OLT后主要并发症的病理诊断特点及相关分子标志物初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面临OLT术后多种的严重并发症,正确的诊断和鉴别诊断是临床医师面临的棘手问题。肝穿刺活检现已成为OLT术后监测的重要手段之一,目前被公认为排异诊断的“金标准(gold standard)”。然而,肝穿刺活检也存在局限性,这是由于OLT后受各方面因素影响,多种病变重叠出现时病理表现复杂,给病理诊断和鉴别诊断造成困难。因此,对各种并发症的组织学特点要有较明确的区分,并密切结合发生时间、肝功能变化、临床表现、影像学检查,以及特异分子标志物等综合分析,按病变程度依次做出病理诊断,才能充分发挥移植病理的重要作用。本课题目的在于归纳OLT术后主要并发症的诊断谱,并对相关的分子标志物进行初步研究。研究内容共分以下三个部分:
     第一部分667例次OLT后肝穿刺标本的临床病理学研究
     目的:通过对667例次OLT术后肝穿刺标本的回顾性分析,筛选出与术后主要并发症密切相关的病理学及临床指标。
     方法:选择2003年6月~2006年6月之间我院病理科存档的OLT术后穿刺标本病理诊断病例为研究对象,均为B超引导下经皮肝穿刺组织。所有病例均需符合以下条件:(1)肝穿刺活检组织在显微镜下能见到连续4个以上汇管区结构;(2)临床及实验室检查资料完整。共415例,667例次。选择移植术后穿刺标本常见的病理指标,对所有病理片进行回顾性病理观察,使用SPSS11.0统计软件对各项病理指标及临床实验室指标与各类术后并发症的相关性进行统计分析。
     结果:OLT术后并发症发生率居前5位的依次是:急性排异、胆管并发症、保存性损伤、药物性肝损害及肝炎病毒感染/肝炎复发,占肝穿刺总例次的85.7%。其中急性排异以轻度及交界性为主,占急性排异的87.5%,保存性损伤以轻、中度为主,占保存性损伤的92.6%。诊断时间出现最早的5种并发症依次为:保存性损伤,急性排异,肝血管并发症,巨细胞病毒感染及胆道并发症,并且在保存性损伤,急性排异,肝血管并发症,巨细胞病毒感染及胆道并发症,并且在发生时间上,多数并发症存在重叠现象。大部分(93.2%)尤其是高级别的(92.5%)的急性排异发生在术后三个月内,高峰(49.5%)时间段在移植后8~30天。各病理观察指标在五种主要术后并发症中的相关性(P<0.05)结果显示:与急性排异密切相关的指标依次为:凋亡小体、核分裂、小胆管炎、终末肝静脉炎/细胞脱失以及嗜酸性细胞数量;与保存性损伤密切相关的指标依次为:核分裂、胆汁淤积及小胆管炎;与胆道狭窄密切相关的指标依次为:胆汁淤积、小胆管数量、小胆管炎、汇管区纤维增生和汇管区水肿;与药物损伤密切相关的指标依次为:肝细胞水变性和胆汁淤积;与病毒性肝炎密切相关的指标依次为:肝细胞水变性、单纯终末肝静脉周细胞脱失、凋亡小体、核分裂、胆汁淤积、小胆管炎和汇管区纤维增生。
     临床指标相关性检验结果显示:性别,年龄,原发病,手术方式,热、冷缺血时间,无肝期等在主要并发症各组间均未见显著差异(P>0.05)。
     在生化指标对肝穿次时间所作的波动曲线中显示:ALT在急性排异、保存性损伤组均在肝穿前有相似的上升幅度,之后很快下降,胆道狭窄组变化不明显; AST在急性排异、保存性损伤组有一小幅上升后下降,而胆道狭窄组有一个较小的持续下降的趋势;γ-GT在保存性损伤组升高幅度最大,之后呈缓慢下降,胆道狭窄组升高后保持在一个较高的水平,而急性排异组仅有一个小幅的升高; DBIL在急性排异、保存性损伤有较小升幅,而胆道狭窄组有一个持续向上的升幅,并且整体水平远在其他两组之上,总胆红素与DBIL表现相似。
     结论:从病理指标的相关性分析结果得到五种OLT术后主要并发症的病理诊断谱,可作为OLT术后并发症的病理诊断及鉴别诊断的依据。临床影像学、血清学资料以及生化指标的波动曲线,均对提高病理诊断的准确性具有重要参考价值。
     第二部分C4d在OLT术后肝穿刺标本中的沉积及意义
     目前研究表明,OLT后排异反应中体液排异对细胞排异起协同作用。肾移植病理研究中发现,C4d在移植肾间质毛细血管壁上弥漫沉积可以作为排异反应的一个特异性指标,心脏移植病理中也有同样现象。有文献报道C4d在汇管区毛细血管壁的沉积与OLT术后急性排异密切相关。
     目的:观察C4d在OLT术后穿刺活检组织中的沉积情况,确定其在急性排异的肝组织中是否有特异性及在病理鉴别诊断中的意义。
     方法:在第一部分肝穿刺标本中随机抽取OLT术后发生急性排异、胆管狭窄/阻塞,保存性损伤及肝炎病毒感染的石蜡组织各20例,药物性损伤10例,急性排异合并胆管狭窄及合并保存性损伤的各8例,急性阑尾炎标本作阴性对照。采用免疫组织化学法进行兔抗人C4d抗体染色,结果进行统计学分析。
     结果:经χ2检验比较显示:总体阳性率在急性排异、肝炎病毒感染、急性排异合并保存性损伤组较其它组有显著差异(P<0.05)。但在不同分布区域的阳性率显示:急性排异、肝炎病毒感染、急性排异合并胆管狭窄及急性排异合并保存性损伤这四组在汇管区的阳性率较其它三组并发症高(P<0.05),在肝窦区域显示,急性排异组比其它各组阳性率要高(P<0.05),在中央静脉区域几组间的阳性率差异无统计学意义。
     结论:结合病理诊断的特点,C4d在肝血窦壁的沉积可以作为肝移植急性排异鉴别诊断一个比较特异的指标。保存性损伤组存在一定比例的阳性病例,可能与同时伴有体液性免疫损伤有关。C4d在汇管区的沉积还与感染有关,如肝炎病毒感染病例的汇管区阳性率较高。
     第三部分ACE/ACE2在保存性损伤发生机制中的作用
     保存性损伤可引起的术后并发症有早期肝失功、胆道损伤、提高排异反应的发生率及影响移植肝长期存活等,是目前OLT领域面临的一大问题。至今,肝保存性损伤的确切发生机制并未完全揭示。过去认为肾素-血管紧张素的主要成员ACE、ACE2主要发挥的是系统性作用,但现在逐渐认识到它们对某些脏器(心、脑,胰及肝等)局部的血流调节亦起着十分重要的作用,并且发现ACE2对局部组织缺氧敏感及有促进细胞增殖等新功能。尽管对于ACE、ACE2在OLT中的表达情况国内外均未见报道,但它们可能在OLT中发挥重要作用。
     目的:观察大鼠OLT术后ACE、ACE2在保存性损伤及急性排异肝组织中的表达情况,了解其与肝保存性损伤的相关性及在肝移植中的意义。
