下地幔主要矿物的熔化、弹性和热力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代地球科学的发展,对地球物质科学的研究已经成为一个非常重要的领域。组成地球的物质在物理和化学性质上控制着地球各圈层的演化及其动力学过程,因此运用现代物理学和现代地球化学手段对地球物质进行全面研究具有非常重要的意义。MgSiO_3钙钛矿同质异构体(~75vol%)、MgO(~20vol%)和CaSiO_3钙钛矿(~5vol%)是地球下地幔最主要的成分,研究它们的高压行为对理解地球的结构、动力学、演化及起源至关重要。然而,在实验室很难达到下地幔对应的压强(24—136 GPa),因而对地球深部矿物物理性质的认识仍十分有限。随着计算机模拟技术的发展,对其物性的认识逐渐成为可能。本工作采用先进的计算机模拟方法,较为深入系统地研究了它们的物理性质,内容主要包括:
     1.利用经典分子动力学和Buckingham对势模型,确定了MgSiO_3钙钛矿和MgO的高压熔化曲线。在地球下地幔的高温高压条件下,理解下地幔的熔化行为对解释地球早期的历史和演化以及对确定地幔的局部熔化在核—幔边界是否是地震观测到超低速区域的原因极其重要。本工作首先在常温常压下对MgSiO_3钙钛矿和MgO的热力学特性进行了数值模拟,检验了相互作用势模型的可靠性。随后预测了温度上升到3000 K压强上升到120 GPa时它们的状态方程。由于熔化是凝聚态物理中很难理解的现象之一,因此对熔化温度的研究也就成了一个难点。本文提出的解决方案是计算热不稳定性温度(也叫过热温度),然后估计过热度来确定熔化曲线。通过计算MgSiO_3钙钛矿和MgO在常压下对应的热不稳定性温度,发现它们的过热度分别为42%和30%,这个结果在Luo Shennian等对元素和化合物均匀形核的归一化能垒分类研究给出的过热范围(10~50%)内。根据不同压强下计算的热不稳定性温度和过热度,最后确定了压强上升到136 GPa(核—幔边界压强)时MgSiO_3钙钛矿和MgO的高压熔化曲线。研究表明:MgO的高压熔化曲线和最近Alfè等利用两相分子动力学模拟的结果吻合的相当好,MgSiO_3钙钛矿的熔化曲线在60 GPa以下相对陡一些,随着压强的增加逐渐变得平缓;在实验研究的范围内与实验结果基本一致;在下地幔压强范围内,与Belonoshko等模拟的熔化温度随压强变化的趋势完全相同,并与其通过现象学计算的结果完全一致。确定下地幔主要矿物的高压熔化线,不仅可为科学地球物理模型的建立奠定坚实的物理基础,而且可以为其它材料高压熔化曲线的理论研究提供方法,从而可以为建立科学的熔化规律提供有效的理论数据。
     2.利用第一性原理平面波赝势方法,研究了MgSiO_3钙钛矿同质异构体、MgO和CaSiO_3钙钛矿的高压弹性行为。在极端条件(如高压,高温等)下,对MgSiO_3钙钛矿同质异构体、MgO和CaSiO_3钙钛矿弹性常数的测量仍面临着极大的挑战。第一性原理计算可为实验方法提供理想的补充,因为它们不需要输入实验参数,也就是说,在理论中没有自由参数。如此的计算具有真正预测的能力,并能提供包括实验很难测量的关键信息。高压弹性的研究表明:1)MgO的B1相(类NaCl结构)稳定上升到397 GPa,排除了在下地幔内B1-B2(类CsCl结构)的相变。压强上升到20 GPa时,MgO的弹性各向异性随着压强的增加逐渐减小。高压下,弹性各向异性符号变为负值,并随着压强的增加其数值逐渐增大,从而预测到MgO在下地幔底部有较大的弹性各向异性。另外,MgO和CaSiO_3钙钛矿强烈地违背了Cauchy条件,这反应了非中心多体力的重要性。2)CaSiO_3钙钛矿的体弹模量类似于MgSiO_3的体弹模量,然而在下地幔对应的压强范围内,它的剪切模量比MgSiO_3的高很多。这表明CaSiO_3钙钛矿不再被看作是地球下地幔主要组成模型的不可见成分,甚至这个矿物少量的成分可对地震性质产生明显的影响,尤其是对剪切波速。此外,CaSiO_3钙钛矿在过渡区和下地幔顶部对应的压强范围内表现出强烈的各向异性。3)研究了压强上升到200 GPa,温度上升到4000 K时,MgSiO_3钙钛矿和后钙钛矿的状态方程,发现后钙钛矿相总是比钙钛矿致密。根据焓相等理论,得到了从钙钛矿相转变到后钙钛矿相的压强为108 GPa。在整个下地幔压强范围内,MgSiO_3钙钛矿和后钙钛矿均表现出强烈的各向异性,各向异性随着压强有明显变化。MgSiO_3钙钛矿相和后钙钛矿相的各向同性波速表明后钙钛矿相是下地幔D″区域(核—幔边界之上200~300 km的地方)最丰富的矿物,而钙钛矿相是下地幔其它区域最主要的矿物。由此可见,地球材料高压弹性的研究与球形地震X线断层摄影术、地理学和放射状局部区域的地震学研究、地幔的不连续、固有振荡模式的分析和研究的其它类型贡献一样详细地揭示了地幔的性质。
     3.利用准谐近似Debye模型,系统地预测了CaSiO_3钙钛矿高温高压下的热力学特性。尽管CaSiO_3钙钛矿是下地幔最丰富的矿物之一,但是人们对其热力学特性的认识极其有限。本文利用该模型首次预测了CaSiO_3钙钛矿的体弹模量、热膨胀系数、热容和熵与温度和压强的关系。研究发现:1)体弹模量与压强成线性关系,随温度的增加而减小;随着压强的增加而增加。2)低温下热膨胀系数迅速增加,高温时变化的趋势变得非常平缓;随着压强的增加,热膨胀系数快速减小。3)高温高压时热容接近某一极限。4)与热膨胀系数和热容不同,熵几乎对压强不敏感。这个结果可为其它矿物和材料的热力学特性研究提供科学的指导意义。
The behavior of Earth materials at high pressure is central to our understanding of the structure, dynamics, and origin of the Earth. Over the range of conditions that exist within the Earth's mantle, the physical properties of condensed matter depend more strongly on pressure than on other factors such as temperature. The high pressure physical properties of Earth materials are difficult to obtain directly through laboratory experiments. However, computer simulations have been increasingly popular in exploring various properties of the Earth's materials at the geophysically relevant conditions. In this paper, the physical properties of the main composition (MgSiO_3 perovskite and post-perovskite, MgO and CaSiO_3 perovskite) of the Earth's lower mantle at high pressures have systemically study using state-of-the-art computer simulation techniques. The main work contains the following sections:
