehippocampus via muscarinic acetylcholine receptors. Hippocampus,2006,16(12):1080-1090
    23Cascio C, Brown RC, Liu Y, et al. Pathways of dehydroepiandrosteroneformation in rat brain glia. J Steroid Biochem Mol Biol,2000,75(2-3):177-186
    24Steckelbroeck S, Watzka M, Stoffel-Wagner B, et al. Expression of the17beta-hydroxysteroid dehydrogenase type5mRNA in the human brain.Mol Cell Endocrinol,2001,171(1-2):165-168
    25Kiyokage E, Toida K, Suzuki-Yamamoto T, et al. Localization of5alpha-reductase in the rat main olfactory bulb. J Comp Neurol,2005,493(3):381-395
    26Stoffel-Wagner B. Neurosteroid biosynthesis in the human brain and itsclinical implications. Ann N Y Acad Sci,2003,1007:64-78
    27Poletti A, Negri-Cesi P, Rabuffetti M, et al. Transient expression of the5alpha-reductase type2isozyme in the rat brain in late fetal and earlypostnatal life. Endocrinology,1998,139(4):2171-2178
    28Thigpen AE, Silver RI, Guileyardo JM, et al. Tissue distribution andontogeny of steroid5alpha-reductase isozyme expression. J Clin Invest,1993,92(2):903-910
    29Khanna M, Qin KN, Cheng KC. Distribution of3alpha-hydroxysteroiddehydrogenase in rat brain and molecular cloning of multiple cDNAsencoding structurally related proteins in humans. J Steroid BiochemMol Biol,1995,53(1-6):41-46
    30Griffin LD, Mellon SH. Selective serotonin reuptake inhibitors directlyalter activity of neurosteroidogenic enzymes. Proc Natl Acad Sci U S A,1999,96(23):13512-13517
    31Hojo Y, Hattori TA, Enami T, et al. Adult male rat hippocampussynthesizes estradiol from pregnenolone by cytochromes P45017alphaand P450aromatase localized in neurons. Proc Natl Acad Sci U S A,2004,101(3):865-870
    32Jakab RL, Harada N, Naftolin F. Aromatase-(estrogen synthetase)immunoreactive neurons in the rat septal area. A light and electronmicroscopic study. Brain Res,1994,664(1-2):85-93
    33Carswell HV, Dominiczak AF, Garcia-Segura LM, et al. Brainaromatase expression after experimental stroke: topography and timecourse. J Steroid Biochem Mol Biol,2005,96(1):89-91
    34Yague JG, Munoz A, de Monasterio-Schrader P, et al. Aromataseexpression in the human temporal cortex. Neuroscience,2006,138(2):389-401
    35Higashi T, Daifu Y, Shimada K. Studies on neurosteroids XIV. Levels ofdehydroepiandrosterone sulfate in rat brain and serum determined withnewly developed enzyme-linked immunosorbent assay. Steroids,2001,66(12):865-874
    36Higashi T, Sugitani H, Yagi T, et al. Studies on neurosteroids XVI.Levels of pregnenolone sulfate in rat brains determined byenzyme-linked immunosorbent assay not requiring solvolysis. BiolPharm Bull,2003,26(5):709-711
    37Geese WJ, Raftogianis RB. Biochemical characterization and tissuedistribution of human SULT2B1. Biochem Biophys Res Commun,2001,288(1):280-289
    38Schumacher M, Liere P, Akwa Y, et al. Pregnenolone sulfate in thebrain: a controversial neurosteroid. Neurochem Int,2008,52(4-5):522-540
    39Cornil C, Foidart A, Minet A, et al. Immunocytochemical localizationof ionotropic glutamate receptors subunits in the adult quail forebrain. JComp Neurol,2000,428(4):577-608
    40Cornil CA.. Rapid regulation of brain oestrogen synthesis: thebehavioural roles of oestrogens and their fates. J Neuroendocrinol,2009,21(3):217-226
    41Balthazart J, Baillien M, Ball GF. Phosphorylation processes mediaterapid changes of brain aromatase activity. J Steroid Biochem Mol Biol,2001,79(1-5):261-277
    42Balthazart J, Baillien M, Charlier TD, et al. Calcium-dependentphosphorylation processes control brain aromatase in quail. Eur JNeurosci,2003,17(8):1591-1606