     方法:建立大鼠OLT模型,设立保存性损伤组,急性排异组及对照组,保存性损伤组又根据冷保存时间分为轻、中、重3个小组,采用real-time PCR法测定OLT术后不同时间点ACE和ACE2的mRNA,并结合组织学动态变化进行分析。
     结果:ACE2mRNA在保存性损伤组的轻(6h)、中(15 h)、重(24 h) 3个小组间存在显著差异(P<0.01,P<0.05),并且与急性排异组之间存在显著差异(P<0.01,P<0.05)。而ACEmRNA在保存性损伤组组内,及急性排异组间均未见显著差异。组织学损伤动态观察显示:肝组织损伤程度与冷保存时间密切相关,并在OLT术后24~48 h最为严重。ACEmRNA的变化过程与组织学的相平行。ACE2mRNA的升高早于ACEmRNA。
     结论:ACE2mRNA的表达与保存性损伤程度密切相关,可作为保存性损伤病理诊断的一个候选指标;ACE可能与组织的炎症机制有关。
Definite diagnosis is a core in the treatments to complications following OLT. Liver puncture biopsy has been an important role in diagnosis and management of most of the complications after OLT, especially in rejection. However, sometimes it was difficult to make a differential diagnosis by liver puncture biopsy, because the histopathological changes were so complicated with the overlap of two or more etiological factors. Accordingly, to identify specific pathological features of the complications is important to differential diagnosis, in addition ,the clinical features, biochemical abnormalities ,imageologic examination, and specific markers are considerable .Our aim is to summarize the spectra of pathological features of the major complications post OLT ,and to search for the possible markers.
     The current research project is comprised of the following three parts.
     Part 1 Clinicopathological Analysis of 667 Liver Puncture Biopsies Following OLT
     Objectives: To explore the pathological and clinical features of the major complications after OLT by retrospective analysis of 667 liver puncture biopsies.
     Methods : Collection of liver allograft biopsies in our department of pathology from June 2003 to June 2006. 667 liver biopsies were obtained from 415 patients with liver dysfunction .All tissues were consisted with the following: (1) successive 4 portal structures per sample microscopically; (2) integrity data of clinical and laboratory examination.Useing SPSS 11.0 for statistical analysis on the comparison between pathological, clinical features and major complications after OLT.
     Results: The most commonly five complications seen in 667 episodes were: acute cellular rejection(ACR) ( 210 episodes,31.5 %) , biliary complication (BC)(161 episodes, 24.1%) , preservation injury(PI)(125 episodes,18.7 %) , drug toxicity(52 episodes,7.8%), infection or recurrence of hepatitis virus B (24 episodes,3.6%) . In ACR, the indeterminate and mild episodes were seen 183 in 210(87.5%). In PI, the mild and moderate episodes were seen 116 in 125 (92.6%).The most early five complications occuring after OLT were:PI, ACR, vascular complication, CMV infection, BC. Most of ACR episodes, especially those grade as moderate and severe occured within the first three months after translplantation .The most risk period for ACR is 8~30day after OLT, and there are 104 episodes in 210( 49.5%) .
