强震作用下堤坝海床地基液化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液化问题是具有理论价值和实际意义的热点和难点问题。目前国内外对陆地砂性土地基地震液化研究较多,而对海床砂性土的液化研究相对较少。海上和沿海区域砂性土孔隙比高,密实度差,许多物理指标与淤泥相当,国内外可供借鉴的工程较少,对该类地基的地震加固处理带来了风险和困难。
     本文对饱和砂土液化的研究现状进行了回顾,对液化机理、传统判别方法、液化的数值模拟方面进行了总结归纳,着重介绍了杨朝晖叠套屈服面本构和抗震软件OpenSees.对于计算所需的材料参数,建立了各参数与相对密实度之间的关系,根据土体的相对密实度即可得到计算参数;使用上述方法得到计算参数,对土体单元采用软件OpenSees计算获得了土体抗液化强度,同时采用地震液化理论获得抗液化强度,两种不同方法所得结果基本一致,从而验证了本文所用方法的适用性,同时也体现了材料模拟液化的能力。
     通过动三轴试验观察了饱和砂土在循环荷载作用下的液化情况,研究了循环应力比、固结应力和相对密实度对液化的影响,并得到了饱和砂土在循环荷载作用下超静孔压和轴向应变的发展规律。
     以印尼万丹省苏娜拉亚火电厂8号机组循环水进水明渠堤坝为研究背景,对该场地进行了液化分析。根据场地的历史地震情况,选择了合适的地震输入曲线,以加速度峰值αmax=0.3g为地震输入,对自由场地进行了计算分析,判定了场地的液化情况,并计算了可能发生的变形情况;对堤坝及地基整体进行了有限元动力分析,得到了整体的位移场,预测了堤坝和地基在强震作用下的流滑和震陷;最后分析了碎石桩处理地基后堤坝的地震响应,评价处理效果。
引文
1. Alonso E.E, Krizek R.J. Randomness of settlement rate under stochastic load. Journal of Geotechnical Engineering Division,1974,100(6):1211-1226.
    2. Anandarajah A. HOPDYNE-A finite element computer program for the analysis of static, dynamic and earthquake soil and soil-structure systems. The Johns Hopkins University, Baltimore, Maryland,1990.
    3. Andrus R.D., Stokoe K.H. Liquefaction resistance based on shear wave velocity [C].Proc., NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Nat. Ctr. for Earthquake Engrg. Res., State Univ. of New York at Buffalo,1997,89-128.
    4. Aubry D., Hujeux J.G., Lassoudiere F., Memoin Y. A double memory model with multiple mechanisms for cyclic soil behavior [J]. International Symposium on Numerical Models in Geomechanics, NUMOG,1982,3-13.
    5. Baladi G.Y., Renoud-Lias. An elasto-plastic constitutive model for saturated sand subjected to monotonic and/or cyclic loading [C]. Proc.3rd Inter.Conf.on Numerica Methods in Geomechnics, Achen:1979.
    6. Bartlett S.F., Youd T.L. Empirical prediction of lateral spread displacement [J]. Journal of Geotechnical Engineering, ASCE,1995,121(4):316-329.
    7. Biot M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid, Part I-low-frequency range [J].Journal of the Acoustical Society of America,1956,28(2):168-178.
    8. Biot M.A. Theroy of propagation of elastic waves in a fluid-saturated porous solid, Part II-low-frequency range [J].Journal of the Acoustical Society of America,1956,28(2):179-191.
    9. Chai J.C., Shen S.L., Miura N., Bergado D.T. Simple method of modeling PVD-improved subsoil[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 127(11):965-972.
    10. Carter J.P., Booker J.R., Wrothu C.P. A critical state soil model for cyclic loading. In:Pande G.N., Zienkiewicz O.C.,eds. Soil Mechanics-Transient and Cyclic Loadings. London:John Wiley and Son,1982:35-62.
    11. Casagrande A. Characteristics of Slopes and Earth Fills [J]. Journal of Boston Society of Civil Engineers,1936.Contributions to Soil Mechanics 1925-1940.BSCE,1940,257-276.
    12. Casagrande A. Liquefaction and Cyclic Deformation of Sands:A Critical Review. Presented at Fifth Panamerican Conference on Soil Mechanics and Foundation Engineering. Buenos Aires. Argentina:1975
    13. Catro G., Poulos S.J. Factors affecting liquefaction and cyclic mobility [J]. Journal of the Geotechnical Engineering Division, ASCE,1977,103(GT6).
