锂离子电池正极材料LiFePO_4的合成及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橄榄石型LiFePO_4因理论比容量高、价格低廉、对环境友好、循环性能优良、安全性能突出等优点而被认为最具开发和应用潜力的新一代锂离子电池正极材料。但是纯LiFePO_4因电子电导率极低而造成可逆容量低,大电流充放电性能差。针对这种情况,人们尝试采取减小材料颗粒尺寸,添加导电剂,掺杂金属离子等措施来改善LiFePO_4的性能,目前取得了一定的进展。
     本文以寻求性能达到商业化应用需求的LiFePO_4作为研究的目的。采用水热法合成了LiFePO_4、Li(Mn,Fe)PO_4、Li(Co,Fe)PO_4、Li(Ni,Fe)PO_4及相应的经高温碳包覆的复合材料。用一步高温固相法合成了LiFePO_4/C及(Li,Nb)FePO_4/C复合材料。利用XRD、SEM、TEM、Rietveld Refinement拟合等技术对产物的微观结构和形貌进行了分析。采用恒流充放电、循环伏安(CV)和电化学阻抗谱(EIS)技术测试其电化学性能。对水热合成和固相合成的LiFePO_4/C存在的性能差别作了研究。系统研究了合成工艺条件对产物电化学性能的影响。
     以FeSO_4、H_3PO_4和LiOH为原料,用水热合成法制备纯度高、结晶好、颗粒分布均匀且细小的LiFePO_4粉体。分析了合成温度和时间对产物LiFePO_4的形貌和电化学性能的影响。研究表明,晶体生长完整、颗粒小的LiFePO_4具有较好的电化学性能。在本文的实验条件下,150℃、5h合成的LiFePO_4具有最好的电化学性能。对水热法合成LiFePO_4反应机理的研究表明,要得到单相的LiFePO_4,必须先将LiOH和H_3PO_4混合,形成中间产物Li_3PO_4,再与Fe~(2+)反应才能得到单相的LiFePO_4。利用聚丙烯高温裂解对水热合成产物进行碳包覆制备了LiFePO_4/C复合材料。最佳的包覆温度为550℃,在此条件下得到几乎球形化的LiFePO_4/C复合材料。在以0.05C和0.1C充放电时,LiFePO_4/C正极材料的初始放电容量达到162mAhg~(-1)和159mAhg~(-1),接近理论容量。但大电流放电性能离实际应用仍有较大的距离。
     用水热法对合成了Mn、Co、Ni分别掺杂的LiMn_xFe_(1-x)PO_4、LiCo_xFe_(1-x)PO_4、LiNi_xFe_(1-x)PO_4及其高温碳包覆的复合材料。对掺杂的最佳合成工艺和最佳掺杂量都进行了探索。结果发现,Mn的掺杂在一定程度上改善了LiFePO_4正极材料的性能,170℃、3h合成的LiMn_(0.15)Fe_(0.85)PO_4的比容量比纯LiFePO_4高出约17%。但经碳包覆之后,大电流充放电性能提高幅度不大。镍的最佳掺杂量为5%,160℃、3h水热合成LiNi_(0.05)Fe_(0.95)PO_4的比容量比纯LiFePO_4高33%。经碳包覆之后,1C放电放容量达到130mAhg~(-1)。镍掺杂能明显改善LiFePO_4/C的循环寿命,经1C充放电100次后,容量不仅没有减少反而提高。钴掺杂之后,无论包覆与否LiFePO_4/C的电化学性能没有提高。
Olivine-type LiFePO_4 is considered as the most promising candidate for the next-generation cathode materials of Li-ion batteries because it has high theoretical specific capacity, is cheap and environmentally friendly, and also has good cycling characteristics and excellent safety. However, pure LiFePO_4 shows low reversible capacity and poor charge-discharge characteristics at high current density due to its poor electronic conductivity. Some measures such as reducing particle size, adding conductive additive, and cation ion doping were taken to improve the electrochemical performances of LiFePO_4, and some progresses have been achieved so far.The research aims at developing LiFePO4 that can reach a level of practical application. LiFePO_4, Li (Mn, Fe) PO_4, Li (Co, Fe) PO_4, Li (Ni, Fe) PO_4 have been synthesized by the solvothermal method and the corresponding carbon-coated composites were also prepared using high-temperature heat treatment route. LiFePCVC and (Li, Nb) FePO_4 /C composites have been synthesized by one-step solid phase reactions. The microstructures and morphologies of these composites were investigated by XRD, SEM, TEM, and Rietveld refinement. The electrochemical performances have been evaluated by galvanostatic charge-discharge cycling, cyclic voltammetry (CV) and electrochemical impedance spectra (EIS). The differences in performances between solvothermally and solid phase synthesized products have been studied. The effects of the synthesis methods and synthesis parameters on the electrochemical performances of LiFePO_4 have been systemically investigated.LiFePO_4 has been synthesized by the solvothermal method using FeSO_4, H_3PO_4 and LiOH as raw materials. The product shows a high purity, good crystallinity, small particle size and homogenous size distribution. The effects of synthesis temperature and time on the morphologies and electrochemical performances of LiFePO_4 have been analyzed. It was found that well-crystallized LiFePO_4 with small particle size shows good electrochemical performances. In the present case, LiFePO_4 synthesized at 150℃ for 15 h shows best electrochemical performances. The study on the formation mechanism of LiFePO_4 by the solvothermal method shows that in order to obtain single-phase LiFePO_4, LiOH and H_3PO_4 must be mixed first to form intermediate Li_3PO_4, and then Li_3PO_4 reacts with Fe~(2+) to form pure LiFePO_4. LiFePO_4/C composites are synthesized by carbon-coating the hydrothermally synthesized LiFePO_4 through pyrolyzing polypropylene at high temperature. The study suggested that the best coating temperature is 550℃. Under this condition, ball-like