     The correlatetions of pathological features with five major complications after OLT showed that: ACR is close correlative with apoptotic body, karyodieresis, angiocholitis, hepatic vein inflammation, cell drop out, and eosinophils (P<0.05). PI is close correlative with cholestasis, karyodieresis, and angiocholitis (P<0.05). BC is close correlative with cholestasis, bile duct quantity, angiocholitis, portal fibrosis and hydropsia (P<0.05). Drug toxicity is close correlative with hydropic degeneration and cholestasis(P<0.05). Infection or recurrence of hepatitis virus B is close correlative with fibrosis, liver cell drop out, apoptotic body, karyodieresis, cholestasis, angiocholitis, and hydropic (P<0.05).
     The clinical features such as gender, age, primary diseases, operation modus, the ranging of cold and warm ischemic time, anhepatic phase, and so on , did not correlate with the five major complications (P>0.05).
     The fluctuation curve of biochemical indicator according to the time after OLT showed that ALT went up in ACR and PI groups before Liver puncture, but did not in BC group. AST went up at first and then descended in ACR and PI groups, but had a continuous descend in BC group.γ-GT step up greatly and then descended slowly in PI group. In BC groupγ-GT maintained a high level after step up. DBIL and TB kept on rising in BC group, but step up a little then descended in ACR and PI groups.
     Conclusion: The spectra of specific pathological features of the major complications after OLT is the basis of differential diagnosis. In addition, clinical imageological examination, serological evidence, and the fluctuation curve of biochemical indicator are valuable to a definite diagnose.
     Part 2 Significance of C4d Deposition in Liver Puncture Biopsies After OLT
     A recent study has shown synergistic actions between humoral and cellular rejections in liver transplantation. In a pathological study of kidney transplantation, C4d diffuse deposition in renal interstitial capillary walls seems to serve as a specific marker of rejection. The same phenomenon was also observed in cardiac transplantation. It is not clear whether such a phenomenon occurs in hepatic transplantation.
     Objectives: To determine the specificity of C4d in ACR and the significance in the differential diagnosis of complications after OLT by observation of C4d deposition in liver puncture biopsies .
     Methods : Selected 106 liver puncture biopsies from Part 1 including the complications as ACR (20 biopsies ),BC (20 biopsies ),PI (20 biopsies ), infection or recurrence of hepatitis virus B (20 biopsies ) , drug toxicity (10biopsies), ACR co-existing with PI (8 biopsies),and ACR co-existing with BC (8 biopsies).The sample of acute appendicitis was taken as negative control. C4d deposition was detected by immunohistochemical staining (using rabbit anti-human C4d antibody). The differences were analyzed usingχ2 test, P<0.05 was accepted as significant.
     Results: The positive ratio of C4d deposition in ACR , infection or recurrence of hepatitis virus B, and ACR co-existing with PI ware higher than that in other complications (P<0 .05). C4d deposition in different Sites showed that: in portal areas the positive ratio in ACR , Infection or recurrence of hepatitis virus B, ACR co-existing with BC ,and ACR co-existing with PI were higher than that in other complications (P<0 .05).In hepatic sinusoidal walls, the positive ratio of C4d deposition in ACR was higher than that in other complications(P<0 .05). In central veins walls, there was no significant difference in all complications.
     Conclusion: C4d deposition in hepatic sinusoidal walls may be served as a specific marker in the diagnosis of liver graft ACR.Some biopsies in PI would be associated with humoral immunity injury. C4d deposition in portal areas may be associated with infection.
     Part 3 The Role of ACE/ACE2 in the Mechanism of preservation injury
     It was found that in addition to the classic circulating renin-angiotensin system(RAS), increasing evidence supports the existence of local tissue RAS (heart, brain and kidney etc) that would be provided some new function in regulating blood flow of organs, responsing sensitively to tissue hypoxia, and promoting cellular proliferation, etc.
     Objectives:To explore the significance of RAS in rat liver transplantation , and the correlatetion of ACE /ACE2 with preservation injury after OLT by detection ACE and ACE2 mRNA in rat allograft.
     Methods: The male Wistar and Sprague-Dawley rats were allocated to five groups: mild PI group (n=15,SD→SD, cold ischemia time is 6 hours); moderate PI group (n=15,SD→SD, cold ischemia time is 15 hours);severe PI group(n=15,SD→SD, cold ischemia time is 24 hours);ACR group (n=15, Wistar→SD, no cold ischemia time);control group (n=15,SD→SD, no cold ischemia time). The observation of dynamic histologic change was performed. The mRNA of ACE and ACE2 were detected by real-time PCR.
     Results: ACE2 mRNA was detectable at higher level in PI groups than that in ACR group(P<0.01,P<0.05). The expression of ACE2 mRNA in PI groups showed that: the level of ACE2 mRNA in the moderate and the severe were significantly higher than that in the mild(P<0.01,P<0.05). However, the level of ACEmRNA was no significant deviation in all groups during first 48h after OLT . But the dynamic tendency of ACEmRNA was parallel to that of histologic changes.
     Conclusion: The expression of ACE2mRNA was close correlative with the PI grades, possibly response to hepatocellular hypoxia ,and ACE2 would be a potential marker of PI. It implied that ACE is correlative with the inflammationary injury of liver.
引文
1. 丛文铭 张淑英 王政禄 等, 肝移植 665 例穿刺活检病理诊断总结. 中华病理学杂志[J], 2005. 34(11): p. 716-719.
