基于双连续相的乙烯—醋酸乙烯共聚物/聚已内酯共混物多孔材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两种或多种聚合物的混合是实现彼此性能互补从而获得新型聚合物材料的重要途径之一。不过大部分聚合物之间是热力学不相容的,对应的共混体系大多呈两相结构。与分散-连续的相形态相比,具有双连续相形态的聚合物共混物由于其特殊的相互贯穿的亚微观/宏观网络的织态结构,因此能够较好地实现基体组分间性能的互补,并能够进一步拓展其应用领域。通过选择性蚀刻去除双连续共混物中某一组分,以此获得聚合物基多孔材料就是其应用领域的拓展途径之一。不过要控制多孔材料的孔径以满足不同领域的需求(如药物控制释放、组织工程支架等),就要明确影响聚合物不相容共混体系双连续相形态形成及演化的因素。
     因此本论文采用了两种不相容的具有生物相容性的高分子材料乙烯-醋酸乙烯共聚物(EVA)和聚己内酯(PCL),首先通过熔融共混的方法制备了一系列不同组分比和粘度比的EVA/PCL共混物,然后利用形态表征和流变学的方法剖析了共混材料的相行为,通过建立不相容相形态与材料粘弹行为之间的联系,明确了影响共混体系双连续形态的控制因素。在此基础上,通过研究共混物的相形态和加工条件之间的关系,最终实现了双连续形态可控的目标,并进一步通过选择性蚀刻得到了具有不同孔径大小的EVA多孔材料。
     (1)扫描电子显微镜(SEM)测试的结果表明,EVA/PCL共混物为典型的热力学不相容共混体系。EVA和PCL的组成比显著影响共混体系的相形态,随组分比的变化,共混物表现出分散-连续的形态和双连续的形态;流变学测试的结果表明,由于EVA和PCL具有较大的粘度差异(粘度比为0.02),且EVA具有较高的弹性效应和松弛时间,因此共混体系双连续组成范围较宽(PCL的浓度为40-60 wt%之间);而单纯基于粘度比和弹性比的粘弹模型都不能很好地预测该体系的相反转浓度;
     (2)基体组分的本体性质强烈影响双连续相形态的形成。随着体系两组分粘度比的降低,共混物形成双连续结构的组成范围越来越大,且形成的双连续形态结构越清晰。此外,较低的界面张力值有利于体系双连续结构的形成:EVA与PCL间界面张力越小,共混体系形成双连续结构的分散相浓度越偏向于低浓度,且形成的双连续结构范围越来越宽;
     (3)共混工艺同样显著影响双连续相形态的演化。剪切作用会使双连续相畴减小,这是因为EVA具有较大的粘度和弹性,对共混体系毛细管数的贡献远超剪切下PCL相的破碎趋势,因此两相只会发生高度的变形而不会破碎。此外,等温退火过程中共混物的双连续相畴会粗化,而凝聚速率则随着退火温度的升高而增加;在非等温退火过程中,相畴的凝聚速率同样随退火温度的升高而增加,共混体系粘度随温度升高而下降是影响凝聚效应的决定性因素;
     (4)传统的溶液浇铸-粒子滤沥法制备得到的EVA和PCL多孔材料孔径分布不均匀,开孔结构和闭孔结构共存,且孔间联通性较差。而基于双连续相共混物制得的多孔材料的连贯度和孔隙率都有明显提高。通过控制加工和退火条件来控制双连续形态,能够有目的地设计并控制EVA多孔材料的结构和形态,从而得到具有一系列特征孔径(1.5-120μm)的孔材料。
Blending two or more polymers together to achieve property complement is one of the important routes to obtain new polymer materials. However, many blends present two-phase structure due to the thermodynamic incompatibility between the component polymers. Compared with that of the blends with‘sea-island’morphology, the co-continuous blends usually show better performance and potential applications in more fields because of their special sub-microcosmic/macroscopical network structure. The fabrication of porous materials by selective etching one of the component in the co-continuous blends is one of the further applications of such blend material. To obtain different pore sizes to meet different requirements such as drug controlled release and tissue engineering scaffold. it is necessary to deeply explore how the co-continuous phase morphology form and evolve during melt mixing.
     Therefore, two biocompatible polymers, ethylene-vinyl acetate copolymer (EVA) and poly(ε-caprolactone) (PCL) were used in this work to prepare EVA/PCL blends with various component ratio and viscosity ratio by blending. Then the phase behavior of the blends was analyzed by morphological and rheological approaches, and the dominant factors determining formation and evolution of the co-continuous phase morphology were studied by relating the immiscible morphology to the viscoelastic behavior of the blends. Through establishing the relationship between co-continuous phase morphology and processing conditions, the porous materials with various pore sizes based on EVA were fabricated successfully by selective solvent etching.
     (1) The Scanning Electron Microscopy (SEM) results showed that the EVA/PCL blends were thermodynamically immiscible. The component ratio affected the phase morphology of the blends significantly. The blends showed dispersed-continuous and co-continuous morphology at different component ratios. The results of rheological tests showed that the blends had a wide co-continuous region (PCL concentrations of 40~60 wt%) due to high viscosity ratio between PCL and EVA, and to higher elasticity and longer relaxation time of EVA. The models merely based on viscosity or elasticity can hence not be well used to describe the phase inversion point of the blends.