    LiFePCVC was obtained, which shows a first discharge capacity of 162 and 159 mA h g"1 at 0.05 C and 0.1 C, respectively, close to the theoretical capacity of LiFePC>4. However, the electrochemical performances of the materials at large current density are far from practical application.LiMxFei.xPO4 and their corresponding carbon-coated composites have been synthesized by the solvothermal method using Mn, Co and Ni as doping atoms and the corresponding heat treatment route. This research has explored the best synthesis technology and best doping content for solid solution doping. It was found that the electrochemical performances of LiFePO4 could be improved to some extent by Mn doping. LiMno.isFeo.ssPC^ prepared by hydrothermal route at 170°C for 3 h shows a 17% higher specific capacity than pure LiFePO4. After carbon coating, however, the charge-discharge performances at large current is not obviously improved. In this research, it is found that the optimized Ni doping content is 5%. LiNio.o5Feo.95P04 prepared by hydrothermal route at 160°C for 3 h shows a 33% higher specific capacity than pure LiFePO4. Under this condition, the capacity of LiNio.osFeo.gsPC^ is 33% higher than LiFePO4. After carbon coating, this material yields a discharge capacity of 130 mA h g"1 at 1 C. The cycling stability of LiFePCVC can be obviously improved after Ni doping. When cycled at 1 C for 100 times, this material exhibits capacity increase instead of decrease. However, Co doping cannot help improve the electrochemical performances of LiFePCVC whether it was undergone carbon coating or not.Carbon-coated LiFePC>4 has been developed by solid-state reaction using inexpensive Fe2C>3, NH4H2PO4 and LiOH as the raw materials and polypropylene as the reductive agent and the carbon source and the synthesis technology was explored. It was found that LiFePCVC composite prepared at 600°C for 10 h exhibits good electrochemical performances, yielding a discharge capacity of 136 mA h g"'at 1 C. Based on the above research, Lii-sjtNbxFePCVC has been synthesized by a one-step solid-state reaction through Li+ sites doping using Nb5+, whose radius is close to that of Li+. It was found that when the molar ratio of doping content is 0.008, the discharge capacity of this material reaches 148 mA h g"1 at 1 C and 130 mA h g"1 at 2 C, and the capacity fade is only 2.6% after 100 cycles at 1 C. Cyclic voltammetry tests of Lii.5lNb,FePO4/C indicate that polarization decreases obviously after doping. EIS tests show that the sum of/?ctand Rf shows a continuous decrease with increasing Nb doping content in Lii.sjcNbxFePCVC. When the Nb doping content increases from 0 to 0.01, the sum of Rct and R{ decreases from 300 to 65 Q. It indicates that Nb doping greatly improves the conductivity of LiFePCV
    This research has analyzed the reason why the electrochemical performances of LiFePCVC prepared by the solvothermal method are not so good as that prepared by solid-state reactions. Rietveld refinement fitting shows that the length of Li-0 bond is larger of LiFePO4 by solid-state reactions compared with that prepared by hydrothermal route. It is suggested that binding force is weakened because of the large bond length, which facilitates diffusion of Li+ in solid phase. As a result, the LiFePCVC prepared by solid phase reactions exhibits better electrochemical performances.
引文
[1] 李国欣.新型化学电源导论.上海,上海复旦大学出版社,1992
    [2] R J Brodd, K R Bullock, R A Leising, R L Middaugh, J R Miller, E Takeuchi. Batteries, 1977 to 2002. J Electrochem Soc, 2004, 151(3): K1-K11
    [3] S.Bruno.Recent advances in lithium ion battery materials .Electrochimica Acta, 2000, 45(8):2461-2466
    [4] B H Deng, H. Nakamura, M. Yoshio, Comparison and improvement of the high rate performance of different types ofLiMn_2O_4 spinels. Journal of Power Sources. 2005. 141(1):116-121.
    [5] M. Winter, J. O.Besenhard. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater, 1998, 10:742-746
    [6] A K Padhi, K S Nanjundawamy, J B Goodenough. Phospho-olivine as positive electrode materials for rechargeable lithium batteries. J Electrochem Soc, 1997, 144(4): 1188-1194
    [7] M Thackeray. An unexoected conductor. Nat Mater, 2002, 1: 81-82
    [8] 卢俊彪,唐子龙,张中泰,金永拄.镁离子掺杂对LiFePO_4/C材料电池性能的影响.物理化学学报,2005,21(3):319]
    [9] H Huang, S-C Yin, L F Nazar. Approaching theoretical capacity of LiFePO_4 at room temperature at high rates. Electrochem Solid-State Lett, 2001, 4(1): A170-A172
    [10] C.H. Mi, X. B. Zhao, G. S. Cao. In -situ Synthesis and Properties of Carbon-coated LiFePO_4 as Li-ion Battery Cathode. J Electrochem Soc, 2005, 12(3): A483
    [11] C.H. Mi, G. S. Cao, X. B. Zhao. Low-cost, One-step Process for Synthesis of Carbon-coated LiFePO_4. Cathode. Material Letters, 2005, 59:127
    [12] 顾登平,童汝亭.化学电源.北京,高等教育出版社,1993:1-3
    [13] R Kanno, T Shirane, Y Inaba. Systhesis and electrochemical properties of lithium iron oxides with layer related structures J. Power Sources, 1997, 68(1): 145-152.