    43Paredes RG, Agmo A. GABA and behavior: the role of receptorsubtypes. Neurosci Biobehav Rev,1992,16(2):145-170
    44Backberg M, Ultenius C, Fritschy JM, et al. Cellular localization ofGABA receptor alpha subunit immunoreactivity in the rathypothalamus: relationship with neurones containing orexigenic oranorexigenic peptides. J Neuroendocrinol,2004,16(7):589-604
    45Do Rego JL, Seong JY, Burel D, et al. Neurosteroid biosynthesis:enzymatic pathways and neuroendocrine regulation byneurotransmitters and neuropeptides. Front Neuroendocrinol,2009,30(3):259-301
    46Do-Rego JL, Mensah-Nyagan GA, Beaujean D, et al.Gamma-Aminobutyric acid, acting through gamma-aminobutyric acidtype A receptors, inhibits the biosynthesis of neurosteroids in the froghypothalamus. Proc Natl Acad Sci U S A,2000,97(25):13925-13930
    47Murakami N, Kawano T, Nakahara K, et al. Effect of melatonin oncircadian rhythm, locomotor activity and body temperature in the intacthouse sparrow, Japanese quail and owl. Brain Res,2001,889(1-2):220-224
    48Inai Y, Nagai K, Ukena K, et al. Seasonal changes in neurosteroidconcentrations in the amphibian brain and environmental factorsregulating their changes. Brain Res,2003,959(2):214-225
    49Tsutsui K, Inoue K, Miyabara H, et al.7Alpha-hydroxypregnenolonemediates melatonin action underlying diurnal locomotor rhythms. JNeurosci,2008,28(9):2158-2167
    50Haraguchi S, Koyama T, Hasunuma I, et al. Prolactin increases thesynthesis of7alpha-hydroxypregnenolone, a key factor for induction oflocomotor activity, in breeding male Newts. Endocrinology,2010,151(5):2211-2222
    51Toyoda F, Ito M, Tanaka S, et al. Hormonal induction of male courtshipbehavior in the Japanese newt, Cynops pyrrhogaster. Horm Behav,1993,27(4):511-522
    52Iwata T, Toyoda F, Yamamoto K, et al. Hormonal control of urodelereproductive behavior. Comp Biochem Physiol B Biochem Mol Biol,2000,126(2):221-229
    53Mosconi G, Yamamoto K, Kikuyama S, et al. Seasonal changes ofplasma prolactin concentration in the reproduction of the crested newt(Triturus carnifex Laur). Gen Comp Endocrinol,1994,95(3):342-349
    54Haraguchi S, Matsunaga M, Koyama T, et al. Seasonal changes in thesynthesis of the neurosteroid7alpha-hydroxypregnenolone stimulatinglocomotor activity in newts. Ann N Y Acad Sci,2009,1163:410-413
    55Viglietti-Panzica C, Aste N, Balthazart J, et al. Vasotocinergicinnervation of sexually dimorphic medial preoptic nucleus of the maleJapanese quail: influence of testosterone. Brain Res,1994,657(1-2):171-184
    56Do-Rego JL, Acharjee S, Seong JY, et al. Vasotocin and mesotocinstimulate the biosynthesis of neurosteroids in the frog brain. J Neurosci,2006,26(25):6749-6760
    57Matsuda K, Wada K, Miura T, et al. Effect of the diazepam-bindinginhibitor-derived peptide, octadecaneuropeptide, on food intake ingoldfish. Neuroscience,2007,150(2):425-432
    58Ferrero P, Guidotti A, Conti-Tronconi B, et al. A brainoctadecaneuropeptide generated by tryptic digestion of DBI (diazepambinding inhibitor) functions as a proconflict ligand of benzodiazepinerecognition sites. Neuropharmacology,1984,23(11):1359-1362
    59Do-Rego JL, Mensah-Nyagan AG, Beaujean D, et al. Theoctadecaneuropeptide ODN stimulates neurosteroid biosynthesisthrough activation of central-type benzodiazepine receptors. JNeurochem,2001,76(1):128-138