    2. Nickeleit, V and M J Mihatsch, Kidney transplants, antibodies and rejection: is C4d a magic marker? Nephrol Dial Transplant[J], 2003. 18(11): p. 2232-9.
    3. Mauiyyedi S, C M, Collins AB et al, Acute humoralrejection in kidney transplantation: II. Morphology, immunopathology,and pathologic classification. . J Am Soc Nephrol[J], 2002. 13: p. 779-787.
    4. Kato, M, K Morozumi, O Takeuchi, et al, Complement fragment C4d deposition in peritubular capillaries in acute humoral rejection after ABO blood group-incompatible human kidney transplantation. Transplantation[J], 2003. 75(5): p. 663-5.
    5. Vallhonrat, H, W W Williams, G W Dec, et al, Complement activation products in plasma after heart transplantation in humans. Transplantation[J], 2001. 71(9): p. 1308-11.
    6. Magro CM, D A, Pope-Harman A et al, Humorally mediated posttransplantational septal capillary injury syndrome as a common form of pulmonary allograft rejection: a hypothesis. . Transplantation[J], 2002. 74: p. 1273-1280.
    7. Anders R, T M, Gong C, Antibody mediated rejection of liver allografts: utility of C4d immunostains in diagnosis. Lab Invest [J], 2002. 83: p. 270A.
    8. Adam, D, Protein chemists favour automatic answers. Nature[J], 2002. 415(6874): p. 822.
    9. Tikellis, C, C I Johnston, J M Forbes, et al, Characterization of renal angiotensin-converting enzyme 2 in diabetic nephropathy. Hypertension[J], 2003. 41(3): p. 392-7.
    10. G. Takada, M B J, H. Masuko, Role of Local Renin-Angiotensin System in Warm Ischemia and Reperfusion Injury of the Liver. Transplantation Proceedings[J], 2001. 33: p. 824-825.
    11. Crackower, M A, R Sarao, G Y Oudit, et al, Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature[J], 2002. 417(6891): p. 822-8.
    12. Bataller, R, P Sancho-Bru, P Gines, et al, Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology[J], 2003.125(1): p. 117-25.
    13. Takada, G, M B Jin, H Masuko, et al, Role of local renin-angiotensin system in warm ischemia and reperfusion injury of the liver. Transplant Proc[J], 2001. 33(1-2): p. 824-5.
    14. Kang, K J, Mechanism of hepatic ischemia/reperfusion injury and protection against reperfusion injury. Transplant Proc[J], 2002. 34(7): p. 2659-61.
    15. Banff schema for grading liver allograft rejection: an international consensus document. Hepatology[J], 1997. 25(3): p. 658-63.
    16. Demetris, A, D Adams, C Bellamy, et al, Update of the International Banff Schema for Liver Allograft Rejection: working recommendations for the histopathologic staging and reporting of chronic rejection. An International Panel. Hepatology[J], 2000. 31(3): p. 792-9.
    17. Neil, D A and S G Hubscher, Are parenchymal changes in early post-transplant biopsies related to preservation-reperfusion injury or rejection? Transplantation[J], 2001. 71(11): p. 1566-72.
    18. Tillery, W, J Demetris, D Watkins, et al, Pathologic recognition of preservation injury in hepatic allografts with six months follow-up. Transplant Proc[J], 1989. 21(1 Pt 2): p. 1330-1.
    19. 丛文铭, 肝移植并发症的病理特点. 外科理论与实践[J], 2002. 7(2): p. 106-108 .
    20. 于颖彦 计骏 周光文 等, 肝移植后肝脏组织活检的动态病理学分析. 外科理论与实践[J], 2003. 8(6): p. 463-466.
    21. 王政禄 张淑英 朱丛中 等, 906 例次移植肝穿刺活检病理分析. 中华器官移植杂志[J], 2006. 27(1): p. 18-21.
    22. Wiesner, R H, J Rakela, M B Ishitani, et al, Recent advances in liver transplantation. Mayo Clin Proc[J], 2003. 78(2): p. 197-210.
    23. Demetris, A J, K Ruppert, I Dvorchik, et al, Real-time monitoring of acute liver-allograft rejection using the Banff schema. Transplantation[J], 2002. 74(9): p. 1290-6.
    24. Buonocore, S, M Surquin, A Le Moine, et al, Amplification of T-cell responses by neutrophils: relevance to allograft immunity. Immunol Lett[J], 2004. 94(3): p. 163-6.
    25. Chertov, O, D Yang, O M Howard, et al, Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol Rev[J], 2000. 177: p. 68-78.
    26. Kupiec-Weglinski, J W and R W Busuttil, Ischemia and reperfusion injury in liver transplantation. Transplant Proc[J], 2005. 37(4): p. 1653-6.
    27. hubscher, S, transplant pathology of the liver. Curr Diag Pathol [J], 1994. 11: p. 59-69.
    28. Rull, R, J C Garcia Valdecasas, L Grande, et al, Intrahepatic biliary lesions after orthotopic liver transplantation. Transpl Int[J], 2001. 14(3): p. 129-34.
    29. Kukan, M and P S Haddad, Role of hepatocytes and bile duct cells in preservation-reperfusion injury of liver grafts. Liver Transpl[J], 2001. 7(5): p. 381-400.