    [14] 张文保,倪生麟.化学电源导论.上海:上海交通大学出版社,1992:148-185
    [15] G Eichinger. Safety aspects in Primary high-rate lithium cells, J Power Sources,1993,43-44(1): 259-266
    [16] N Goldenfeld. Dynamics of dendritic growth. J.Power Sources, 1989,26(1-2): 121-12
    [17] Z I Takohara, K Kanamura, Historical development of rechargeable lithium batteries in Japan, Eiectrochim Acta., 1993,38(9): 1169-1177
    [18] M Armand. in Materials for Advanced Batteries (G.W.Murphy, J.Broodhead, B. C. H. Steele, Editors), Plenum Press,New York, 1980,145
    [19] J J Auborn, Y L Barberio. Lithium intercalation cells without metallic lithium MO_2/LiCoO_2, J.Electrochem.Soc., 1987, 134(3): 638-641
    [20] B Scrosati. Lithium rocking chair batteries: an old concept? J. Electrochem. Soc., 1992, 139(10):2776-2781
    [21] D Guyomard, J M Tarascon. The carbon/Lil+xMn_2O_4 System, Solid State Ionics,1994,69(3-4):222-237
    [22] J M Tarascon, M Armand. Issues and challenges facing rechargeable lithium battery,Nature,2001,414:359-367
    [23] 任学佑.锂离子电池及其发展前景.电池,1996,26(1):38-40
    [24] T Nagaura, K Tozawa Lithium Ion Rechargeable Battery. Prog. Batts. Sol. Cell, JEC Press,Cleaveland, Ohio, 1990:66
    [25] J R Dahn, V U Sacken. The Electrochemical Society Extenced Abstracts,Vol902, Seattle,1990:66
    [26] T Nagaura 4~(th) International Rechargeable Battery Seminar, Florida, 1990
    [27] B Scrosati. Challenge of protable power, Nature,1995, 373:557-558
    [28] A R Armstrong, P G Bruce. Synthesis of layered LiMnO_2 as an electrode for rechargeable lithium batteries. Nature, 1996,381: 499-500
    [29] M. Wakihara. Recent developments in lithium ion batteries. Mater Sci Eng,2001,33:109-134
    [30] 吴宇平,万春荣,姜长印.锂离子二次电池.北京:化学工业出版社,2002:57-59
    [31] U V Sacken, E Nodwell, A Sundher, J R Dahn. Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries, Solid State Ionics, 1994, 69(3-4): 284-290
    [32] D Aurbach, Y Ein-Eli O Chusid. The correlation between the surface chemistry and the performance of Li/carbon intercalation anodes for rechargeable "Rocking-Chair" type batteries, J.Electrochem.Soc., 1994, 141(3): 603-611
    [33] 王涛.胶态锂离子电池及其材料的研究.复旦大学博士学位论文,上海,2003
    [34] B Scrosati. Lithium rocking chair batteries: an old concept? J. Electrochem.Soc.,1992,139(10): 2776-2781
    [35] 刘宇.先进嵌锂材料研究与应用.中科院上海微系统与信息技术研究所博士学位论文,上海,2003
    [36] M Winter, J O Besenhard. Elcetrochemical lithiation of tin and tin-based intermetallics and composites,Electrochim. Acta, 1999, 45(1-2): 31-50
    [37] 王可.含氮族元素嵌锂材料的合成与电化学.中国科学院上海微系统与信息技术研究所,博士学位论文,上海,2003
    [38] 王保峰 二次锂离子电池中高容量硅/碳复合负极材料的合成及电化学研究.中国科学院上海微系统与信息技术研究所,博士学位论文,上海,2003
    [39] K Vande, A Goossens, E A Meulenkamp. In situ X-Ray diffraction of lithium intercalation in nanostructured and thin film anatase TiO_2. J. Electrochemical. Soc, 1999, 146:3150-3154
    [40] P Poizot, S Laruelle, S Grugeon. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000,407:496-499
    [41] S Grugeon, A S Laruelle, R Herrera-Urbina Particle size effects on the electrochemical perforcemance of Copper Oxides toward lithium J. Electrochem. Soc. 2001,148(4): A285-A292
    [42] A S Laruelle, S Grugeon, P Poizot. On the origin of the extra ecectrochemical capacity displayed by MO/Li cells at low potential J. Electrochem. Soc., 2002, 149(5): A627-A634
    [43] M Nishijma, T Kagohashi, M Imanishi. Synthesis and electrochemical studies of a new material. Lil-xCoxN. Solid States Ionics, 1996, 83(1-2): 107-111
    [44] D H Gregory, P M O'Meara, A G Gordon. Layered ternary transition metal nitrides, synthesis, structure and physical properties. J. Alloys and Compounds 2001,317-318:237-244
    [45] M. Nishijima, T Kagohashi, Y Takeda. Electrochemical studies of a new anode material, Li_(3-x)M_xN(M=Co, Ni, Cu) J. Power Sources, 1997, 68(2): 510-514
    [46] Y Takeda, M Nishijima, M Yamahata. Lithium secondary batteries using lithium cobalt nitride, Li_(2.6)Co0.4N, as the anode. Solid State Ionics, 2000, 130(1-2): 61-69
    [47] 杨清河.锂离子电池材料学.复旦大学材料系教材.2005
    [48] J M Paulsen, J R Muller-Nehaus, J R Dahn. Layered LiCoO_2 with a different oxygen stacking (O_2 structure) as a cathode material for rechargeable lithium batteries. J Electrochem Soc, 2000, 147(2): 508-516