    60Do-Rego JL, Mensah-Nyagan AG, Feuilloley M, et al. The endozepinetriakontatetraneuropeptide diazepam-binding inhibitor [17-50]stimulates neurosteroid biosynthesis in the frog hypothalamus.Neuroscience,1998,83(2):555-570
    61Danger JM, Breton B, Vallarino M, et al. Neuropeptide-Y in the troutbrain and pituitary: localization, characterization, and action ongonadotropin release. Endocrinology,1991,128(5):2360-2368
    62Danger JM, Guy J, Benyamina M, et al. Localization and identificationof neuropeptide Y (NPY)-like immunoreactivity in the frog brain.Peptides,1985,6(6):1225-1236
    63Beaujean D, Do-Rego JL, Galas L, et al. Neuropeptide Y inhibits thebiosynthesis of sulfated neurosteroids in the hypothalamus throughactivation of Y(1) receptors. Endocrinology,2002,143(5):1950-1963
    64Gursoy E, Cardounel AKalimi M. Pregnenolone protects mousehippocampal (HT-22) cells against glutamate and amyloid beta proteintoxicity. Neurochem Res,2001,26(1):15-21
    65Lockhart EM, Warner DS, Pearlstein RD, et al. Allopregnanoloneattenuates N-methyl-D-aspartate-induced excitotoxicity and apoptosisin the human NT2cell line in culture. Neurosci Lett,2002,328(1):33-36
    66Xilouri M, Papazafiri P. Anti-apoptotic effects of allopregnanolone onP19neurons. Eur J Neurosci,2006,23(1):43-54
    67Young LT. Neuroprotective effects of antidepressant and moodstabilizing drugs. J Psychiatry Neurosci,2002,27(1):8-9
    68Compagnone NA,Mellon SH. Dehydroepiandrosterone: a potentialsignalling molecule for neocortical organization during development.Proc Natl Acad Sci U S A,1998,95(8):4678-4683
    69Jones KJ. Androgenic enhancement of motor neuron regeneration. AnnN Y Acad Sci,1994,743:141-164
    70Iwata M, Muneoka KT, Shirayama Y, et al. A study of a dendriticmarker, microtubule-associated protein2(MAP-2), in rats neonatallytreated neurosteroids, pregnenolone and dehydroepiandrosterone(DHEA). Neurosci Lett,2005,386(3):145-149
    71Laurine E, Lafitte D, Gregoire C, et al. Specific binding ofdehydroepiandrosterone to the N terminus of themicrotubule-associated protein MAP2. J Biol Chem,2003,278(32):29979-29986
    72Baulieu EE. Neurosteroids: of the nervous system, by the nervoussystem, for the nervous system. Recent Prog Horm Res,1997,52:1-32
    73Mitchell EA, Herd MB, Gunn BG, et al. Neurosteroid modulation ofGABAA receptors: molecular determinants and significance in healthand disease. Neurochem Int,2008,52(4-5):588-595
    74van Broekhoven F, Verkes RJ. Neurosteroids in depression: a review.Psychopharmacology (Berl),2003,165(2):97-110
    75Svec F, Porter J. Effect of DHEA on macronutrient selection by Zuckerrats. Physiol Behav,1996,59(4-5):721-727
    76Reddy DS, Kulkarni SK. Sex and estrous cycle-dependent changes inneurosteroid and benzodiazepine effects on food consumption andplus-maze learning behaviors in rats. Pharmacol Biochem Behav,1999,62(1):53-60
    77Kaur G, Kulkarni SK. Subchronic studies on modulation of feedingbehavior and body weight by neurosteroids in female mice. MethodsFind Exp Clin Pharmacol,2001,23(3):115-119
    78He J, Hoffman SW, Stein DG. Allopregnanolone, a progesteronemetabolite, enhances behavioral recovery and decreases neuronal lossafter traumatic brain injury. Restor Neurol Neurosci,2004,22(1):19-31
    79Djebaili M, Hoffman SW, Stein DG. Allopregnanolone andprogesterone decrease cell death and cognitive deficits after a contusionof the rat pre-frontal cortex. Neuroscience,2004,123(2):349-359
    80Malik AS, Narayan RK, Wendling WW, et al. A noveldehydroepiandrosterone analog improves functional recovery in a rattraumatic brain injury model. J Neurotrauma,2003,20(5):463-476