     (2) The bulk properties of component polymers strongly influenced the formation of co-continuous structure. The co-continuous morphology became clearer and the composition range increased as viscosity ratio reduced. In addition, the low interfacial tension between two components favored the formation of co-continuous morphology. The lower the interfacial tension was, the lower co-continuous phase concentration was, and the wider co-continuous composition range.
     (3) The processing conditions also affected the evolution of co-continuous phase morphology significantly. The shear flow reduced the co-continuous phase domain because the contribution of EVA to the capillary numbers highly exceeded the breakup tendency of PCL in shear flow, and as a result, the two phases were highly deformed but not break up. Moreover, in the isothermal annealing process, the co-continuous phase domain increased and the coalescence rate growed as temperature increased; in the nonisothermal annealing process, the co-continuous phase domain also increased with increasing annealing temperature. The coalescence effect is dominated by the decrease of viscosity of the blend systems.
     (4) The porous materials based on EVA or PCL prepared by the traditional solution casting-particle filter method showed poor porous morphology: wide pore size distribution, co-existance of the open-cell and the closed-cell structure and low pore connectedness. However,for those porous materials based on co-continuous blends, the pore connectedness and porosity were improved evidently. The pore size (1.5-120μm) could be controlled by designing and controling the processing and annealing conditions of the co-continuous blends.
引文
[1]吴培熙,张留成.聚合物共混改性,中国轻工业出版社, 1998
    [2]王国全,王秀芬.聚合物改性,中国轻工业出版社, 2004
    [3]曼森J A,斯伯林L H.聚合物共混物及复合材料,汤华远等译,化学工业出版社, 1983
    [4] Piau J M, Agassant J F. Rheology For Polymer Melt Processing, France, 1996
    [5]沈家瑞,贾德民.聚合物共混物与合金,华南理工大学出版社, 1999
    [6] Swaney F M. Polymer Blends and Alloys, Technomic Publi, 1988
    [7] O.奥拉比瑟.聚合物-聚合物混溶性,尚项田等译,化学工业出版社, 1987
    [8] Utracki L A. Polymer Alloys and Blends, Thermodynamic and Rheology, Hanser Publi, 1990
    [9] Tompa H. Polymer Solution, London Buttermorths Scientific Publi, 1956
    [10] Krause S. Synthesis and Characterization of Dibenzothiophene-Formaldehyde Copolymers, Macromoleculers, 1972, 7(2): 249-253
    [11] Nishi T, Kwei T T. Cloud Point Curves For Poly(vinyl methyl ether) and Monodisperse Polystyrene Mixtures, Polymer, 1975, 16(4): 285-290.
    [12]何曼君.高分子物理,复旦大学出版社, 1990.
    [13] Manson J A, Sporling L H. Polymer Blends and Composites, 1976
    [14] Gergen W P, Lutz R G, Davison S. Thermoplastic Elastomers, Hanser Publi, 1996
    [15] Lyngaae, Rasmussen K L, Chtcherbakova E A, Utracki L A. Flow Induced Deformation of Dual-Phase Continuity in Polymer Blends and Alloys. Part I, Polym Eng Sci, 1999, 39(6): 1060-1071
    [16] Kwei T K, Wang T T. Polymer Blends, Paul D R, Newman S. Eds, Academic Press, New York, 1978
    [17] Walheim S, Boltau M, Mlynek J, Krausch G. Structure Formation Via Polymer Demixing in Spin-Cast Films, Macromolecules, 1997, 30(17): 4995-5003
    [18] Scott C E, Macosko C W. Morphology Development During The Initial Stages ofPolymer-Polymer Blending, Polymer, 1995, 36(3): 461-470
    [19] Sundararaj U, Macosko C W, Rolando R J, Chan C T. Morphology Development in Polymer Blends, Polym Eng Sci, 1992, 32(24): 1814-1823
    [20] Sundararaj U, Dori Y, Macosko C W. Sheet Formation in Immiscible Polymer Blends-Model Experiments on Initial Blend Morphology, Polymer, 1995, 36(10): 1957-1968
    [21] Shih C K. Mixing and Morphological Transformation in The Compounding Process for Polymer Blends: The Phase Inversion Mechanism, Polym Eng Sci, 1995, 35(21): 1688-1694
    [22] Ratnagari R, Scott C E. Phase Inversion During Compounding With a Low Melting Major Component: Polycaprolactone/Polyethylene Blends, Polym Eng Sci, 1998, 38(10): 1751-1762
    [23] Kitayama N, Keskkula H, Paul D R. Reactive Compatibilization of Nylon-6/ Styrene-Acrylonitrile Copolymer Blends. Part 1. Phase Inversion Behavior, Polymer, 2000, 41(22): 8041-8052