    [49] D Huang. Solid solution: new cathodes for next generation lithium-ion batreries.Adv Batt Tech, 1998(11): 23-27
    [50] A G Ritchie. Recent development and future prospects for lithium rechargeable batteries. J Power Sources, 2001, 96(1): 1-4
    [51] M Inaba, Z Ogumi. Up-to-date development of lithium-ion batteries in Japan. IEEE Electrical Insulation Magazine, 2001, 17(6): 6-20
    [52] J D Perkins, C S Balm, P A Parilla, J M McGraw, M L Fu, M Duncan, H Yu, D S Ginley. LiCoO_2 and LiCo(1-x)Al_xO_2 thin film cathodes grown by pulsed laser ablation. J Power Sources, 1999, 81-82: 675-679
    [53] M Mladenov, R Stoyanova, E Zhecheva, S Vassilev. Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO_2 electrodes. Electroche Commun, 2001, 3:410-416
    [54] S Oh, J K Lee, D Byun, W I Cho, W C Byung. Effect of Al_2O_3 coating on electrochemical performance of LiCoO_2 as cathode materials for secondary lithium batteries. J Power Sources, 2004, 132(1/2): 249-255
    [55] W Huang, R Frech. Vibrational spectroscopic and electrochemical studies of the low and high temperature phase of LiCo_1-x)M_xO_2 (M=Ni or Ti). Solid State Ionics, 1996, 86-88:395-400
    [56] C Julien, G A Nazri, A Rougier. Electrochemical performances of layered LiM(1-y)M_yO_2 (M=Ni, Co;M'=Mg, Al, B) oxides in lithium batteries. Solid State Ionics, 2000, 135:121-130
    [57] N Imanishi, M Fujii, A Hirano, Y Takeda. Synthesis and characterization of nonstoichiometric LiCoO_2. J Power Sources, 2001, 97-98:287-289
    [58] J. Cho. Direct micron-sized LiMn_2O_4 particle coating on LiCoO_2 cathode material using surfactant. Solid State Ionics, 2003, 160(3-4): 241-245
    [59] J. Barker. In-situ measurement of the thickness changes associated with cycling of prismatic lithium ion batteries based on LiMn_2O_4 nd LiCoO_2. Electrochimica Acta, 1999, 45(1-2): 235-242
    [60] K. Hayashi, Y. Nemoto, T. Shirrichi, J. Yamaki. Electrolyte for high voltage Li/LiMn_(1.9)Co_(0.1)O_4 cells. J Power Sources, 1997, 68(2): 316-319
    [61] T Ohzuku, A Veda, M Nagayama. Electrochemistry and structural chemistry of LiNiO_2 (R_(3m)) for 4V secondary lithium cells. J Electrochem Soc, 1996, 140(7): 1862-1869
    [62] A G Ritchie, C O Giwa, J C Lee, P Bowles, A Gilmour, J Allan, D A Rice, F Brady. Future cathode materials for lithium rechargeable batteries. J Power Sources, 1999, 80(1): 98-102
    [63] L EI-Farh, M Massot, M Lemal, C Julien. Physical properties and electrochemical features of lithium nickel-cobalt oxide cathode materials prepared at moderate temperature. Electroceramics, 1999, (3): 4,425-432
    [64] C Delmas. On the behavior of the LixNiO_2 system: an electrochemical and structural overview. J Power Sources, 1997, 68:120-125
    [65] D Larcher. Electrochemically active LiCoO_2 and LiNiO_2 made by cationic exchange under hydrothermal conditions. J Electrochem Soc, 1997, 144(2): 408-417
    [66] W Li, J C Currie, J Wolstenholme. Influnence of morphology on the stability of LiNiO_2. J Power Sources, 1997, 68(2): 565-569
    [67] B Markovsky, A Rodkin, Y S Cohen, O Palchik, E Levi, D Aurbach, H.-J. Kim, M Schmidt. The study of capacity fading process of Li-ion batteries: major factors that play a role. J Power Sources, 2003, 119-121:504-510
    [68] T Ohzuku. Electrochemistry and structural chemistry of LiNiO_2 (R_3m) for 4V secondary lithium cells. J Power Sources, 1993, 140(7): 1862-1870
    [69] M Brouussely, F Petron. Li/Li_xNiO_2and Li/LiCoO_2 rechargeable systems comparative study and performances of practical cells. J Power Sources, 1993, (43/44): 209-216
    [70] M Broussely, P Biensan, B Simon. Lithium insertion into best materials: the key to success for Li ion batteries. Electrochimica Acta, 1999, 45:7-12
    [71] W Li, C Currie. Morphology effect on the electrochemical performance of LiNi_(1-y)yCo_yO_2. J Eiectrochem Soc, 1997, 144:2773-2779
    [72] D Caurant. Synthesis by a soft chemistry route and characterization of LiNi_(1-y)Co_yO_2 (0≤y≤1) cathode material. Solid State Ionics, 1996, 91:45-54