    81Sayeed I, Guo Q, Hoffman SW, et al. Allopregnanolone, a progesteronemetabolite, is more effective than progesterone in reducing corticalinfarct volume after transient middle cerebral artery occlusion. AnnEmerg Med,2006,47(4):381-389
    82Mo Q, Lu SF, Hu S, et al. DHEA and DHEA sulfate differentiallyregulate neural androgen receptor and its transcriptional activity. BrainRes Mol Brain Res,2004,126(2):165-172
    83Belelli D, Herd MB, Mitchell EA, et al. Neurosteroids and inhibitoryneurotransmission: mechanisms of action and physiological relevance.Neuroscience,2006,138(3):821-829
    84Jang MK, Mierke DF, Russek SJ, et al. A steroid modulatory domain onNR2B controls N-methyl-D-aspartate receptor proton sensitivity. ProcNatl Acad Sci U S A,2004,101(21):8198-8203
    85Dubrovsky BO. Steroids, neurosteroids and neurosteroids inpsychopathology. Prog Neuropsychopharmacol Biol Psychiatry,2005,29(2):169-192
    86Rupprecht R, di Michele F, Hermann B, et al. Neurosteroids: molecularmechanisms of action and implications for neuropsychopharmacology.Brain Res Brain Res Rev,2001,37(1-3):59-67
    87Maurice T. Neurosteroids and sigma1receptors, biochemical andbehavioral relevance. Pharmacopsychiatry,2004,37(Suppl3):S171-182
    88Maksay G, Laube B, Betz H. Subunit-specific modulation of glycinereceptors by neurosteroids. Neuropharmacology,2001,41(3):369-376
    89Pereira EF, Hilmas C, Santos MD, et al. Unconventional ligands andmodulators of nicotinic receptors. J Neurobiol,2002,53(4):479-500
    90Ueda H, Inoue M, Yoshida A, et al. Metabotropicneurosteroid/sigma-receptor involved in stimulation of nociceptorendings of mice. J Pharmacol Exp Ther,2001,298(2):703-710
    91Plassart-Schiess E, Baulieu EE. Neurosteroids: recent findings. BrainRes Brain Res Rev,2001,37(1-3):133-140
    92Majewska MD, Harrison NL, Schwartz RD, et al. Steroid hormonemetabolites are barbiturate-like modulators of the GABA receptor.Science,1986,232(4753):1004-1007
    93Majewska MD. Neurosteroids: endogenous bimodal modulators of theGABAA receptor. Mechanism of action and physiological significance.Prog Neurobiol,1992,38(4):379-395
    94Paul SM, Purdy RH. Neurosteroids. Faseb J,1992,6(6):2311-2322
    95Bergeron R, de Montigny C, Debonnel G. Potentiation of neuronalNMDA response induced by dehydroepiandrosterone and itssuppression by progesterone: effects mediated via sigma receptors. JNeurosci,1996,16(3):1193-1202
    96Park-Chung M, Malayev A, Purdy RH, et al. Sulfated and unsulfatedsteroids modulate gamma-aminobutyric acidA receptor functionthrough distinct sites. Brain Res,1999,830(1):72-87
    97Majewska MD, Schwartz RD. Pregnenolone-sulfate: an endogenousantagonist of the gamma-aminobutyric acid receptor complex in brain?Brain Res,1987,404(1-2):355-360
    98Irwin RP, Maragakis NJ, Rogawski MA, et al. Pregnenolone sulfateaugments NMDA receptor mediated increases in intracellular Ca2+incultured rat hippocampal neurons. Neurosci Lett,1992,141(1):30-34
    99Fahey JM, Lindquist DG, Pritchard GA, et al. Pregnenolone sulfatepotentiation of NMDA-mediated increases in intracellular calcium incultured chick cortical neurons. Brain Res,1995,669(2):183-188
    100Wu FS, Gibbs TT, Farb DH. Pregnenolone sulfate: a positive allostericmodulator at the N-methyl-D-aspartate receptor. Mol Pharmacol,1991,40(3):333-336
    101Rupprecht R. The neuropsychopharmacological potential ofneurosteroids. J Psychiatr Res,1997,31(3):297-314