    [24] Potschke P, Paul D R. Morphology and Electrical Resistivity of Melt Mixed Blends of Polyethylene and Carbon Nanotube Filled Polycarbonate, Macromol Symp, 2003
    [25] Li J M, Ma P L, Favis B D. The Role of The Blend Interface Type on Morphology in Cocontinuous Polymer Blends, Macromolecules, 2002, 35(6): 2005-2016
    [26] Veenstra H, Van Dam J, Posthuma de Boer A. Formation and Stability of Co-Continuous Blends With a Poly(ether-ester) Block Copolymer Around Its Order-Disorder Temperature, Polymer, 1999, 40(5): 1119-1130
    [27] Willemse R C, Posthuma de Boer A, Van Dam J. Co-Continuous Morphologies in Polymer Blends: a New Model, Polymer, 1998, 39(24): 5879-5887
    [28] Favis B D, Chalifoux J P. Influence of Composition on The Morphology of Polypropylene/Polycarbonate Blends, Polymer, 1988, 29(10): 1761-1767
    [29] Taylor G I. The Formation of Emulsions in Definable Fields of Flow, Proc Roy Soc Lond, 1934
    [30] Baird D G, Collias D I. Polymer Processing: Principles and Design, John Wiley & Sons Inc, New York, 1998
    [31] Metelkin V I, Blekht V P. Formation of a Continuous Phase in Heterogeneous Polymer Mixtures, Coll J USSR, 1984, 46(2), 425-429
    [32] Tomotika S. Proc R Soc. On The Instability of a Cylindrical Thread of a Viscous Liquid Surrounded By Another Viscous Fluid, London, Ser A, 1935
    [33] Elmendorp J J. A Study on Polymer Blending Microrheology, Polym Eng Sci, 1986, 26(6): 418-426
    [34] Zumbrunnen D A, Inamdar S. Novel Sub-Micron Highly Multi-Layered Polymer Films Formed By Continuous Ow Chaotic Mixing, Chem Eng Sci, 2001, 56(12): 3893-3897
    [35] Paul D R, Newman S. Polymer Blends, New York: Academic Press, 1978
    [36]金关泰,金日光,汤宗汤,陈耀庭.热塑性弹性体,化学工业出版社, 1983
    [37] Machiels A G, Denys K F, van Dam J, Posthuma de Boer A. Effect of Processing Jistory on The Morphology and Properties of Polypropylene/Thermotropic Liquid Crystalline Polymer Blends, Polym Eng Sci, 1997, 37(1): 59-72
    [38] Nir M B, Ram A, Miltz J. Performance of Reprocessed Multilayer LDPE/Nylon-6 Film, Polym Eng Sci, 1995, 35(23): 1878-1883
    [39] Helene P, Martin B, Francois C, Ludwik L. Design and Properties of Co-Continuous Nanostructured Polymers By Reactive Blending, Nature Material, 2002, 1(2), 54-58
    [40] Bhanu N, Kandpal L D, Mathur G N. Poly(ether-ether-ketone)/Poly (aryl-ether- sulfone) Blends: Relationships Between Morphology and Mechanical Properties, J Appl Polym Sci, 2003, 90(11): 2887-2905
    [41] Hiroshi O, Takayuki I, Toshio N. Phase Morphologies and Mechanical Propertiesof High-Impact Polystyrene (HIPS) and Polycarbonate Blends Compatibilized With Polystyrene and Polyarylate Block Copolymer, J Appl Polym Sci, 2001, 80(12): 2347-2360
    [42] Christoph H A, Mark A K, Anthony P R. Morphology, Cocontinuity, and Conductive Properties of Anisotropic Polymer Blends, Macromolecules, 1999, 32(18): 5964-5966
    [43] Olaf M, Dirk K, Hans W, Chritian F, Marc V. Mechanical Properties and Electrical Conductivity of Carbon-Nanotube Filled Polyamide-6 and Its Blends With Acrylonitrile/Butadiene/Styrene, Polymer, 2004, 45(3): 739-748
    [44] Willemse R C, Speijer A, Langeraar A E, Posthuma de Boer A. Tensile Moduli of Co-Continuous Polymer Blends, Polymer, 1999, 40(24): 6645-6650
    [45] Veenstra H, Posthuma de Boer A. On The Mechanical Properties of Co-Continuous Polymer Blends: Experimental and Modeling, Polymer, 2000, 41(5): 1817-1826
    [46] Lovinger A J, Williams M L. Tensile Properties and Morphology of Blends of Polyethylene and Polypropylene, J Appl Polym Sci, 1980, 25(3): 1703-1713
    [47] Noel O F, Carley F. Properties of Polypropylene-Polyethylene Blends, Polym Eng Sci, 1975, 15(2): 117-126
    [48] Mamat A, Vu-Khan T, Cigana P, Favis B D. Impact Fracture Behavior of Nylon-6/ABS Blends, J Polym Sci: Part B, 1997, 35(16): 2583-2592
    [49] Quintens D, Groeninckx G, Guest M. Mechanical Behavior Related to The Phase Morphology of PC/SAN Polymer Blends, Polym Eng Sci. 1990, 30(22), 1474-1483
    [50] Quintens D, Groeninckx G, Guest M, Aerts L. Visco-Elastic Properties Related to The Phase Morphology of 60/40 PC/SAN Blend, Polym Eng Sci, 1991, 31(16): 1207-1214