    [73] 韩景立,刘庆国.锂镍钴复合氧化物锂离子电池正极材料研究.电化学,2000,6(4):469-472
    [74] Y Gao, J R Dahn. Synthesis and characterization of Lit(1-x)Mn_(2-x)O_4 for lithium ion battery application. J Electrochem Soc, 1996, 143(1): 100-144
    [75] W Liu, G C Farrington, F Chaput, B Dunn. Synthesis and electrochemical studies of spinel phase LiMn_2O_4 cathode materials prepared by the Pechini process. J Electrochem Soc, 1996, 143(3):879-884
    [76] 李嵩,程杰锋,季世军等.溶胶—凝胶法合成尖晶石型Li_(1+x)Mn_(2-x)O4的工艺优化.中国有色金属学报,2002,(4):729-732
    [77] S.-T. Myung, H.-T. Chung, S Komaba, N Kumagai, H.-B. Gu. Capacity fading of LiMn2O4 electrode synthesized by the emulsion drying method. J Power Sources, 2000, 90:103-108
    [78] Y Xia, M Yoshio. An investigation of lithium ion insertion into spinel structure Li-Mn-O compounds. J Electrochem Soc, 1996, 143(3): 825-833
    [79] Y Xia, Y Zhou, M Yoshio. Capacity fading on cycling of 4V Li/LiMn_2O_4 cells. J Electrochem Soc, 1997, 144(8): 2593-2600
    [80] M M Thackeray, P J Johnson, L A de Picciotto, P G Bruce, J B Goodenough. Electrochemical extraction of lithium from lithium maganate (LiMn_2O_4). Mate Res Bull, 1984, 19:179-187
    [81] J M Tarascon, F Coowar, G Amatuci, F K Shokoohi, D G Guyomard. The system Materials and electrochemical aspects. J Power Sources, 1995, 54:103-108
    [82] P Arora, E R White. Capacity fade mechanisms and side reactions in lithium-ion batteries. J Electrochem Soc, 1998, 145:3647-3667
    [83] G Pistoia, A Antonmi, R Rosati, D Zane. Storage characteristics of cathodes for Li-ion batteries. Electrochimica Acta. 1996, 41: 2683-2689
    [84] L Hernan, J Morale, L Sanchez, S Jesus. Use of Li-M-Mn-O [M=Co, Cr, Ti] spinels prepared by a sol-gel method as cathodes in high-voltage lithium batteries. Solid State Ionic, 1999, 118:179-185
    [85] M Okada, Y S Lee, M Yoshio. Cycle characterization of LiM_xMn_(2-x)O_4 (M=Co, Ni) materials for lithium secondary battery at wide voltage region. J Power Sources, 2000, 90(2): 196-200
    [86] S Luis, L Firado. Synthesis and electrochemical characterization of a new Li-Co-Mn-O spinel phase for rechargeable lithium batteries. J Electrochem Soc, 1997, 144(6): 1939-1943
    [87] K Amine, H Tukamato. Synthesis of an efficient LiMn_2O_4 for lithium-ion batteries. J Electrochem Soc, 1996, 143(6): 1607-1613
    [88] A Dedock, E Ferg. R J Gummow. The effect of multi-valent cation dopants on lithium manganese spinal cathodes. J Power Sources, 1998, 70(2): 247-252
    [89] Y Ein-Eli, W F Howard, S H Lu. LiMn_(2-x)Cu_xO_4 spinals (0.1≤x≤0.5): a new class of 5V cobalt materials for lithium batteries. J Electrochem Soc, 1998, 145(5): 1238-1244
    [90] J K Kim, A Mantchiram. Low temperature synthesis and electrode properties of LiMn_5O_(12). J Electrochem Soc, 1998, 145(1): L53-L56
    [91] A R Armstrong, P G Bruce. Synthesis of layered LiMnO_2 as an electrode for rechargeable lithium batteries. Nature, 1996, 381:499-500
    [92] P G Bruce. Solid-state chemistry of lithium power sources. Chem Commun, 1997, (19): 1817-1824
    [93] J M Paulsen, D Larcher, J R Dahn. A new layered cathode material for rechargeable lithium batteries. J Electrochem Soc, 2000, 147(8): 2862-2867
    [94] S Franger, S Bach, N Baffier, et al. Chemistry and electrochemistry of low temperature manganese oxides as lithium intercalation compounds. J Electrochem Soc, 2000, 147(9): 3226-3230
    [95] F Munakata. Positive electrode material and battery for nonaquous electrolyte sencondary battery. United Stated Patent Application, 20020012843, Jan. 31, 2000
    [96] J X Dai, F Y Sam, Z Q Gao, K S Siow. A new form of vanadium oxide for use as a cathode material in lithium battery. J Power Sources, 1998, 74(1): 40-45
    [97] M N Obrovac, O Mao, J R Dahn. Structure and electrochemistry of LiMO_2 (M=Ti, Mn, Fe, Co, Cr, Ni) prepared by mechanchemical synthesis. Solid State Ionics, 1998, 112: 9-19
    [98] 储炜,吴升辉,尤金跨.纳米科学技术在电源领域的新进展.电源技术,1998,22(6):256-260
    [99] J H Chog, D H Kim, C W Kwom, S J Hwang, Y I Kim. Physical and electrochemical characterization of nano-crystalline LiMn_2O_4 prepared by a modified citrate route. J Power Sources, 1998, 77(1): 1-11