     1. The melting curve of MgSiO_3 perovskite and MgO are simulated by using the constant temperature and pressure molecular dynamics method combined with effective pair potentials. Understanding the melting behavior of Earth materials at the pressure and temperature conditions of the Earth's lower mantle is crucial to deciphering the early history and differentiation of the Earth and to determining if partial melting of the mantle is responsible for the seismologically observed ultra-low velocity zone at the core-mantle boundary. In this work, Firstly, the reliability of the present potential model has been verified. Secondly, the pressure-volume equations of state of MgSiO_3 perovskite and MgO were predicted at higher temperatures and higher pressures. Melting is arguably one of the least well understood processes in condensed matter physics, so a rigorous study of the minerals melting is prohibited either by technical problems or by the present state of the theory. This makes the problem of finding melting temperature of the minerals really challenging. A possible solution is to calculate the temperature of overheating (thermal instability temperature) and then estimate the degree of overheating. It is found that the degree of superheating of MgSiO_3 perovskite and MgO are 42%and 30%, respectively. According to this value, the melting curve of MgSiO_3 perovskite and MgO were determined.
     2. High-pressure elasticity of MgSiO_3 perovskite polymorph, MgO and CaSiO_3 perovskite. Experimental studies in understanding high-pressure behavior of elastic properties of relevant phases are still lacking. First-principles calculations provide the ideal complement to the laboratory approach because they require no input from experiment; that is, there are no free parameters in the theory. Such calculations have true predictive power and can supply critical information including that which is difficult to measure experimentally. High-pressure elasticity of the relevant minerals contains the following sections: 1) The observed B1 phase of MgO was found to be stable up to 397 GPa, precluding the B1-B2 phase transition within the lower mantle. MgO was found to be highly anisotropic in its elastic properties, with the magnitude of the anisotropy first decreasing between 0 and 20 GPa and then increasing from 20 to 150 GPa. We found the high pressure reversal of the sign of elastic anisotropy in MgO and the prediction that MgO has a large elastic anisotropy in the lowermost mantle. The Cauchy condition was found to be strongly violated in MgO and CaSiO_3 perovskite, reflecting the importance of noncentral many-body forces. 2) The bulk modulus of CaSiO_3 perovskite is similar to that of MgSiO_3 perovskite; however, its shear modulus is much higher at pressures corresponding to the lower mantle. This suggests that CaSiO_3 perovskite can no longer be considered as an invisible component in modelling the composition of the lower mantle, and even small amounts of the mineral may affect significantly the seismic properties, particularly shear wave velocity, of the generally accepted Mg-rich silicate perovskite dominated composition of this region. Moreover, CaSiO_3 perovskite exhibits strong anisotropy at pressures corresponding to the transition zone and the top of the lower mantle. 