    [51] Niebergall U, Bohse J, Seidler S, Grellmann W. Relationship of Fracture Behavior and Morphology in Polyolefin Blends, Polym Eng Sci. 1999, 39(6): 1109-1118
    [52] Weidisch R, Stamm M, Michler G H, Fischer H, Jerome R. Mechanical Properties of Weakly Segregated Block Copolymers. 3. Influence of Strain Rate and Temperature on Tensile Properties of Poly(styrene-b-butyl methacrylate) Diblock Copolymers With Different Morphologies, Macromolecules, 1999, 32(3): 742-750
    [53] Flexman E A, Huang D D, Snyder H L. Fracture Mechanism and Morphology of High Impact Polyacetal, Div Polym Chem, 1988, 29(2): 189-190
    [54] Heeschen W A. A Quantitative Image Analysis Method for The Determination of Co-Continuity in Polymer Blends, Polymer, 1995, 36(9): 1835-1841
    [55] Aoki Y, Watanabe M. Morphological, Thermal, and Rheological Properties of Nylon/Acrylonitrile-Butadiene-Styrene Alloys, Polym Eng Sci, 1992, 32(13): 878-885
    [56] Utracki L A. On The Viscosity-Concentration Dependence of Immiscible Polymer Blends, J Rheol, 1991, 35(12): 1615-1637
    [57] Verhoogt H, Posthuma de Boer A. Morphology-Processing Relationship in Interpenetrating Polymer Blends Styrene-Ethylene/Butylene-Styrene Block Copolymer and Poly(ether ester), Adv Chem, 1994, 23(11): 333-351
    [58] Willis J M, Caldas V, Favis B D. Processing-Morphology Relationships of Compatibilized Polyolefin/Polyamide Blends, Mater Sci, 1991, 26(17): 4742-4750
    [59] Ho R M, Wu C H, Su A C. Morphology of Plastic/Rubber Blends, Polym Eng Sci, 1990, 30(9): 511-518
    [60] Han C D, Kim Y W. Dispersed Two-Phase Flow of Viscoelastic Polymeric Melts in a Circular Tube, Trans Soc Rheol, 1975, 19(23): 245-269
    [61] Weis C, Leukel J, Borkenstein K, Maier D, Gronski W, Friedrich C. Morphological and Rheological Detection of The Phase Inversion of PMMA/PS Polymer Blends, Polymer Bulletin, 1998, 40(2): 235-241
    [62] Thornton B, Villasenor R, Maxwell B. The Melt Elasticity of Polymer Blends: Polystyrene/Poly(methyl methacrylate), J Appl Polym Sci, 1980, 25(4): 653-663
    [63] Steinmann S, Gronski W, Friedrich C. Quantitative Rheological Evaluation of Phase Inversion in Two-Phase Polymer Blends With Co-Continuous Morphology, Rheol Acta, 2002, 41(1): 77-86
    [64] Galloway J A, Macosko C W. Proceedings 3rd Pacific RIM Conference on Rheology, 2008.
    [65] Huitric J, Moan M, Jarrin J. Influence of Composition and Morphology on Rheological Properties of Polyethylene/Polyamide Blends, Polymer, 1998, 39(20): 4849-4856
    [66]张义盛.聚己内酯/聚乳酸共混体系的相形态及其流变行为,化工学报, 2008, (10): 2645-2648
    [67] Petra P, Paul D R, Formation of Co-Continuous Structures in Melt-Mixed Immiscible Polymer Blends, Polymer Reviews, 2003, 43(1): 87-141
    [68] Nelson C J, Avgeropoulos G N, Weissert F C, Bohm G A. Relationship Between Rheology, Morphology, and Physical Properties in Heterogeneous Blends, Angew Makromol Chem, 1977, 60(4): 49-86
    [69] Paul D R, Barlow J W. Polymer Blends, J Macrom Sci Rev, 1980.
    [70] Jordhamo G M, Manson J A, Sperling L H. Phase Continuity and Inversion in Polymer Blends and Simultaneous Interpenetrating Networks, Polym Eng Sci, 1986, 26(8): 517-524
    [71] Miles I S, Zurek A. Preparation, Structure, and Properties of Two-Phase Co-Continuous Polymer Blends, Polym Eng Sci, 1988, 28(12): 796-805
    [72] Bourry D, Favis B D. Cocontinuity and Phase Inversion in HDPE/PS Blends: Influence of Interfacial Modification and Elasticity, J Polym Sci: Part B, 1998, 36(11): 1889-1899
    [73] Steinmann S, Gronski W, Friedrich C. Cocontinuous Polymer Blends: Influence of Viscosity and Elasticity Ratios of The Constituent Polymers on Phase Inversion Polymer, 2001, 42(15): 6619-6629
    [74] Tokita N. Analysis of Morphology Formation in Elastomer Blend, Rubber Chem Technol, 1977, 2(3): 292-230
    [75] Harm V, Ben N, Jaap V D, Posthuma de Boer A. Stability of Co-Continuous Polystyrene/poly(ether-ester) Blends in Shear Flow, Polymer, 1999, 40(18): 5223-5226
    [76] Willense R C, Posthuma de Boer A, van Dam J. Co-Continuous Morphologies in Polymer Blends: The Influence of The Interfacial Tension, Polymer, 1999, 40(5): 827-834