    30. Busquets, J, J Figueras, T Serrano, et al, Postreperfusion biopsies are useful in predicting complications after liver transplantation. Liver Transpl[J], 2001. 7(5): p. 432-5.
    31. Lee, W M, Drug-induced hepatotoxicity. N Engl J Med[J], 2003. 349(5): p. 474-85.
    32. NG IOL, B A K, Rolles K et al, Hepatocellular ballooning after liver transplantation:a light and electronmicroscopic study with clincopathological correlation. Histopathology[J], 1991. 18(4): p. 323-330.
    33. Goldstein Ns, H J, Lewin KJ, Diffuse hepatocyte ballooning in liver biopsies from orthotopic liver transplantations. 1991[J], 1991. 18(4): p. 331-338.
    34. Krams, S M, H Egawa, M B Quinn, et al, Apoptosis as a mechanism of cell death in liver allograft rejection. Transplantation[J], 1995. 59(4): p. 621-5.
    35. Burns, A T, D R Davies, A J McLaren, et al, Apoptosis in ischemia/reperfusion injury of human renal allografts. Transplantation[J], 1998. 66(7): p. 872-6.
    36. St Peter, S, M I Rodriquez-Davalos, H M Rodriguez-Luna, et al, Significance of proximal biliary dilatation in patients with anastomotic strictures after liver transplantation. Dig Dis Sci[J], 2004. 49(7-8): p. 1207-11.
    37. Guichelaar, M M, J T Benson, M Malinchoc, et al, Risk factors for and clinical course of non-anastomotic biliary strictures after liver transplantation. Am J Transplant[J], 2003. 3(7): p. 885-90.
    38. Fisher, A and C H Miller, Ischemic-type biliary strictures in liver allografts: the Achilles heel revisited? Hepatology[J], 1995. 21(2): p. 589-91.
    39. Fondevila, C, R W Busuttil, and J W Kupiec-Weglinski, Hepatic ischemia/reperfusion injury--a fresh look. Exp Mol Pathol[J], 2003. 74(2): p. 86-93.
    40. Pirenne, J, F Van Gelder, W Coosemans, et al, Type of donor aortic preservation solutionand not cold ischemia time is a major determinant of biliary strictures after liver transplantation. Liver Transpl[J], 2001. 7(6): p. 540-5.
    41. Sankary, H N, L McChesney, E Frye, et al, A simple modification in operative technique can reduce the incidence of nonanastomotic biliary strictures after orthotopic liver transplantation. Hepatology[J], 1995. 21(1): p. 63-9.
    42. Hoekstra, H, R J Porte, Y Tian, et al, Bile salt toxicity aggravates cold ischemic injury of bile ducts after liver transplantation in Mdr2+/- mice. Hepatology[J], 2006. 43(5): p. 1022-31.
    43. Geuken, E, D Visser, F Kuipers, et al, Rapid increase of bile salt secretion is associated with bile duct injury after human liver transplantation. J Hepatol[J], 2004. 41(6): p. 1017-25.
    44. Adler, M, C Deprez, F Rickaert, et al, Cholestatic syndrome due to preservation injury after liver transplantation. Transplant Proc[J], 1988. 20(4): p. 644-5.
    45. Laskowski I, P J, Wilhelm MJ,et al, Molecular and cellular events associated with ischemia -reperfusion injury. Ann Transplant[J], 2000. 5(1): p. 29-35.
    46. Yasui H, Y N, Kobayashi Y,et a, Microstructural changes of bile canaliculi in canine liver :the effect of cold ischemia-reperfusion in orthotopic liver transplantation. Transpl Int proc[J], 1998. 30: p. 3754-3757.
    47. Vajdova K, S R, Kukan M,et al, Blie analysis as a tool for assessing integrity of biliary epithelial cells after cold ischemia -reperfusion of rat livers. Cryobiology [J], 2000. 41: p. 145-152.
    48. Cutrin JC, C D, Biasi F,et al, Reperfusion damage to the bile canaliculi in transplanted human liver. Hepatology[J], 1996. 24: p. 1053-1057.
    49. 裘国强,徐军明,唐美华,等, 肝移植急性排斥反应的生化诊断. 肝脏[J], 2004. 9: p. 2-4.
    1. Regele H, B G, Habicht A,et al, Capillary deposition of complement split product C4d in renal allografts is associated with basement membrane iniury,in peritubular and glomerular capillaries:a contribution of humoral immunity to chronic allograft rejection.. Am Soc NephroI[J], 2002. 13: p. 2371-2380.
    2. Collins AB, S E, Pascual MA et al, Complementactivation in acute humoral renal allograft rejection: diagnostic significance of C4d deposits in peritubular capillaries. J Am Soc Nephrol ; : . 1999. 10: p. 2208-2221.
    3. Nickeleit, V and M J Mihatsch, Kidney transplants, antibodies and rejection: is C4d a magic marker? Nephrol Dial Transplant[J], 2003. 18(11): p. 2232-9.
    4. Bo¨ hmig GA, E M, Habicht A et al, Capillary C4d deposition in kidney allografts: a specific marker of alloantibody-dependent graft injury. . J Am Soc Nephrol[J], 2002. 13: p. 1091-1099.
    5. Racusen, L C, R B Colvin, K Solez, et al, Antibody-mediated rejection criteria - an addition to the Banff 97 classification of renal allograft rejection. Am J Transplant[J], 2003. 3(6): p. 708-14.