    102Monnet FP, Mahe V, Robel P, et al. Neurosteroids, via sigma receptors,modulate the [3H]norepinephrine release evoked byN-methyl-D-aspartate in the rat hippocampus. Proc Natl Acad Sci U SA,1995,92(9):3774-3778
    103Amato RJ, Moerschbaecher JM, Winsauer PJ. Effects of pregnanoloneand flunitrazepam on the retention of response sequences in rats.Pharmacol Biochem Behav,2011,99(3):391-398
    104Nanfaro F, Cabrera R, Bazzocchini V, et al. Pregnenolone sulfateinfused in lateral septum of male rats impairs novel object recognitionmemory. Pharmacol Rep,2010,62(2):265-272
    105Modol L, Darbra S, Pallares M. Neurosteroids infusion into the CA1hippocampal region on exploration, anxiety-like behaviour and aversivelearning. Behav Brain Res,2011,222(1):223-229
    106Petit GH, Tobin C, Krishnan K, et al. Pregnenolone sulfate and itsenantiomer: differential modulation of memory in a spatialdiscrimination task using forebrain NMDA receptor deficient mice. EurNeuropsychopharmacol,2011,21(2):211-215
    107Kostakis E, Jang MK, Russek SJ, et al. A steroid modulatory domain inNR2A collaborates with NR1exon-5to control NMDAR modulationby pregnenolone sulfate and protons. J Neurochem,2011,119(3):486-496
    108Moriguchi S, Yamamoto Y, Ikuno T, et al. Sigma-1receptor stimulationby dehydroepiandrosterone ameliorates cognitive impairment throughactivation of CaM kinase II, protein kinase C and extracellularsignal-regulated kinase in olfactory bulbectomized mice. J Neurochem,2011,117(5):879-891
    109Markowski M, Ungeheuer M, Bitran D, et al. Memory-enhancingeffects of DHEAS in aged mice on a win-shift water escape task.Physiol Behav,2001,72(4):521-525
    110Rhodes ME, Li PK, Flood JF, et al. Enhancement of hippocampalacetylcholine release by the neurosteroid dehydroepiandrosteronesulfate: an in vivo microdialysis study. Brain Res,1996,733(2):284-286
    111Babalola PA, Fitz NF, Gibbs RB, et al. The effect of the steroidsulfatase inhibitor (p-O-sulfamoyl)-tetradecanoyl tyramine (DU-14) onlearning and memory in rats with selective lesion of septal-hippocampalcholinergic tract. Neurobiol Learn Mem,1998(3):303-310
    112Aldred S, Mecocci P. Decreased dehydroepiandrosterone (DHEA) anddehydroepiandrosterone sulfate (DHEAS) concentrations in plasma ofAlzheimer's disease (AD) patients. Arch Gerontol Geriatr,2010,51(1):e16-18
    113Carlson LE, Sherwin BB. Relationships among cortisol (CRT),dehydroepiandrosterone-sulfate (DHEAS), and memory in alongitudinal study of healthy elderly men and women. Neurobiol Aging,1999,20(3):315-324
    114Weill-Engerer S, David JP, Sazdovitch V, et al. Neurosteroidquantification in human brain regions: comparison between Alzheimer'sand nondemented patients. J Clin Endocrinol Metab,2002,87(11):5138-5143
    115Rasmuson S, Nasman B, Olsson T. Increased serum levels ofdehydroepiandrosterone (DHEA) and interleukin-6(IL-6) in womenwith mild to moderate Alzheimer's disease. Int Psychogeriatr:2011,18:1-7
    116Stangl B, Hirshman E, Verbalis J. Administration ofdehydroepiandrosterone (DHEA) enhances visual-spatial performancein postmenopausal women. Behav Neurosci,2011,125(5):742-752
    117Merritt P, Stangl B, Hirshman E, et al. Administration ofdehydroepiandrosterone (DHEA) increases serum levels of androgensand estrogens but does not enhance short-term memory inpost-menopausal women. Brain Res,2012,1483:54-62
    118Paris JJ, Walf AA, Frye CA. II. Cognitive performance of middle-agedfemale rats is influenced by capacity to metabolize progesterone in theprefrontal cortex and hippocampus. Brain Res,2011,1379:149-163