    [77] Dedecker K, Groenickx G. Reactive Compatibilisation of A/(B/C) Polymer Blends. Part 1. Investigation of The Phase Morphology Development and Stabilisation, Polymer, 1998, 39(21): 4985-4992
    [78] Chapleau N, Favis B D, Carreau P J. Measuring The Interfacial Tension of Polyamide/Polyethylene and Polycarbonate/Polypropylene Blends: Effect of Temperature, Polymer, 2000, 41(17): 6695-6698
    [79] Roy X, Sarazin P, Favis B D. Ultraporous Nanosheath Materials By Layer-By-Layer Deposition onto Co-Continuous Polymer-Blend Templates, Advanced Materials, 2006, 18(8): 1015-1019
    [80]刘华蓉,胡定欣,杨松,苗伟峰,李梓超,张伟.聚合物互通多孔材料的乳液模板法制备及其功能化研究,化学进展, 2009, 21(4): 672-676
    [81] Zhang H, Cooper A I. Synthesis and Applications of Emulsion-Templated Porous Materials, Soft Matter, 2005, 1(3): 107-113
    [82] Cameron N R. High Internal Phase Emulsion Templating As a Route to Well-Defined Porous Polymers, Polymer, 2005, 46(14): 1439-1449
    [83] Mikos A G, Bao Y, Cima L G. Preparation of Poly(glycolic acid) Bonded Fiber Structures for Cell Attachment and Transplantation, J Biomed Mater Res, 1993, 27(12): 183-189
    [84] Mikos A G, Sarakinos G, Leite S M. Laminated Three-Dimensional BiodegradableFoams for Use in Tissue Engineering, Biomaterials, 1993, 14(5): 323-330
    [85] Kazunori K, Toshizumi T, Kiyoshi Y. Novel Approach to Fabricate Keratin Sponge Scaffolds With Controlled Pore Size and Porosity, Biomaterials, 2004, 25(18): 4255-4262
    [86] Harris L D, Kim B S. Open Pore Biodegradable Matrices Formed With Gas Foaming, J Biomed Mater Res, 1998, 42(3): 396-402
    [87] Freyman T, Yannas I, Gibson L. Cellular Materials As Porous Scaffolds for Tissue Engineering, Prog Mater Sci, 2001, 46(1): 273-282
    [88]常海涛,鲁在君.高内相比乳液模板法合成多孔材料的研究进展,化学通报, 2007, 11: 829-833
    [89] Lannutti J, Reneker D, Tomasko D. Electrospinning for Tissue Engineering Scaffold, Mater Sci Eng: C, 2007, 27(3): 504-509
    [90] Borden M, Attawia M, Laurencin C T. Tissue Tngineered Microsphere-Based Matrices for Bone Repair: Design and Evaluation, Biomaterials, 2002, 23(2): 551-559
    [91] Park A, Wu B, Griffith L G. Integration of Surface Modification and 3D Fabrication Techniques to Prepare Patterned Poly(l-lactide) Substrates Allowing Regionally Selective Cell-Adhesion, J Biomater Sci Polym Ed, 1998, 9(2): 89-110
    [1]吴德峰,周持兴.聚合物共混体系/黏土纳米复合材料多相形态的研究进展,中国塑料, 2006, 20(9): 1-3
    [2] Wu D F, Zhang Y S, Zhang M, Zhou W D. Phase Behavior and Its Viscoelastic Response of Polylactide/Poly(ε-caprolactone) Blend, J Eur Polym, 2008, 44(7): 2173-2183
    [3] Wu D F, Wu L, Zhang M, Zhou W D, Zhang Y S. Morphology Evolution of Nanocomposites Based on Poly(phenylene sulfide)/Poly(butylene terephthalate) Blend, J Polym Sci:Part B, 2008, 46(12): 1265-1279
    [4] Mickael C, Frederic P, Christian C. Cocontinuity in Immiscible Polymer Blends: A Gel Approach, J Rheol, 2005, 49(1): 149-160
    [5]王国全,王秀芬,聚合物改性,中国轻工业出版社, 2004
    [6] Willemse R C, Posthuma de Boer, van Dam J, Gotsis A D. Co-Continuous Morphologies in Polymer Blends: The Influence of The Interfacial Tension, Polymer, 1999, 40(4): 827-834
    [7] Willemse R C, Posthuma de Boer, van Dam J, Gotsis A D. Co-Continuous Morphologies in Polymer Blends: A New Model, Polymer, 1998, 39(24): 5879-5887
    [8]张洪斌,周持兴.流场中高分子共混物分散相的形态变化,高分子材料科学与工程, 1999, 15(4): 4-7
    [9] Utracki L A. Polymer Alloys and Blends, Carl Hanser, New York, 1989
    [10] Oosterlinck F, Mours M, Laun H M. Morphology Development of A Polystyrene/Polymethylmethacrylate Blend During Start-up of Uniaxial Elongational Flow, J. Rheol, 2005, 49(4): 897-918
    [11]吴彤,郜华萍,张大伦.乙烯-醋酸乙烯酯共聚物对茂金属聚乙烯的改性研究,中国塑料, 2003, 17(3): 25-31
    [12]邹盛欧. EVA的应用与加工,现代塑料加工应用, 1998, 10(4): 46-50
    [13]曹民干. EVA与PP/EVA共混体系机械性能的研究,塑料, 2003, 32(4): 21-23
    [14] Potschke P, Paul D R. Morphology and Electrical Resistivity of Melt Mixed Blends of Polyethylene and Carbon Nanotube Filled Polycarbonate, Polymer, 2003, 44(26): 8061-8069
    [15] Patel S S, Larson R G. Shear Orientation and Rheology of A Lamellar Polystyrene-Polyisoprene Block Copolymer, Macromolecules, 1995, 28(12): 4313-4318