    6. Behr TM, F H, Richter K et al Detection of humoral rejection in human cardiac allografts by assessing the capillary deposition of complement C4d in endomyocardial biopsies. . J Heart Lung Transplant [J], 1999. 18: p. 904.
    7. Magro CM, D A, Pope-Harman A et al, Humorally mediated posttransplantational septal capillary injury syndrome as a common form of pulmonary allograft rejection: a hypothesis. . Transplantation[J], 2002. 74: p. 1273-1280.
    8. Anders R, T M, Gong C, Antibody mediated rejection of liver allografts: utility of C4d immunostains in diagnosis. Lab Invest [J], 2002. 83: p. 270A.
    9. Takakura, K, T Kiuchi, M Kasahara, et al, Humoral immunity in acute cellular rejection after living-donor liver transplantation. Transplant Proc[J], 1999. 31(1-2): p. 526-7.
    10. McCaughan, G W, J S Davies, J A Waugh, et al, A quantitative analysis of T lymphocyte populations in human liver allografts undergoing rejection: the use of monoclonal antibodies and double immunolabeling. Hepatology[J], 1990. 12(6): p. 1305-13.
    11. Krukemeyer, M G, J Moeller, L Morawietz, et al, Description of B lymphocytes and plasma cells, complement, and chemokines/receptors in acute liver allograft rejection. Transplantation[J], 2004. 78(1): p. 65-70.
    12. Watanabe, J and J C Scornik, Measuring human complement activation by HLA antibodies. Arch Pathol Lab Med[J], 2006. 130(3): p. 368-73.
    13. Bu, X, Z Zheng, Y Yu, et al, Significance of C4d deposition in the diagnosis of rejection after liver transplantation. Transplant Proc[J], 2006. 38(5): p. 1418-21.
    14. Jain, A, R Mohanka, M Orloff, et al, Characterization of CD4, CD8, CD56 positive lymphocytes and C4d deposits to distinguish acute cellular rejection from recurrent hepatitis C in post-liver transplant biopsies. Clin Transplant[J], 2006. 20(5): p. 624-33.
    15. Matzinger, P, Tolerance, danger, and the extended family. Annu Rev Immunol[J], 1994. 12: p. 991-1045.
    16. Buonocore, S, M Surquin, A Le Moine, et al, Amplification of T-cell responses by neutrophils: relevance to allograft immunity. Immunol Lett[J], 2004. 94(3): p. 163-6.
    17. Chertov, O, D Yang, O M Howard, et al, Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol Rev[J], 2000. 177: p. 68-78.
    18. Land, W G, The role of postischemic reperfusion injury and other nonantigen-dependent inflammatory pathways in transplantation. Transplantation[J], 2005. 79(5): p. 505-14.
    19. Dong, J, J R Pratt, R A Smith, et al, Strategies for targeting complement inhibitors in ischaemia/reperfusion injury. Mol Immunol[J], 1999. 36(13-14): p. 957-63.
    1. Yanagida, H, M Kaibori, M Yamada, et al, Induction of inducible nitric oxide synthase in hepatocytes isolated from rats with ischemia-reperfusion injury. Transplant Proc[J], 2004. 36(7): p. 1962-4.
    2. Kawamura, E, N Yamanaka, E Okamoto, et al, Response of plasma and tissue endothelin-1 to liver ischemia and its implication in ischemia-reperfusion injury. Hepatology[J], 1995. 21(4): p. 1138-43.
    3. Zulli, A, R E Widdop, D L Hare, et al, High methionine and cholesterol diet abolishes endothelial relaxation. Arterioscler Thromb Vasc Biol[J], 2003. 23(8): p. 1358-63.
    4. De Mello, W C and A H Danser, Angiotensin II and the heart : on the intracrine renin-angiotensin system. Hypertension[J], 2000. 35(6): p. 1183-8.
    5. Paizis, G, R E Gilbert, M E Cooper, et al, Effect of angiotensin II type 1 receptor blockade on experimental hepatic fibrogenesis. J Hepatol[J], 2001. 35(3): p. 376-85.
    6. Crackower, M A, R Sarao, G Y Oudit, et al, Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature[J], 2002. 417(6891): p. 822-8.
    7. Eriksson, U, U Danilczyk, and J M Penninger, Just the beginning: novel functions for angiotensin-converting enzymes. Curr Biol[J], 2002. 12(21): p. R745-52.
    8. Vickers, C, P Hales, V Kaushik, et al, Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem[J], 2002. 277(17): p. 14838-43.
    9. Adam, D, Protein chemists favour automatic answers. Nature[J], 2002. 415(6874): p. 822.
    10. Johnston, C I, Tissue angiotensin converting enzyme in cardiac and vascular hypertrophy, repair, and remodeling. Hypertension[J], 1994. 23(2): p. 258-68.
    11. Donoghue, M, F Hsieh, E Baronas, et al, A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res[J], 2000. 87(5): p. E1-9.
    12. Ferreira, A J and R A Santos, Cardiovascular actions of angiotensin-(1-7). Braz J Med Biol Res[J], 2005. 38(4): p. 499-507.