    [100] K S Nanjundaswamy, A K Padhi, J B Goodenough, S Okada, H Ohtsuka, H Arai, J Yamaki. Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ionics, 1996, 92:1-10
    [101] M. S. Whittingham. Lithium batteries and cathode materials. Chem. Rev., 2004, 104(10): 4271-4301
    [102] C. Delacourt, C. Wurm, P. Reale, M. Morcrette, C. Masquelier. Low temperature preparation of optimized phosphates for Li-battery application. Solid State Ionics, 2004, 173:113-118
    [103] M. Morcrette, P. Martin, P. Rozier, H. Vezin, F. Chevallier, L. Laffont, P. Poizot, J.-M. Tarascon. Cu_(1.1)V_4O_(11): A new positive electrode material for rechargeable Li batteries. Chem. Mater., 2005, 17(2):418-426
    [104] T. Matsumura, R. Kanno, Y. Inaba, Y. Kawamoto, M. Takano. Synthesis, structure, and electrochemical properties of a new cathode material, LiFeO_2, with a tunnel structure. J. Electrochem. Soc., 2002, 149(12): A 1509-A 1513
    [105] A K Padhi, K S Nanjundawamy, C Masquelier, S Okada, J B Goodenough. Effectof structure on the Fe~(3+)/Fe~(2+) redox couple in iron phosphates. J Electrochem Soc, 1997, 145(5): 1609-1613
    [106] A S Andersson, B Kalska, L Haggstrom, J O Thomas. Lithium extraction/insertion in LiFePO_4: an X-ray diffraction and Mossbauer spectroscopy study. Solid State Ionics, 2000, 130:41-52
    [107] A S Andersson, J O Thomas, B Kalska, L Haggstrom. Thermal stability of LiFePO_4-based cathodes. Electrochem Solid-State Lett., 2000, 3(2): 66-68
    [108] J Shim, K A Striebel. Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO_4. J Power Sources, 2003, 119-121:955-958
    [109] N Ravet, Y Chouinard, J F Magnan, S Besner, M Gauthier, M Armand. Electroactivity of natural and synthetic triphylite. J Power Sources, 2001, 97-98:503-507
    [110] A Yamada, S C Chung, K Hinokuma. Optimized LiFePO_4 for lithium battery cathodes. J Electrochem Soc, 2001,148(3): A224-A229
    [111] M Takahashi, S Tobishima, K Takei, Y Sakurai. Characterization of LiFePO_4 as the cathode material for rechargeable lithium batteries. J Power Sources, 2001, 97-98:508-511
    [112] S Yang, P Y Zavelij, M S Whittingham. Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochem Commun, 2001, 3:505-508
    [113] S Franger, F L Cras, C Bourbon, H Bonault. LiFePO_4 synthesis routes for enhanced electrochemical performance. Electrochem Solid-State Lett, 2002, 5(10): A231-A233
    [114] G Arnold, J Garche, R Hemmer, S Strobele, C Vogler, M Wohlfahrt-Mehrens. Fine-particle lithium iron phosphate LiFePO_4 synthesized by a new low-cost aqueous precipitation technique. J.Power Sources,2003,119-121: 247-251
    [115] 郑锦平,文衍宣.一种制备磷酸亚铁锂的湿化学方法.中国,发明专利,CN1431147A,2003,07,23
    [116] Y Koyama, ITanaka, T Ohzuku. Crystal and electronic structures of superstructural Li_(1-x)[Co_(1/3)Ni_(1/3)Mn_(1/3)]O_2(0≤x≤1). J.Power Sources,2003,119-121:644-648
    [117] M M Doeff, R Finones, H Yaoqin Electrochenical performance of Sol Gel synthesized LiFePO_4 in lithium battery. 11~(th) International Meeting on lithium battery. Monterey, CA, USA: 2002
    [118] 张中太,卢俊彪,唐子龙.一种橄榄石结构的多晶LiFePO_4粉体制备方法.中国发明专利,CN1410349A,2003,4,16
    [119] P P Prosini, M Carewska, S Scaccia, P Wisniewski, S Passerini, M Pasquali. A new synthetic route for preparing LiFePO_4 with enhanced electrochemical performance. J Electrochem Soc, 2002, 149(7): A886-A890
    [120] M Higuchi, Y Azuma. Synthesis of LiFePO_4 cathode material by microwave processing. J.Power Sources,2003,119-121:258-261
    [121] A. Yamada, M. Hosoya, S.-C. Chung, Y. Kudo, K. Hinokuma, K.-Y. Liu, Y. Nishi. Olivine-type cathodes achievements and problems. J Power Sources, 2003, 119-121:232-238
    [122] 木下真子,促岗泰裕,山崎信男.含结晶水磷酸亚铁锂及磷酸铁锂的制备方法.日本,公开特许公报,JP2003292307,2003.10.15
    [123] S-T Myung, S Komaba, R Takagai, N Kumagai, Y-S Lee. Emulsion drying preparation of LiFePO_4/C composite and its enhanced high-rate performance at 50℃. Chem Lett, 2003, 32(7): 566-567
    [124] J Barker, M Y Saidi, J L Swoyer. Lithium iron(Ⅱ) phospho-olivines prepared by a novel carbothermal reduction method. Electrochem Solid-State Lett, 2003, 6(3): A53-A55