3)Comparison between the volumes of the MgSiO_3 perovskite phase to the post-perovskite phase at the same pressure-temperature conditions indicates that the post-perovskite phase is always denser than the perovskite. According to the usual condition of equal enthalpies, it is shown that the transition from the perovskite phase to the post-perovskite phase occurs at the pressure of 108 GPa. It is found that the MgSiO_3 post-perovskite phase has similar bulk modulus and larger shear modulus than perovskite at relevant pressures. This phase is remarkably anisotropic. Comparisons with seismological observation show that post-perovskite may be the most abundant mineral in the D" region.
     3. The thermodynamic properties of CaSiO_3 perovskite are systemically predicted using the quasi-harmonic Debye model for the first time at high pressure and high temperature. It can be seen that the thermal expansion coefficient increases with T~3 at low temperatures and gradually approaches a linear increase at high temperatures, and then the increasing trend becomes gentler. The effects of the pressure on the thermal expansion coefficient are very small at low temperatures; the effects are increasingly obvious as the temperature increases. As pressure increases, the thermal expansion coefficient decreases rapidly and the effects of temperature become less and less pronounced, resulting in linear high temperature behaviour. The thermal expansion coefficient and heat capacity are shown to converge to a nearly constant value at high pressures and temperatures. Unlike the thermal expansion coefficient and heat capacity, the entropy is nearly insensitive to pressure.
引文
1. Anderson D L, Theory of the Earth. 1989, Boston: Blackwell Scientific.
    2. Allègre C J, Poider J P, Humler E and Hofmann A W, Earth Planet. Sci. Lett., 1995, 134: 515.
    3. Anders E and Ebihara M, Geochim. Cosmochim. Acta., 1982, 46: 2362.
    4. Ringwood A E, Geochim. Cosmochim. Acta., 1991, 55: 2083.
    5. Dziewonski A M and Anderson D L, Phys. Earth Planet. Inter., 1981, 25: 297.
    6. Kennett B L N, Engdahl E R and Buland R, Geophys. J. Int., 1995, 122: 108.
    7. Poirier J P, Introduction to the physics of the Earth's interior. 2nd ed. 2000: Cambridge: Cambridge University Press.
    8. Cohen R E, Mazin I I and lsaak D G. Science, 1997, 275: 654.
    9. Isaak D G. Cohen R E, Mehl M J and Singh D J, Phys. Rev. B, 1993, 47: 7720.
    10. Sherman D M, J. Geophys. Res., 1991, 96: 14299.
    11. Badro J, Struzhkin V V, Shu J, Hemley R J, Mao H K, Kao C C, Rueff J P and Shen G. Phys. Rev. Lett., 1999, 83: 4101.
    12. Pastemak M P, Taylor R D, Jeanloz R, Li X, Nguyen J H and McCammon C A, Phys. Rev. Lea., 1997, 79: 5046.
    13. Helffdch G. Rev. Geophys., 2000, 38: 141.
    14. Chudinovskikh L and Boehler R, Nature, 2001, 411: 574.
    15. Knittle E and Jeanloz R, Nature, 1986, 319: 214.
    16. Mao H K, Hemley R J, Fei Y, Shu J F, Chen L C, Jephcoat A P and Wu Y, J. Geophys. Res., 1991, 96: 8069.
    17. Stixrude L, Hemley R J, Fei Y and Mao H K, Science, 1992, 257: 1099.
    18. Wang Y, Weidner D J, Liebermann R C and Zhao Y, J. Geophys. Res., 1994, 101: 8257.
    19. Funamori N, Yagi T, Utsumi W, Kondo T and Uchida T, J. Geophys. Res., 1996, 101: 8257.
    20. Fiquet G. Dewaele A, Andrault D, Kunz M and Le Bihan T, Geophys. Res. Lett., 2000, 27: 21.
    21. Jackson I, Geophys. J. Int., 1998,134: 291.
    