    14. Chan A.H.C. A unified finite element solution to static and dynamic geomechanics problems [PhD dissertation]. University College of Swansea, Wales,1988.
    15. Chan A.H.C. User's manual for DIANA-SWANDYNE II.Report of Department of Civil Engineering, Glasgow University,1990.
    16. Dobry R., Ladd R.S., Yokel F.Y., Chung R.M., Powell D. Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method. NBS Building Science Series 138, National Bureau of Stands,1982, US Department of Commerce.
    17. Guangwen Zhang. Estimation of liquefaction-induced ground deformations by CPT&SPT-based approaches [D].University of Alberta,2001.
    18. Hardin B.O., Drnevich V.P. Shear modulus and damping in soils:measurement and parameter effects [J]. Journal of the Soil Mechanics and Foundation Engineering Division,1972, 98(6):603-624.
    19. Idriss I.M., Lysmer J., Hwang R., Seed H.B. QUAD-4:a computer program for evaluating the seismic response of soil structures by variable damping finite element procedures. Report EERC73-16, University of California, Berkeley,1973.
    20. Ishihara K. Soil behaviour in earthquake geotechnics [M]. Oxford, Clarendon Press,1996.
    21. Ishihara K. Undrained deformation and liquefaction of sand under cyclic stress [J]. Soil and Foundation,1975,15(1):13-28.
    22. Iwan W.D. On a class of models for the yielding behavior of continuous and composite systems [J]. Journal of Applied Mechanics Transactions of the ASME,1967,34(3):612-617.
    23. Kabilamany K., Ishihara K. Stress dilatancy and hardening laws for rigid granular model of sand [J]. Soil Dynamics and Earthquake Engineering,1990,9(2):66-77
    24. Kabilamany K., Ishihara K. Cyclic behavior of sand by the multiple shear mechanism model [J]. Soil Dynamics and Earthquake Engineering,1991,10(2):74-83.
    25. Kawai T. Summary report on the development of the computer program DIANA-Dynamic Interaction Approach and Nonlinear Analysis. Science University of Tokyo, Tokyo,1985.
    26. Kramer S.L., Seed H.B. Initiation of soil liquefaction under static loading [J]. Journal of the Geotechnical Engineering, ASCE,1988,114(4).
    27. Krieg R.D. A practical two surface theory [J]. Applied Mechanics,1975,42.
    28. Kulhawy F.H., Mayne P.W. Manual on estimating soil properties for foundation design. Report EL-6800, Electric Power Research Inst., Palo Alto,1990,306.
    29. Liao S., Whitman R.V. Overburden correction factors for SPT in sand [J]. Journal of Geotechnical Engineering, ASCE,1986,112(3):373-377.
    30. Li X.S., Wang Z.L., Shen C.K. SUMDES:A nonlinear procedure for response analysis of horizontally-layered sites subjected to multidirectional earthquake loading. Department of Civil Engineering, University of California, Davis,1992.
    31. Lysmer J., Udaka T., Tsai C.F., Seed H.B. FLUSH:a computer program for approximate 3-D analysis of soil-structure interaction problems. Report EERC75-30, Earthquake Engineering Researching Center, University of California, Berkeley,1975.
    32. Mastuoka H. Stress-strain relationship of sand based on the mobilized plane [J]. Soil and Foundations,1974,14(2):1-27.
    33. Mazzoni S, McKenna F, Fenves G.L. OpenSees command language manual. Pacific Earthquake Engineering Center, University of California, Berkeley, CA,2005.
    34. Mejia L.H., Seed H.B. Three dimensional dynamic response analyses of earth dams. Report EERC-81-115,1987,34-46.
    35. Ming H.Y, Li X.S. SUMDES2D:a two dimensional fully-coupled geotechnical earthquake analysis program. Report to the Department of Civil Engineering, the Hong Kong University of Science and Technology, Hong Kong,2001.
    36. Morz Z., Norris V.A., Zienkiewicz O.C. An anisotropic critical state model for soils subjected to cyclic loading [J]. Geotechnique,1981,31(4):451-470.
    37. Morz Z., Norris V.A., Zienkiewicz O.C. Application of an anisotropic hardening model in the analysis of elasto-plastic deformation of soils [J]. Geotechnique,1979,29(1):1-34.