    119He L, Yang H, Zhai LD, et al. A preliminary study on progesteroneantioxidation in promoting learning and memory of youngovariectomized mice. Arch Med Sci,2011,7(3):397-404
    120Li XJ, He RF, Li S, et al. Effects of progesterone on learning andmemory and P2X7receptor expression in the hippocampus after globalcerebral ischemia/reperfusion injury in rats. Zhongguo Ying YongSheng Li Xue Za Zhi,2012,28(5):472-475
    121Orr PT, Rubin AJ, Fan L, et al. The progesterone-induced enhancementof object recognition memory consolidation involves activation of theextracellular signal-regulated kinase (ERK) and mammalian target ofrapamycin (mTOR) pathways in the dorsal hippocampus. Horm Behav,2012,61(4):487-495
    122Peterson TC, Anderson GD, Kantor ED, et al. A Comparison of theEffects of Nicotinamide and Progesterone on Functional Recovery ofCognitive Behavior following Cortical Contusion Injury in the Rat. JNeurotrauma,2012,29(18):2823-2830
    123Hua F, Reiss JI, Tang H, et al. Progesterone and low-dose vitamin Dhormone treatment enhances sparing of memory following traumaticbrain injury. Horm Behav,2012,61(4):642-651
    124Frye CA, Walf A. Progesterone, administered before kainic acid,prevents decrements in cognitive performance in the Morris WaterMaze. Dev Neurobiol,2011,71(2):142-152
    125Frye CA, Walf AA. Progesterone enhances learning and memory ofaged wildtype and progestin receptor knockout mice. Neurosci Lett,2010,472(1):38-42
    126Frye CA, Koonce CJ, Walf AA. Mnemonic effects of progesterone tomice require formation of3alpha,5alpha-THP. Neuroreport,2010,21(8):590-595
    127Bychowski ME, Auger CJ. Progesterone impairs social recognition inmale rats. Horm Behav,2012,61(4):598-604
    128Sun WL, Luine VN, Zhou L, et al. Acute progesterone treatmentimpairs spatial working memory in intact male and female rats. EthnDis,2010,20(1Suppl1): S183-87
    129Ertman N, Andreano JM, Cahill L. Progesterone at encoding predictssubsequent emotional memory. Learn Mem,2011,18(12):759-763
    130Felmingham KL, Fong WC, Bryant RA. The impact of progesterone onmemory consolidation of threatening images in women.Psychoneuroendocrinology,2012,37(11):1896-1900
    131George O, Vallee M, Vitiello S, et al. Low brain allopregnanolone levelsmediate flattened circadian activity associated with memoryimpairments in aged rats. Biol Psychiatry,2010,68(10):956-963
    132Escudero C, Casas S, Giuliani F, et al. Allopregnanolone preventsmemory impairment: effect on mRNA expression and enzymaticactivity of hippocampal3-alpha hydroxysteroid oxide-reductase. BrainRes Bull,2012,87(2-3):280-285
    133Morali G, Montes P, Hernandez-Morales L, et al. Neuroprotectiveeffects of progesterone and allopregnanolone on long-term cognitiveoutcome after global cerebral ischemia. Restor Neurol Neurosci,2011,29(1):1-15
    134Chen S, Wang JM, Irwin RW, et al. Allopregnanolone promotesregeneration and reduces beta-amyloid burden in a preclinical model ofAlzheimer's disease. PLoS One,2011,6(8): e24293
    135Irwin RW, Wang JM, Chen S, et al. Neuroregenerative mechanisms ofallopregnanolone in Alzheimer's disease. Front Endocrinol (Lausanne),2011,2:117
    136Singh C, Liu L, Wang JM, et al. Allopregnanolone restoreshippocampal-dependent learning and memory and neural progenitorsurvival in aging3xTgAD and nonTg mice. Neurobiol Aging,2012,33(8):1493-1506