    22. Verhoogen J, Energetics of the Earth. 1980, Washington: Natl. Acad. Press.
    
    23. Zerr A, Diegler A and Boehler R, Science, 1998,281: 243.
    
    24. Xu Y, Shankland T and Poe B T, J. Geophys. Res., 2000,105: 27865.
    
    25. Knittle E and Jeanloz R, Science, 1991,251: 1438.
    
    26. Stixrude L, Cohen R E, Yu R C and Krakauer H, Am. Mineral., 1996,81: 1293.
    
    27. Chizmeshya A V G, Wolf G H and McMillan P F, Geophys. Res. Lett., 1996,23:2725.
    
    28. Warren M C, Ackland G J, Karki B B and Clark S J, Mineral. Mag., 1998,62: 585.
    
    29. Cahn R W, Nature, 1986,323:668.
    
    30. Cahn R W, Nature, 2001,413:582.
    
    31. Cotterill R M, J. Cryst. Growth, 1980,48: 582.
    
    32. Dziewonski A M and Anderson D L, Earth Planet. Sci. Lett., 1981,25: 297.
    
    33. Dash J G, Rev. Mod. Phys., 1999,71:1737.
    
    34. Daeges J, Gleiter H and Perepezko J H, Phys. Lett. A, 1986,119: 79.
    
    35. Siwick B J, Dwyer J R, Jordan R E and Dwayne Miller R J, Science, 2003,302:1382.
    
    36. Luo S N and Ahrens T J, Appl. Phys. Lett., 2003,82:1836.
    
    37. Sokolowski-Tinten K, Nature, 2003,422: 287.
    
    38. Cahn R W, Nature, 1989,342:619.
    
    39. Fiquet G, Z. Kristall., 2001,216: 248.
    
    40. Oganov A R, Price G D and Scandolo S, Z. Kristall., 2005,220:531.
    
    41. Zerr A and Boehler R, Science, 1993,262:553.
    
    42. Zerr A and Boehler R, Nature, 1994,371: 506.
    
    43. Zerr A, Serghiou G and Boehler R, Geophys. Res. Lett., 1997,24:909.
    
    44. Allen M P and Tildesley D J, Computer Simulation of Liquids. 1997, New York: Oxford University Press.
    
    45. Evans D J and Morriss G P, Statistical mechanics of non-equilibrium liquids. 1990, London: Academic Press.
    
    46. Haile J M, Molecular dynamics simulations. 1992, New York: Wiley.
    
    47. Heermann D W, Computer simulation methods in theoretical physics. 1990, Berlin: Springer.
    
    48. Belonoshko A B and Dubrovinsky A S, Am. Mineral., 1996,81: 303.
    
    49. Chen Q F, Cai L C, Duan S Q and Chen D Q, J. Phys. Chem. Solids, 2004,65:1077.
    50. Liu Z J, Cheng X L, Chen X R, Zhang H and Lu LY, Chin. Phys., 2004, 13: 1096.
    51. Sun X W, Liu Z J, Chen Q F, Chu Y D and Wang C W, Phys. Lett. A, 2006, 360: 362.
    52. Shen G and Lazor P, J. Geophys. Res., 1995, 100: 17699.
    53. Heinz D L and Jeanloz R, J. Geophys. Res., 1987, 92: 11437.
    54. Knittle E and Jeanloz R, Geophys. Res. Lett., 1989, 16: 421.
    55. Sweeney J S and Heinz D L, Geophys. Res. Lett., 1993, 20: 855.
    56. Ito E and Katsura T, Melting of ferromagnesian silicates under the lower mantle conditions, in High-Pressure Research: Application to Earth and Planetary Sciences, Y. Syono and M. H. Manghnani, Editors. 1992, Terra Science Tokyo.
    57. Kesson S E and Fitz Gerald J, Earth Planet. Sci. Lett., 1992, 111: 229.
    58. Akella J and Kennedy G C, J. Geophys. Res., 1971, 76: 4969.
    59. Boehler R and Ross M, Earth Planet. Sci. Lett., 1997, 153: 223.
    60. Errandonea D, Schwager B, Ditz R, Gessmann C, Boehler R and Ross M, Phys. Rev. B, 2001, 63: 132104.
    61. Boehler R, Nature, 1993, 363: 534.
    62. Jephcoat A P and Besedin S P, Phil. Trans. R. Soc. A, 1996, 354: 1333.
    63. Laio A, Bernard S, Chiarotti G L, Scandolo S and Tosatti E, Science, 2000, 287: 1027.
    64. Alfè D, Vocadlo L, Price G D and Gillan M J, J. Phys.: Conden. Matter, 2004, 16: S973.
    65. Shen G. Lazor P and Saxena S K, Phys. Chem. Miner., 1993, 20: 91.
    66. Shen G. Mao H, Hemley R J, Duffy T S and Rivers M L, Geophys. Res. Lett., 1998, 25: 373.
    67.经福谦.实验物态方程.1999:科学出版社.
    68.王礼立,应力波基础 (第二版).2005,北京:国防工业出版社.
    69. Johnson J N and Cheret R, Shock Waves, 1999, 9: 193.
    70. Huser G and Koenig M, Phys. Plasmas, 2005, 12: 060701.
    71. Baumung K and Kanel G I, Int. J. Impact Engng., 1997, 20: 101.
    72. Duvall G E and Graham R A, Rev. Mod. Phys., 1977, 49: 523.
    73.唐志平,冲击相变基础.1992,合肥:中国科学技术大学.
    74. Fritz J N and Morgan J A, Rev. Sci. Instrum., 1973, 44: 215.
    75. Rosenberg Z and Brar N S, Rev. Sci. Instrum., 1988, 59: 991.
    76. McQueen R G. Hopson J W and Fritz J N, Rev. Sci. Instrum., 1982, 53: 245.
    77. Duffy T S and Ahrens T J, J. Geophys. Res., 1992, 97: 4503.
    78. Tan H, Dai C D, Zhang L Y and Xu C H, Appl. Phys. Lett., 2005,87: 221905.
    