    [125] N Iltcher, Y Chen, S Okada, J Yamaki. LiFePO_4 storage at room and elevated temperatures. J Power Sources, 2003, 119-121:749-754
    [126] P P Prosini, D Zane, M Pasquali. Improved electrochemical performance of a LiFePO_4-based composite cathode. Electrochimica Acta, 2001, 46:3517-3523
    [127] 米常焕,曹高劭,赵新兵.含磷酸亚铁锂盐—碳的锂离子电池正极复合材料的制备方法.中国:发明专利,200410017382.5,2004-3-25
    [128] S Okada, S Sawa, M Egashira, J Yamaki, M Tabuchi, H Kageyama, T Konishi, A Yoshino. Cathode properties of phospho-olivine LiMPO_4 for lithium secondary batteries. J Power Sources, 2001, 97-98:430-432
    [129] F Croce, A D Epifanio, J Hassoun, A Deptula, T Olczac, B Scrosati. A novel concept for the synthesis of an improved LiFePO_4 lithium battery cathode. Electrochem Solid-State Lett, 2002, 5(3): A47-A50
    [130] Z Chen, J R Dahn. Reducing carbon in LiFePO_4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J Electrochem Soc, 2002, 149(9): A1184-A1189
    [131] E M Bauer, C Bellitto, M Pasquali, P P Prosini, G Righini. Versatile synthesis of carbon-rich LiFePO_4 enhancing its electrochemical properties. Electrochem Solid-State Lett, 2004, 7(4): A85-A87
    [132] P Herle, B Ellis, N Coombs, L F Nazar. Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater, 2004, 3:147-152
    [133] H-T Chung, S-K Jang, H W Ryu, K-B Shim. Effects of nano-carbon webs on the electrochemical properties in LiFePO_4/C composite. Solid State Commun, 2004, 131 (8): 549-554
    [134] R Dominko, M Gaberscek, J Drofenik, M Bele, S Pejovnik, J Jamnik. The role of carbon black distribution in cathodes for Li ion batteries. J Power Sources, 2003, 119-121:770-773
    [135] M M Doeff, Y Hu, F Mclamon, R Kostecki. Effect of surface carbon structure on the electrochemical performance of LiFePO_4. Electrochem Solid-State Lett, 2003, 6(10): A207-A209
    [136] K S Park, J T Son, H T Chung, S J Kim, C H Lee, K T Kang, H G Kim. Surface modification by silver coating for improving electrochemical properties of LiFePO_4. Solid State Commun, 2004, 129:311-314
    [137] C Y Chung, J T Bloking, Y M Chiang. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater.,2001, 1: 123-128
    [138] S Franger, F L Cras, C Bourbon, H Rouault. Comparison between different LiFePO_4 synthesis routes and their influence on its physico-chemical properties. J Power Sources, 2003, 119-121: 252-257
    [139] A. Yamada, Y. Kudo, K.-Y. Liu. Reaction mechanism of the olivine-type Li_x(Mn_(0.6)Fe_(0.4))PO_4 (0≤x≤1). J Electrochem. Soc., 2001, 148(7): A747-A754
    [140] V. I. Fomin, V. P. Gnezdilov, V. S. Kurnosov, A. V. Peschanskii, A. V. Yeremenko. Raman scatting in a LiNiPO_4 singel crystal. Low Temp. Phys., 2002, 28(3): 203-209
    [141] W. C. West, J. F. Whitacre, B. V. Ratnakumar. Radio frequency magnetron-sputtered LiCoPO_4 cathodes for 4.8 V thin-film batteries. J Electrochem. Soc., 2003, 150(12): A 1660-A1666
    [142] D. Morgan, A Van der Ven, G. Ceder. Li conductivity in Li_xMPO_4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid-State Lett., 2004, 7(2): A30-A32
    [143] O. Garcia-Jaca, J. M. Gallardo-Amores, M. L. Sanjuan, U. Amador. Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries: A new high-pressure form of LiMPO_4 (M=Fe, Ni). Chem. Mater., 2001, 13:1570-1576
    [144] M.C. Tucker, M. M. Doeff, T. J. Richardson, R. Finones, E. J. Cairns, J. A. Reimer. Hyperfine fields at the Li site in LiFePO_4-type olivine materials for lithium rechargeable batteries: A ~7Li MAS NMR and SQUID study. J Am. Chem. Soc., 2002, 124:3832-3833
    [145] S. Okada, M. Ueno, Y. Uebou, J.-I. Yamaki. Structure and cathode properties of LiCoPO_4 and Li_2CoPO_4F for high-voltage Li-ion batteries. IEICE/IEEE'03, 2003, Oct., 19-23
    [146] S. Okada, S. Sawa, M. Egashira, J.-I. Yamaki, M. Tabuchi, H. Kageyama, T. Konishi, A. Yoshino. Cathode properties of phospho-olivine LiMPO_4 for lithium secondary batteries. J Power Sources, 2001, 97-98:430-432
    [147] J. M. Osorio-Guillen, B. Holm, R. Ahuja, B. Johansson. A theoretical study of olivine LiMPO_4 cathodes. Solid State Ionics, 2004, 167:221-227