    [16] Sandra S, Wolfram G, Christian F. Quantitative Rheology Evaluation of Phase Inversion in Two-Phase Polymer Blends With Cocontinuous Morphology, Rheol Acta, 2002, 41(1): 77-86
    [17] Weis C, Leukel J, Borkenstein K, Maier D, Gronski W, Friedrich C, Honerkamp. Morphological and Rheological Detection of The Phase Inversion of PMMA/PS Polymer Blends, Polymer Bulletin, 1998, 40(2): 235-241
    [18] Nelson C J, Avgeropoulos G N, Weissert F C, Bohm G A. Relationship Between Rheology, Morphology, and Physical Properties in Heterogeneous Blends, Angew Makromol Chem, 1977, 60(4): 49-86
    [19] Miles I S, Zurek A. Preparation, Structure, and Properties of Two-Phase Co-Continuous Polymer Blends Polym, Eng Sci, 1988, 28(12): 796-805
    [20] Ho R M, Wu C H, Su A C. Morphology of Plastic/Rubber Blends, Polym Eng Sci, 1990, 30(9): 511-518
    [21] Kitayama N, Keskkula H, Paul D R. Reactive Compatibilization of Nylon- 6/Styrene-Acrylonitrile Copolymer Blends. Part 1. Phase Inversion Behavior, Polymer, 2000, 41(22): 8041-8052
    [22] Everaert V, Aerts L. Morphology Development in Multi-Component Polymer Blends: Composition Effect on Phase Morphology in PP/PET Polymer Blends, Polymer, 1999, 40(24): 6627-6644
    [23] Utracki L A. On The Viscosity-Concentration Dependence of Immiscible Polymer Blends, J Rheol, 1991, 35(8): 1615-1637
    [24] Metelkin V I, Blekht V P. Formation of a Continuous Phase in Heterogeneous Polymer Mixtures, Coll J USSR, 1984, 46(2): 425-429
    [25] Utracki L A. Polymer Alloys and Blends: Thermodynamics and Rheology, Hanser Publi, 1989
    [26] Mekhilef N, Verhoogt H. Phase Iinversion and Dual-Phase Continuity in Polymer Blends: Theoretical Predictions and Experimental Results, Polymer, 1996, 37(18): 4069-4077
    [27] Luciani A, Jarrin J. Morphology Development in Immiscible Polymer Blends, Polym Eng Sci, 1996, 36(12): 1619-1626
    [28] Steinmann S, Gronski W, Friedrich C. Quantitative Rheological Evaluation of Phase Inversion in Two-Phase Polymer Blends With Co-Continuous Morphology, Rheol Acta, 2002, 41(2): 77-86
    [29] Bourry D, Favis B D. Cocontinuity and Phase Inversion in HDPE/PS Blends: Influence of Interfacial Modification and Elasticity, J Polym Sci: Part B, 1998, 36(11): 1889-1899
    [30] Van Oene H. Modes of Dispersion of Viscoelastic Fluids in Flow, J Colloid Interface Sci, 1972, 40(12): 448-467
    [31] Steinmann S, Gronski W, Friedrich C. Cocontinuous Polymer Blends: Influence of Viscosity and Elasticity Ratios of the Constituent Polymers on Phase Inversion Polymer, 2001, 42(15): 6619-6629
    [32] Willemse R C, Speijer A, Langeraar A E, Posthuma de Boer A. Tensile Moduli of Co-Continuous Polymer Blends, Polymer, 1999, 40(24): 6645-6650
    [33] Lyngaae-Jogensen J, Rasmussen K L, Chtcherbakova E A, Utracki L A. Flow Induced Deformation of Dual-Phase Continuity in Polymer Blends and Alloys. Part I, Polym Eng Sci, 1999, 39(6): 1060-1071
    [34]谭志明,用于密炼机计算的数学模型,橡胶技术与装备, 1989, 4(1): 2-8
    [1] Utracki LA. Polymer alloys and blends, Hanser Publi, 1989
    [2] Mekhilef N, Verhoogt M. Phase Inversion and Dual-Phase Continuity in Polymer Blends: Theoretical Predictions and Experimenal Results, Polymer, 1996, 37(18): 4069-4077
    [3] Omonov T S, Harrats C, Moldenaers C. Phase Continuity Detection and Phase Inversion Phenomena in Immiscible Polypropylene/Polystyrene Blends With Different Viscosity Ratios, Polymer, 2007, 48(20): 5917-5927
    [4] Favis B D, Chalifoux G P. The Effect of Viscosity Ratio on The Morphology of Polypropylene/Polycarbonate Blends During Processing, Polym Eng Sci, 1987, 27(20): 1591-1600
    [5] Bu W S, He J S. The Effect of Mixing Time on The Morphology of Immiscible Polymer Blends, J Appl Polym Sci, 1998, 62(9): 1445-1456
    [6] Bousmina M. Effect of Interfacial Tension on Linear Viscoelastic Behavior of Immiscible Polymer Bblends, Rheol Acta, 1999, 38(14); 251-254
    [7] Chen T H, Su A C. Morphology of Poly(p-phenylene sulfide) Polyethylene Blends, Polymer, 1993, 34(23): 4826-4831
    [8]曹胜先,王刚.国内外EVA产品的开发研究现状及进展,中国塑料, 2003, 17(4): 12-19