    137Modol L, Darbra S, Vallee M, et al. Alteration of neonatalAllopregnanolone levels affects exploration, anxiety, aversive learningand adult behavioural response to intrahippocampal neurosteroids.Behav Brain Res,2013,241:96-104
    138Bengtsson SK, Johansson M, Backstrom T, et al. Chronicallopregnanolone treatment accelerates Alzheimer's diseasedevelopment in AbetaPP(Swe)PSEN1(DeltaE9) mice. J Alzheimers Dis,2012,31(1):71-84
    139Bengtsson SK, Johansson M, Backstrom T, et al. Brief but ChronicIncrease in Allopregnanolone Cause Accelerated AD PathologyDifferently in Two Mouse Models. Curr Alzheimer Res,2013,10(1):38-47
    140Chin VS, Van Skike CE, Berry RB, et al. Effect of acute ethanol andacute allopregnanolone on spatial memory in adolescent and adult rats.Alcohol,2011,45(5):473-483
    141Chamniansawat S, Chongthammakun S. Genomic and non-genomicactions of estrogen on synaptic plasticity in SH-SY5Y cells. NeurosciLett,2010,470(1):49-54
    142Chen Y, Su Y, Run X, et al. Pretreatment of PC12Cells with17beta-estradiol Prevents Abeta-Induced Down-Regulation of CREBPhosphorylation and Prolongs Inhibition of GSK-3beta. J Mol Neurosci,2012
    143Kramar EA, Babayan AH, Gall CM, et al. Estrogen promoteslearning-related plasticity by modifying the synaptic cytoskeleton.Neuroscience,2013,239:3-16
    144Baudry M, Bi X, Aguirre C. Progesterone-estrogen interactions insynaptic plasticity and neuroprotection. Neuroscience,2013,239:280-294
    145Pan M, Han H, Zhong C, et al. Effects of genistein and daidzein onhippocampus neuronal cell proliferation and BDNF expression inH19-7neural cell line. J Nutr Health Aging,2012,16(4):389-394
    146Anukulthanakorn K, Malaivijitnond S, Kitahashi T, et al. Molecularevents during the induction of neurodegeneration and memory loss inestrogen-deficient rats. Gen Comp Endocrinol,2013,181:316-323.
    147Conrad CD, McLaughlin KJ, Huynh TN, et al. Chronic stress and acyclic regimen of estradiol administration separately facilitate spatialmemory: relationship with hippocampal CA1spine density anddendritic complexity. Behav Neurosci,2012,126(1):142-156
    148Kiss A, Delattre AM, Pereira SI, et al.17beta-estradiol replacement inyoung, adult and middle-aged female ovariectomized rats promotesimprovement of spatial reference memory and an antidepressant effectand alters monoamines and BDNF levels in memory-anddepression-related brain areas. Behav Brain Res,2012,227(1):100-108
    149Diz-Chaves Y, Kwiatkowska-Naqvi A, Von Hulst H, et al. Behavioraleffects of estradiol therapy in ovariectomized rats depend on the agewhen the treatment is initiated. Exp Gerontol,2012,47(1):93-99
    150Hussain D, Hoehne A, Woodside B, et al. Reproductive experiencemodifies the effects of estradiol on learning and memory bias in femalerats. Horm Behav,2013,63(3):418-423
    151Ismail N, Blaustein JD. Pubertal immune challenge blocks the ability ofestradiol to enhance performance on cognitive tasks in adult femalemice. Psychoneuroendocrinology,2012
    152Chisholm NC, Juraska JM. Long-term replacement of estrogen incombination with medroxyprogesterone acetate improves acquisition ofan alternation task in middle-aged female rats. Behav Neurosci,2012,126(1):128-136
    153Espinosa-Raya J, Neri-Gomez T, Orozco-Suarez S, et al. Chronicadministration of tibolone modulates anxiety-like behavior andenhances cognitive performance in ovariectomized rats. Horm Behav,2012,61(1):76-83
    154Inagaki T, Frankfurt M, Luine V. Estrogen-induced memoryenhancements are blocked by acute bisphenol A in adult female rats:role of dendritic spines. Endocrinology,2012,153(7):3357-3367.