    13. Wen, Q, M K Sim, and F R Tang, Reduction of infarct size by orally administered des-aspartate-angiotensin I in the ischemic reperfused rat heart. Regul Pept[J], 2004.120(1-3): p. 149-53.
    14. Schmaier, A H, The kallikrein-kinin and the renin-angiotensin systems have a multilayered interaction. Am J Physiol Regul Integr Comp Physiol[J], 2003. 285(1): p. R1-13.
    15. Zisman, L S, G E Meixell, M R Bristow, et al, Angiotensin-(1-7) formation in the intact human heart: in vivo dependence on angiotensin II as substrate. Circulation[J], 2003. 108(14): p. 1679-81.
    16. Harmer, D, M Gilbert, R Borman, et al, Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett[J], 2002. 532(1-2): p. 107-10.
    17. Tikellis, C, C I Johnston, J M Forbes, et al, Characterization of renal angiotensin-converting enzyme 2 in diabetic nephropathy. Hypertension[J], 2003. 41(3): p. 392-7.
    18. G. Takada, M B J, H. Masuko, Role of Local Renin-Angiotensin System in Warm Ischemia and Reperfusion Injury of the Liver. Transplantation Proceedings[J], 2001. 33: p. 824-825.
    19. Bataller, R, P Sancho-Bru, P Gines, et al, Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology[J], 2003. 125(1): p. 117-25.
    20. Takada, G, M B Jin, H Masuko, et al, Role of local renin-angiotensin system in warm ischemia and reperfusion injury of the liver. Transplant Proc[J], 2001. 33(1-2): p. 824-5.
    21. Ip, S P, P C Kwan, C H Williams, et al, Changes of angiotensin-converting enzyme activity in the pancreas of chronic hypoxia and acute pancreatitis. Int J Biochem Cell Biol[J], 2003. 35(6): p. 944-54.
    22. Ramalho, L N R, O. Castro-e-Silva Junior, et al., Effect of angiotensin-converting enzyme inhibitors on liver regeneration in rats,. Hepatogastroenterology[J], 2002. 47: p. 1347-1351.
    23. L. Guo, K S R, L.M. Tucker, et al., Role of the renin-angiotensin system in hepatic ischemia reperfusion injury in rats, . Hepatology [J], 2004. 40: p. 583-589.
    24. Anthuber, M, S Farkas, M Rihl, et al, Angiotensin-converting enzyme inhibition byenalapril: a novel approach to reduce ischemia/reperfusion damage after experimental liver transplantation. Hepatology[J], 1997. 25(3): p. 648-51.
    25. Paizis, G, M E Cooper, J M Schembri, et al, Up-regulation of components of the renin-angiotensin system in the bile duct-ligated rat liver. Gastroenterology[J], 2002. 123(5): p. 1667-76.
    1.Xiu-Da Shen, Bibo K, Yuan Zhai,et al.Stat4 and Stat6 Signaling in Hepatic Ischemia/Reperfusion Injury in Mice: HO-1 Dependence of Stat4 Disruption-Mediated Cytoprotection[J]. Hepatology, 2003, 37:296-303.
    2. Meredith EP, Kenneth MM, David J F. IL-12, but Not IFN-α , Promotes STAT4 Activation and Th1 Development in Murine CD4 T Cells Expressing a Chimeric Murine/Human Stat2 Gene1[J]. The Journal of Immunology, 2005,174: 294-301.
    3. Kiyoshi T, Shizuo A. STAT family of transcription factors in cytokine-mediated biological responses[J]. Cytokine & Growth Factor Reviews, 2000, 11:199-207.
    4. Matsumoto T, O'Malley K, Efron PA, et al. Interleukin-6 and STAT3 protect the liver from hepatic ischemia and reperfusion injury during ischemic preconditioning[J]. Surgery, 2006,140:793-802.
    5. Buddhadeb D , Roberto B. HO-1 induction by HIF-1: a new mechanism for delayed cardioprotection [J]? Am J Physiol Heart Circ Physiol, 2005,289:522–524.
    6. Yeoa EJ, Chunb YS ,Park JW.New anticancer strategies targeting HIF-1 [J].Biochemical Pharmacology, 2004, 68:1061-1069.
    7. Ramzi O, Ramesh N,Fadi S,et al.HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation[J]. Am J Physiol Heart Circ Physiol ,2005,289: 542–548.
    8.Patel A, van de Poll MC, Greve JW,et al.Early stress protein gene expression in a human model of ischemic preconditioning[J]. Transplantation, 2004 ,78:1479-1487.
    9. Coulet F, Nadaud S, Agrapart M, et al. Identification of hypoxia-response elementin the human endothelial nitric-oxide synthase gene promoter[J]. J Biol Chem ,2003,278:46230–46240.
    10.Taniai H, Hines IN ,Bharwani S,et al.Susceptibility of murine periportal heaptocytes to hypoxia-reoxygenation :role for NO and Kuffer cell-derived oxidants[J].Hepatology, 2004,39:1544-1552.
    11.Hidesuke Y,Masaki K,Hideyuki Y,et al.Hepatic ischemia/reperfusion upregulates the susceptibility of hepatocytes to confer the induction of inducible nitric oxide synthase gene expression[J].Shock ,2006,26(2):162-168.
    12.Chen T,Zimora R,Zucherbraun B,et al.Role of nitric oxide in liver injury [J].Curr Mol Med ,2003,3:519-526.