    [9] Jordhamo G M, Manson J A, Sperling L H. Phase Continuity and Inversion in Polymer Blends and Simultaneous Interpenetrating Networks, Polym Eng Sci, 1986, 26(8): 517-524
    [10] Bourry D, Favis B D. Cocontinuity and Phase Inversion in HDPE/PS Blends: Influence of Interfacial Modification and Elasticity, J Polym Sci: Part B, 1998, 36(11): 1889-1899
    [11]王克俭,周持兴.振动共混对聚丙烯/聚碳酸酯流变性能的影响,高分子材料科学与工程, 2002, 18(5): 16-20
    [12]王国全,王秀芬,聚合物改性,中国轻工业出版社, 2004
    [13] Palierne J F. Linear Rheology of Viscoelastic Emulsions With Interfacial Tension, Rheology Acta, 1990, 29(20): 421-424
    [14]余若冰,周持兴,俞炜. TLCP/PEI共混体系的流变特性与结构关系的研究,高等学校化学学报, 2004, 25(4): 2140-2143
    [15] Souza A M C, Demarquette N R. Influence of Composition on The Linear Visco-Elastic Behavior and Morphology of PP/HDPE Blends, Polymer, 2002, 43(4): 1313-1321
    [16] Bousmina M, Muller R. Linear Viscoelasticity in The Melt of Impact PMMA. Influence of Concentration and Aggregation of Dispersed Rubber Particles, J Rheol, 1993, 37(4): 663-680
    [17] Brahimi B, Ait-Kadi A, Ajji A. Rheological Properties of Copolymer Modified Polyethylene/Polystryrene Blends, J Rheol, 1991, 35(6): 1069-1091
    [18] Vignaux-Nassiet V, Allal A, Montfort J P. Emulsion Models and Rheology of Filled Polymers, Eur Polym J, 1998, 34(3): 309-322
    [19] Gramespacher H, Meissner J. Interfacial Tension Between Polymer Melt Measured By Oscillations of Their Blends, J Rheol, 1992, 36(6): 1127-1141
    [20]张远超,朱定一,许少妮.高聚物表面的润湿性实验及表面张力的计算,科学技术与工程, 2009, 9(13): 1671-1819
    [21] Wu S H. Formation of Dispersed Phase in Incompatible Polymer Blends: Interfacial and Rheological Effects, Polym Eng Sci, 1987, 27(5): 335-343
    [22] Michalski M C, Hardy J, Saramago B J V. On the Surface Free Energy of PVC-EVA Polymer Blends Comparison of Different Calculation Methods, J Coll Inter Sci, 1998, 20(8): 319-328
    [23]孙杰,聂福德,张凌. TATB与氟聚合物界面张力及粘附功的计算,粘接, 2001, 22(1): 27-28
    [24] [25] Li J M, Ma P L, Favis B D. The Role of The Blend Interface Type onMorphology in Cocontinuous Polymer Blends, Macromolecules, 2002, 35(12): 2005-2016.
    [25]吴培熙,张留成.聚合物共混改性,中国轻工业出版社, 1998
    [1]郑学晶,李忠明,杨鸣波,沈经炜.极不相容共混体系形态的研究,中国塑料, 1999, 13(2): 27-32
    [2] Paul D R, Newman S. Polymer Blends, Academic, New York, 1978
    [3] Kumin Y, Chang D H. Effects of Shear Flow and Annealing on The Morphology of Rapidly Precipitated Immiscible Blends of PS/PI Polymer, 1996, 37(26): 5795-5805
    [4] Scott C E, Macosko C W. Morphology Development During The Initial Stages of Polymer-Polymer Blending, Polymer, 1995, 36(3): 461-470
    [5] Taylor G I. The Viscosity of a Fluid Containing Small Drops of Another Fluid, Proc Roy Soc, 1934, 14(6): 501-523
    [6] Moreira A C, Francisco O C, Soares B G. Cocontinuous Morphologies in Polystyrene/Ethylene-Vinyl-Acetate Blends: The Influence of The Processing Temperature, J Appl Poly Sci, 2003, 89(2): 386-398
    [7] Harm V, Jaap V D, Posthuma de Boer A. Formation and Stability of Co-continuous Blends with a Poly(ether-ester) Block Copolymer Around Its Order-Disorder Temperature, Polymer, 1999, 40(5): 1119-1130
    [8] Puyvelde P V, Vananroye P, Cardinaels R, Moldenaers P. Review on Morphology Development of Immiscible Blends in Confined Shear Flow, Polymer, 2008, 49(25): 5363-5372
    [9] Harm V, Barbara J J, van L, Japp v D, Posthuma de Boer A. Co-continuous Morphology in Polymer Blends with SEBS Block Copolymers, Polymer, 1999, 40(24): 6661-6672
    [10] Chapleau N, Favis B D, Carreau P J. Measuring The Interfacial Tension of Polyamide/Polyethylene and Polycarbonate/Polypropylene Blends: Effect of Temperature, Polymer, 2000, 41(17): 6695-6698
    [11]李新法,黄灵阁,胡宏伟.乙烯-醋酸乙烯共聚物的流变性能,高分子材料科学与工程, 2007, 23(6): 124-131
    [12]王国全,王秀芬,聚合物改性,中国轻工业出版社, 2004
    [13] Cox R G. The Deformation of A Drop in A General Time-Dependent Fluid Flow, J Fluid Mech, 1969, 37(3): 601-623
    [14] Van O H. Modes of Dispersion of Viscoelastic Fluids in Flow, J Colloid Interface Sci, 1972, 40(6): 448-467
    [15] Isayev A I, Fan X Y. Steady and Oscillatory Flows of Silicon-Polypropylene Ceramic Compounds, J Mater Sci, 1994, 29(11): 2931-2938