    38. Muraleetharan K.K., Mish K.D., Yogachandran C., Arulanandan K. DYSAC2:Dynamic soil analysis code for 2-dimensional problems. Department of Civil Engineering, University of California, California,1988.
    39. Newmark N.M. Effect of earthquakes on dams and embankments [J]. Geotechnique,1965, 5(2):139-160.
    40. Oka F., Yashima A. User's manual of 2-dimensional liquefaction program, LIQCA. Department of Civil Engineering, Gifu University, Japan,1990.
    41. Poulos S.J., Castro G., France J.W. Liquefaction evaluation procedure [J]. Journal of the Geotechnical Engineering, ASCE,1985, 111(GT6).
    42. Provest J.H. A simple Plasticity theory for frictional cohesionless soils [J]. Soil Dynamics and Earthquake Engineering,1985,4(1):9-17.
    43. Provest J.H. Anisotropic undrained stress-strain behavior of clay [J]. Journal of Geotechnical Engineering Division,1978,104(8):1075-1090.
    44. Prevost J.H. DYNAFLOW:a nonlinear transient finite element analysis program. Report of Civil Engineering, Princeton University,1985.
    45. Provest J.H. Multi-mechanism elasto-plastic model for soils [J]. Journal of Engineering Mechanics,1990,116(9):1924-1944.
    46. Provest J.H. Plasticity theory for soil stress-strain behavior [J]. Journal of Geotechnical Engineering Division,1978,104(5):1177-1194.
    47. Ramberg W., Osgood W.R. Description of stress strain curves by three parameters. Technical note 902, National Advisory Committee for Aeronautics, Washington, D.C.,1943.
    48. Rauch A.F. EPOLLS:An empirical method for predicting surface displacement due to liquefaction-induced ground lateral spreading in earthquakes [PHD Thesis]. Virginia:Virginia Polytechnic Institute,1997.
    49. Seed H.B. Dynamic analysis of the slide in the lower San Fernando dam during the earthquake of February 9,1971 [J]. Journal of the Geotechnical Engineering Division, ASCE, 1975,101(GT5).
    50. Seed H B. Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes [J]. Journal of the Geotechnical Engineering Division, ASCE,1979, 105(GT2):201-255
    51. Seed H.B., Booker R. Stabilization of potentially liquefiable sand deposits using gravel drains [J]. Journal of Geotechnical Engineering Division,1976,102(7):1-15
    52. Seed H.B., Idriss I.M. Simplified procedure for evaluating soil liquefaction potential [J]. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE,1971, 97(9):1249-1273.
    53. Seed H.B., Idriss I.M. Ground motions and soil liquefaction during earthquakes. Earthquake Engineering Research Institute Monograph,1982, Oakland, California.
    54. Seed H.B., Lee K.L. Liquefaction of saturated sands during cyclic loading [J]. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE,1966,92(SM6):105-415
    55. Seed H.B., Tokimastu K., Harder L.F., Chung R.M. The influence of SPT procedures in soil liquefaction resistance evaluations [J]. Journal of Geotechnical Engineering, ASCE,1985, 111(12):1425-1445.
    56. Terzaghi K, Peck R B. Soil mechanics in engineering practice [M]. New York:John Wiley & Sons, nc.,1948.
    57. The Committee on Soil Dynamics of the Geotechnical Engineering Division. Definition of terms related to liquefaction. Journal of the Geotechnical Engineering Division, ASCE,1978, 104(GT9):1197-1200.
    58. Towhata I., Sasaki K., Tokida K., Matsumoto H., Tamari Y., Yamada K. Prediction of permanent displacement of liquefied ground by means of minimum energy principle [J]. Soils and Foundations,1992,32(3):97-116.
    59. Valanis K.C. A theory of Viscoplasticity without a yield surface [J]. Archives of Mechanics, 1971,23(4):517-551.
    60. Valanis K.C. Fundamental consequences of a new intrinsic time measure:plasticity as limit of the endochronic theory [J]. Archives of Mechanics,1980,32:171.
    61. Wang Z.L., Dafalias Y.F. Simulation of post-liquefaction deformation of sand [C]. Proceedings of ASCE 15th Engineering Mechanics Conference, Columbia University, New York,2002.