    13. Kawachi S, Hines IN, Laroux FS,et al. Nitric oxide synthase and postischemic liver injury[J].Biochem Biophys Res Commun, 2000 ,276:851-854.
    14. Liu P, Xu B, Hock CE, et al. NO modulates P-selectin and ICAM-1 mRNA expression and hemodynamic alterations in hepatic I/R[J]. Am J Physiol Heart Circ Physiol , 1998,275: 2191–2198.
    15. Lee VG, Johnson ML, Baust J,et al.The roles of iNOS in liver ischemia-reperfusion inju[J]ry.Shock,2001 ,16:355-360.
    16.Kaizu T, Ikeda A, Nakao A,et al.Donor graft adenoviral iNOS gene transfer ameliorates rat liver transplant preservation injury and improves survival[J]. Hepatology,2006 ,43:464-73.
    17. Peters JM, Rusyn I, Rose ML, et al. Peroxisome proliferator-activated receptor _ is restricted to hepatic parenchymalcells, not Kupffer cells: implications for the mechanism of action of peroxisome proliferators in hepatocarcinogenesis[J]. Carcinogenesis, 2000,21:823–826.
    18. Tomohisa O. and Alex B. Lentsch.Peroxisome proliferator-activated receptor-_ regulates postischemic liver injury[J].Am J Physiol Gastrointest Liver Physiol, 2004,286: 606–612.
    19. Ding GL, Cheng LH, Qin QH, et al.PPARδ modulates lipopolysaccharide-induced TNFα inflammation signaling in cultured cardiomyocytes[J].Journal of Molecular and Cellular Cardiology ,2006,40 :821–828.
    20. Kyung-Hoon Lee, Sang-Eun Kim1and Yun-Song Lee1. SP600125, a selective JNK inhibitor, aggravates hepatic ischemia-reperfusion injury[J].Experimental and Molecular Medicine, 2006 38: 408-416.
    21. Tetsuya U, Brydon B, Steve TS,et al. JNK mediates hepatic ischemia reperfusion injury. Journal of Hepatology,2005, 42 :850–859.
    22. Schwabe RF, Brenner DA. [J] Am J Physiol Gastrointest Liver Physiol,2006 ,290:583-589.
    23. Borosa P, Bromberga JS.New Cellular and Molecular Immune Pathways in Ischemia/Reperfusion Injury[J].American Journal of Transplantation, 2006, 6: 652–658.
    24.Kobayashi M, Takeyoshi I, Yoshinari D,et al.P38 mitogen-activated protein kinase inhibition attenuates ischemia-reperfusion injury of the rat liver[J]. Surgery,2002 Mar;131:344-349.
    25.Uehara T, Xi Peng X, Bennett B,et al. c-Jun N-terminal kinase mediates hepatic injury after rat liver transplantation[J]. Transplantation, 2004 ,78:324-332.
    26. Peng Y, Gong JP, Liu CA, et al . Expression of toll-like receptor 4 and MD-2 gene and protein in Kupffer cells after ischemia-reperfusion in rat liver graft[J].World J Gastroenterol,2004, 10: 2890–2903.
    27. Wu HS, Zhang JX, Wang L, et al. Toll-like receptor 4 involvement in hepatic ischemia/reperfusion injury in mice[J]. Hepatobiliary Pancreat Dis Int ,2004,3: 250–253.
    28. Sofia B, Muriel S, Alain L M, et al. Amplification of T-cell responses byneutrophils:relevance to allograft immunity[J].Immunology Letters, 2004, 94: 163-166.
    29. Man K, Ng KT, Lee TK,et al.FTY720 attenuates hepatic ischemia-reperfusion injury in normal and cirrhotic livers[J]. Am J Transplant,2005 ,5:40-49.
    30. Pasterkamp G, van Keulen J K,de Kleijn D P V. Role of Toll-like receptor 4 in the initiation and progression of atherosclerotic disease[J]. European Journal of Clinical Investigation, 2004,34:328–334.
    31. Cunningham MA, Rondeau E, Chen X, et al. Protease-activated receptor 1mediatesthrombin-dependent, cell-mediated renal inflammation in crescentic glomerulonephritis[J].J Exp Med, 2000,191:455–462.
    32. Bryan LC, Frederic M, Umesh M. Hanumegowda,et al.Thrombin and Protease-Activated Receptor-1 Agonists Promo Lipopolysaccharide-Induced Hepatocellular Injury in Perfused Livers[J]. J Pharmo Exper, 2003,305:417–425.
    33. Matthias Riewald and Wolfram Ruf .Science review: Role of coagulation protease cascades in sepsis[J]. Crit Care,2003,7: 123–129.
    34. Tsuboi H, Naito Y, Katada K, et al.Role of the thrombin/protease-activated receptor 1 pathway in intestinal ischemia-reperfusion injury in rats[J]. Am J Physiol Gastrointest Liver Physiol, 2006 Oct 5; [Epub ahead of print]
    35. Ito K,Shimada J,Kato D,et al. Protective effects of preischemic treatment with pioglitazone, a peroxisome proliferator-activated receptor-gamma ligand, on lung ischemia-reperfusion injury in rats[J]. Eur J Cardiothorac Surg,2004,25:530-536.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700