    [148] P. Deniard, A.M. Dulac, X. Rocquefelte, V. Grigorova, O. Lebacq, A. Pasturel, S. Jobic. High potential positive materials for lithium-ion batteries: transition metal phosphates. J. Phys. Chem. Solids, 2004, 65:229-233
    [149] F. Zhou, M. Cococcioni, K. Kang, G. Ceder. The Li intercalation potential of LiMPO_4 and LiMSiO_4 olivines with M=Fe, Mn, Co, Ni. Electrochem. Commun., 2004, 6:1144-1148
    [150] G. Li, H. Azuma, M. Tohda. LiMnPO_4 as the cathode for lithium batteries. Electrochem. Solid-State Lett., 2002, 5(6): A135-A137
    [151] G. Li, H. Azuma, M. Tohda. Optimized LiMn_yFe_(1-y)PO_4 as the cathode for lithium batteries. J Electrochem Soc., 2002, 149(6): A743-A747
    [152] A. Yamada, S.-C. Chung. Crystal chemistry of the olivine-type LiMn_yFe_(1-y)PO_4 and Mn_yFe_(1-y)PO_4 as possible 4 V cathode materials for lithium batteries. J Electrochem. Soc., 2001, 18(8): A960-A967
    [153] C. Delacourt, P. Poizot, M. Morcrette, J.-M. Tarascon, C. Masquellier. One-step low-temperature route for the preparation of electrochemically active LiMnPO_4 powders. Chem. Mater., 2004, 16(1): 93-99
    [154] K. Amine, K. Yasuda, M. Yamachi, Olivine LiCoPO_4 as 4.8 V Electrode Material for Lithium Batteries. Electrochem. Solid-State Lett., 2000, 3(4): 178-179
    [155] J. M. Lloris, C. P. Vicente, J. L. Tirado. Improvement of the electrochemical performance of LiCoPO_4 5 V material using a novel synthesis procedure. Electrochem. Solid-State Lett., 2002, 5(10): A234-A237
    [156] G. T. Fey, W. Li, J. R. Dahn. LiNiVO_4: A 4.8 V Electrode Material for Lithium Cells. J Electrochem. Soc., 1994, 141 (9): 2279-2282
    [157] A. Yamada, Y. Kudo, K.-Y. Liu. Phase diagram of Li_xMn_yFe_(1-y)PO_4 (0≤x, y≤1). J Electrochemo Soc., 2001, 148(10): A1153-A1158
    [158] S. Y. Chung, Y. M. Chiang. Microscale Measurement of the Electrical Conductivity of Doped LiFePO_4. Electrochem. and solid state lett., 2003, 6(12): A278-A281
    [159] P. S. Herle, B. Ellis, N. Coombs, L.F. Nazar. Nano-network Electronic Conduction in Iron and Nickel Olivine Phosphates. Nature. Mater.,2004, 3(3): 147-152
    [160] S.Q. Shi, L. J. Liu, C. Y. Quyang, D. S. Wang, Z. X. Wang, L. Q. Chen, X. J. Huang. Enhancement of electronic conductivity of LiFePO_4 by Cr doping and its identification by first-principles calculations. Physical Review B. 2003,68(19): 195168-1-195168-5
    [161] C.Y. Quyang, S Q. Shi, Z. X. Wang,. H. Li, X. J. Huang, L. Q. Chen. The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte carlo simulations. J. Phys. Condens. Matter., 2004, 16(13): 2265-2272
    [162] X. Huang, J. F. Ma, P Wu. Hydrothermal Synthesis of LiCoPO_4 Cathode Material for Rechargeable Lithium Ion Batteries. Mater Lett, 2005,59:578-
    [163] S. Tajimi, Y. Ikeda, K. Uematsu. Enhanced Electrochemical Performance of LiFePO_4 Prepared by Hydrothermal Reaction. Solid State Ionics, 2004, 175:287-290
    [164] S. Scaccia, M. Carewska, A.D. Bartalomeo. Thermoanalytical Investigation of Iron Phosphate Obtained by Spontaneous Precipitation from Aqueous Solution. Thermochimica Acta, 2002,383:145-152
    [165] S Yang, Y Song, M S Whittingham. Reactivity, stability and electroch emical behavior of lithium iron phosphates. Electrochem Commun, 2002, 4:239-244
    [166] 张静,刘素琴,黄可龙.LiFePO_4的水热合成和性能.无机化学学报.2005,21(3):433
    [167] 米常焕.橄榄石型LiFePO_4/C复合正极材料研究.浙江大学.博士学位论文.杭州2005
    [168] 仇卫华,赵海雷.Mn掺杂对LiFePO_4材料电化学性能的影响.电池.2003,33(3):134-135
    [169] 吴宇平,万春荣,姜长印.锂离子二次电池.北京:化学工业出版社,2002:57-59
    [170] 闵新民,张文芹,许德华.LiFePO_4系列电池材料的电子结构与性能研究.化学与生物工程.2005,4:38-39
    [171] D.E. Ellis, D. Guenzburger. The discrete variational method in density functional theory and its applications to large molecules and solid-state system. Adv. Quantum Chem.,1999, 34:51
    [172] J.A. Gomez, D. Guenburger. Influence of conduction electrons on the magnetism of cobalt grains in a copper matrix studied by density functional theory. Phys Rev B, 2001,63:134 404
    [173] 米常焕,曹高劭,赵新兵.碳包覆LiFePO_4的一步固相制备及高温电化学性能.无机化学学报.2005,21(4):556-560
    [174] 倪江峰,周恒辉,陈继海,张新祥.金属氧化物掺杂改善LiFePO_4电化学性能.无机化学学报.2005,2l(4):472-476
    [175] 倪江峰,周恒辉,陈继涛,苏光耀.铬离子掺杂对LiFePO_4电化学性能的影响.物理化学学报,2004,20(6):582-586

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700