    62. Wilson N.E, Elgohary M.M. Consolidations of soils under cyclic loading [J]. Canadian Geotechnical Engineering Journal,1974,2(3):423-447.
    63. Yasuda S., Nagase H., Kiku H., Uchida Y. The mechanism and a simplified procedure for the analysis of permanent ground displacement due to liquefaction [J]. Soils and Foundations, 1992,32(1):149-160.
    64. Youd T.L. Densification and shear of sand during vibration [J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1970,96(3):863-880.
    65. Youd T.L., Idriss I.M., Andrus R.D., et al. Liquefaction resistance of soils:summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils [J]. Journal of Geotechnical and Geoenvironmental Engineering,2001, 127(10):817-833.
    66. Youd T.L., Noble S.K. Magnitude scaling factors. Proc., NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Nat. Ctr. for Earthquake Engrg. Res., State Univ. of New York at Buffalo,1997,149-165.
    67. Youd T.L., Perkins D.M. Mapping of liquefaction severity index [J]. Journal of Geotechnical Engineering Division, ASCE,1987, (11):1374-1392.
    68. Zienkiewicz O.C. Field equations for porous media under dynamic loads. In Numerical methods in Geomechanics, D. Reidel, Boston U.S.A,1982.
    69. Zienkiewicz O.C., Shiomi T. Dynamic Behavior of saturated porous media:the generalized Biot formulation and its numerical solution [J]. International Journal of Numerical and Analytical Methods in Geomechanics,1984,8:71-96.
    70. Zienkiewicz O.C., Chan A. H., Pastor, Paul D.K., Shiomi T. Static and Dynamic Behavior of Soils-A rational approach to quantitative solutions, Part Ⅰ-Fully Saturated Problems. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1990,A429:285-309.
    71. Zienkiewicz O.C., Xie Y. M., Schrefler B.A., Ledesma A., Bicanic N. Static and Dynamic Behavior of Soils-A rational approach to quantitative solutions, Part Ⅱ-Semi-Saturated Problems. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences,1990, A429:310-323.
    72.丰土根,刘汉龙,高玉峰.边界面及多重剪切机构模型研究现状[J].河海大学学报(自然科学版),1999,27:32-38.
    73.黄文熙.砂基和砂坡的液化研究[C].水工建设中的结构力学与岩土力学问题.黄文熙论文选集.北京:水利电力出版社,1984,252-256.
    74.刘汉龙,余湘娟.土动力学与岩土地震工程研究进展[J].河海大学学报(自然科学版),1999,1:6-15.
    75.刘汉龙,丰土根,高玉峰,费康.砂土多机构边界面模型及其试验验证[J].岩土力学,2003,24(5):696-700.
    76.史宏彦.无粘性土的应力矢量本构模型[博士学位论文].西安,西安理工大学,2000.
    77.王斌.地震液化大变形预测及其对高速公路工程影响研究[硕士学位论文].南京,东南大学交通学院,2005
    78.王刚,张建民.密度和压力对砂土变形特性影响的统一模型[J].清华大学学报(自然科学版),2003,43(8):1110-1103.
    79.汪闻韶.土的动力强度和液化特性[M].北京:中国电力出版社,1997.
    80.汪闻韶.饱和砂土振动孔隙水压力的产生、扩散和消散[C].第一届土力学及基础工程学术会议论文选集,北京,建筑工业出版社,1964,130-138.
    81.吴世明,徐攸在.土动力学现状与发展[J].岩土工程学报,1998,3:125-131.
    82.谢定义,张建民.往返荷载下饱和砂土强度变形瞬态变化的机理[J].土木工程学报,1987,20(3):83-90.
    83.谢定义,张建民.周期荷载下瞬态孔隙水压力的变化机理与计算模型[J].土木工程学报,1990,23(2):51-60.
    84.徐志英,沈珠江.地震液化的有效应力二维动力分析方法[J].华东水利学院学报,1981,9(3):1-14.
    85.徐志英,沈珠江.土坝地震孔隙水压力产生、扩散和消散的有限元动力分析[J].华东水利学院学报,1981,9(4):1-16.
    86.徐志英,周健.土坝地震孔隙水压力产生、扩散和消散的三维分析[J].地震工程和工程振动,1985,5(4):57-72.
    87.张建民,罗刚.考虑可逆与不可逆剪胀的粗粒土动本构模型[J].岩土工程学报,2005,27(2):178-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700