    155Sadeghian R, Fereidoni M, Soukhtanloo M, et al. Decreased nitric oxidelevels in the hippocampus may play a role in learning and memorydeficits in ovariectomized rats treated by a high dose of estradiol. ArqNeuropsiquiatr,2012,70(11):874-879
    156McClure RE, Barha CK, Galea LA.17beta-Estradiol, but not estrone,increases the survival and activation of new neurons in thehippocampus in response to spatial memory in adult female rats. HormBehav,2013,63(1):144-157
    157Barha CK, Dalton GL, Galea LA. Low doses of17alpha-estradiol and17beta-estradiol facilitate, whereas higher doses of estrone and17alpha-and17beta-estradiol impair, contextual fear conditioning in adultfemale rats. Neuropsychopharmacology,2010,35(2):547-559
    158Baker LD, Asthana S, Cholerton BA, et al. Cognitive response toestradiol in postmenopausal women is modified by high cortisol.Neurobiol Aging,2012,33(4):829.e9-20
    159Dumas JA, Kutz AM, Naylor MR, et al. Estradiol treatment alteredanticholinergic-related brain activation during working memory inpostmenopausal women. Neuroimage,2012,60(2):1394-1403
    160Engler-Chiurazzi EB, Talboom JS, Braden BB, et al. Continuousestrone treatment impairs spatial memory and does not impact numberof basal forebrain cholinergic neurons in the surgically menopausalmiddle-aged rat. Horm Behav,2012,62(1):1-9
    161Epperson CN, Amin Z, Ruparel K, et al. Interactive effects of estrogenand serotonin on brain activation during working memory and affectiveprocessing in menopausal women. Psychoneuroendocrinology,2012,37(3):372-382
    162Graham BM, Milad MR. Blockade of Estrogen by HormonalContraceptives Impairs Fear Extinction in Female Rats and Women.Biol Psychiatry,2013,73(4):371-378
    163Maki PM, Henderson VW. Hormone therapy, dementia, and cognition:the Women's Health Initiative10years on. Climacteric,2012,15(3):256-262
    164Greendale GA, Huang MH, Leung K, et al. Dietary phytoestrogenintakes and cognitive function during the menopausal transition: resultsfrom the Study of Women's Health Across the Nation PhytoestrogenStudy. Menopause,2012,19(8):894-903
    165King HM, Kurdziel LB, Meyer JS, et al. Effects of testosterone onattention and memory for emotional stimuli in male rhesus monkeys.Psychoneuroendocrinology,2012,37(3):396-409
    166Lacreuse A, Gore HE, Chang J, et al. Short-term testosteronemanipulations modulate visual recognition memory and some aspectsof emotional reactivity in male rhesus monkeys. Physiol Behav,2012,106(2):229-237
    167McConnell SE, Alla J, Wheat E, et al. The role of testicular hormonesand luteinizing hormone in spatial memory in adult male rats. HormBehav,2012,61(4):479-486
    168Li ZK, Zhang Y, Ke H, et al. Dose-effect relationship between androgenand neural protection in neonatal rats with hypoxic-ischemic braindamage and adverse effects of androgen. Zhonghua Er Ke Za Zhi,2011,49(2):151-156
    169Khorshidahmad T, Tabrizian K, Vakilzadeh G, et al. Interactive effectsof a protein kinase AII inhibitor and testosterone on spatial learning inthe Morris water maze. Behav Brain Res,2012,228(2):432-439
    170Emamian S, Naghdi N, Sepehri H, et al. Learning impairment causedby intra-CA1microinjection of testosterone increases the number ofastrocytes. Behav Brain Res,2010,208(1):30-37
    171Neese SL, Schantz SL. Testosterone impairs the acquisition of anoperant delayed alternation task in male rats. Horm Behav,2012,61(1):57-66
    172Ackermann S, Spalek K, Rasch B, et al. Testosterone levels in healthymen are related to amygdala reactivity and memory performance.Psychoneuroendocrinology,2021,37(9):1417-1424
    173Butchart J, Birch B, Bassily R, et al. Male Sex Hormones and SystemicInflammation in Alzheimer Disease. Alzheimer Dis Assoc Disord,2012
    174Verdile G, Laws SM, Henley D, et al. Associations betweengonadotropins, testosterone and beta amyloid in men at risk ofAlzheimer's disease. Mol Psychiatry,2012
    175Xing Y, Qin W, Li F, et al. Associations between sex hormones andcognitive and neuropsychiatric manifestations in vascular dementia(VaD). Arch Gerontol Geriatr,2013,56(1):85-90
    176Kanayama G, Kean J, Hudson JI, et al. Cognitive deficits in long-termanabolic-androgenic steroid users. Drug Alcohol Depend,2013,130(1-3):208-214

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700