    [16] Macaúbas P H P, Demarquette N R, Dealy J M. Nonlinear Viscoelasticity of PP/PS/SEBS Blends, Rheol Acta, 2005, 44(3): 295-312
    [17] Quintens D, Groeninckx G., Guest M, Aerts L. Phase Morphology Coarsening and Quantitative Morphological Characterization of A 60/40 Blend of Polycarbonate of Bisphenol A (PC) and Poly(styrene-co-acrylonitrile), Polym Eng Sci, 1990, 30(22): 1484-1490
    [18] Mekhilef N, Favis B D, Carreau P J. Morphological Stability, Interfacial Tension, and Dual-Phase Continuity in Polystyrene-Polyethylene Blends, J Polym Sci: Part B, 1997, 35(2): 293-308
    [19] Veenstra H, van Dam J, Posthuma de Boer A. On The Coarsening of Co-Continuous Morphologies in Polymer Blends: Effect of Interfacial Tension, Viscosity and Physical Cross-Links, Polymer, 2000, 41(8): 3037-3045
    [20]吴人杰.高聚物的表面与界面,科学出版社, 1998
    [1] Rutledge B, Huyette D, Day D. Treatment of Osteomyelitis With Local Antibiotics Delivered Via Bioabsorbable Polymer, Clin Orthop Relat Res, 2003, 411(1): 280-287
    [2] Shenoy D B, Souza R J, Tiwari S B. Potential Applications of Polymeric Microsphere Suspension As Subcutaneous Depot for Insulin, Drug Dev Ind Pharm, 2003, 29(5): 555-563
    [3]傅杰,李世普.聚合物药物控制释放体系研究进展,材料导报, 1999, 13(6): 52-57
    [4] Shirlnn X, Richard T L. Diffusion of Benzocaine in Poly(ethylene-vinyl acetate) Membranes: Effects of Vehicle Ethanol Concentration and Membrane Vinyl Acetate Content, J Contr Rel, 1996, 38,(12): 185-191
    [5] Cypes S H, Saltzman W M, Giannelis E P. Organosilicate-Polymer Drug Delivery Systems: Controlled Release and Enhanced Mechanical Properties, J Contr Rel, 2003, 90(12): 163-169
    [6] Little J P, Tevelen G, Adam C G, Evans J H, Pearcy M J. Development of a Biaxial Compression Device For Biological Samples: Preliminary Experimental Results For a Closed Cell Foam, J Mech Beha of Biome Mater, 2009, 2(2): 305-309
    [7] Fleming A B, Saltzman W M. Simultaneous Delivery of an Active Protein and Neutralizing Antibody: Creation of Separated Regions of Biological Activity, J Control Release, 2001, 70(12): 29-36
    [8] Walsh W R, Kim H D, Jong Y S, Valentini R F. Controlled Release of Platelet-Derived Growth Factor Using Ethylene Vinyl Acetate Copolymer (EVAc) Coated on Stainless-Steel Wires, Biomaterials, 1995, 16(14): 1319-1325
    [9] Kim H D, Valentini R F. Human Osteoblast Response in Vitro to Platelet Derived Growth Factor and Transforming Growth Factor-Beta Delivered From Controlled-Release Polymer Rods, Biomaterials, 1997, 18(13): 1175-1184
    [10] Robert L, Dean S T. Control of Release Kinetics of Macromolecules From Polymers, J Mem Sci, 1980, 7(2): 333-350
    [11] Lesser G J, Grossman S A, Leong K W. In Vitro and in Vivo Studies of Subcutaneous Hydromorphone Implants Designed for The Treatment of Cancer Pain, Pain, 1996, 65(12): 265-272
    [12]苏佳灿,李明,禹宝庆,张春才.纳米羟基磷灰石/聚己内酯复合生物活性多孔支架研究,无机材料学报, 2009, 24(3): 485-490
    [13] Goh J C H, Shao X X. Tissue Engineering Approach to Osteochondral Repair and Regeneration, J Mech Med Biol, 2004, 4(4): 463-483
    [14] Freyman T, Yannas I, Gibson L. Cellular Materials as Porous Scaffolds for Tissue Engineering, Pro in Mater Sci, 2001, 46(15): 273-282
    [15] Katoh K, Tanabe T, Yamauchi K. Novel Approach to Fabricate Keratin Sponge Scaffolds with Controlled Pore Size and Porosity, Biomaterials, 2004, 25(3): 4255-4262
    [16] Chen G, Ushida T, Tetsuya T. A Biodegradable Hybrid Sponge Nested with Collagen Microsponges, Biomed Mater Res, 2000, 51(21): 273-279
    [17] Mikos A G, Sarakinos G, Leite S M. Laminated Three-Dimensional Biodegradable Foams for Use in Tissue Engineering, Biomaterials, 1993, 14(5): 323-330
    [18]吴景梅,吴若峰.组织工程多孔支架材料性质及制备技术,化工新型材料, 2004, 32(9): 17-20
    [19] Hulbert S F, Morrison S J, Klawitter J J. Tissue Reaction to Three Ceramics of Porous and Non-Porous Structure, J Biomed Mater Sci, 1972, 6(5): 347-374
    [20]吴林波,丁建东.组织工程三维多孔支架的制备方法和技术进展,功能高分子学报, 2003, 16(1): 91-96
    [21] Li W J, Laurencin C T, Caterson E J, Tuan R S, Ko F K. Electrospun Nanofibrous Structure: A Novel Scaffold For Tissue Engineering, J Biomed Mater Res, 2002, 60(4): 613-621

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700