    79. Tang W H, Jing F Q, Zhang R Q and Hu J B, J. Appl. Phys., 1996,80: 3248.
    
    80. Yoo C S, Holmes N C, Ross M, Webb D J and Pike C, Phys. Rev. Lett., 1993,70: 3931.
    
    81. Hixons R S, Boness D A, Shaner J W and Moriarty J A, Phys. Rev. Lett., 1989,62:637.
    
    82. Lindemann FA, Z. Phys., 1910,11:609.
    
    83. Hunter L and Siegel S, Phys. Rev., 1942,61: 84.
    
    84. Sun X W, Chen Q F, Chu Y D and Wang C W, Physica B, 2005,370:186.
    
    85. Born M, J. Chem. Phys., 1939,7:591.
    
    86. Tallon J L, Nature, 1982,299: 188.
    
    87. Tallon J L, Robinson W H and Smedley S I, Nature, 1977,266: 337.
    
    88. Jin Z H, Gumbsch P, Lu K and Ma E, Phys. Rev. Lett., 2001,87: 055703.
    
    89. Herzfeld K F and Goeppert-Mayer M, Phys. Rev., 1934,46: 995.
    
    90. Boyer LL, Phase Tran., 1985,5:1.
    
    91. Gorecki T, Z Metall., 1974,65: 426.
    
    92. Rubcic A and Rubric J B, Fizika., 1978,10:294.
    
    93. Morris J R, Wang C Z, Ho K M and Chan C T, Phys. Rev. B, 1994,49: 3109.
    
    94. Wang Y, Ahuja R and Johansson B, Phys. Rev. B, 2001,65:014104.
    
    95. Mizushima S, J. Phys. Soc. Jpn., 1960,15:70.
    
    96. Ookawa A, J. Phys. Soc. Jpn., 1960,15:2191.
    
    97. Wang Z, Griffn W L, O'Reilly S Y, Zheng H and Mao H, J. Phys. Chem. Solids, 2000, 61: 1815.
    
    98. Wang Z W, Lazor P and Saxena S K, High Temp. High Press., 2001,33: 357.
    
    99. Belonoshko A B, Geochim. Cosmochim. Acta, 1994,58:4039.
    
    100. Belonoshko A B, Skorodumova N V, Rosengren A, Ahuja R, Johansson B, Burakovsky L and Preston D L, Phys. Rev. Lett., 2005,94:195701.
    
    101. Burakovsky L and Preston D L, J. Mechan. Phys. Solids Suppl., 2004,65: 1581.
    
    102. Burakovsky L, Preston D L and Greeff C W, Phys. Rev. B, 2003,67: 094107.
    
    103. Car R and Parrinello M, Phys. Rev. Lett., 1985,55: 2471.
    
    104. Alder B J and Wainwright T E, J. Chem. Phys., 1957, 27: 1208.
    
    105. Sugino O and Car R, Phys. Rev. Lett., 1995,74: 1823.
    
    106. de Wijs G A, Kresse G and Gillan M J, Phys. Rev. B, 1998, 57: 8223.
    107. Alfe D, Gillan M J and Price G D, Phys. Rev. B, 2002,65: 165118.
    
    108. Alfe D, Price G D and Gillan M J, Phys. Rev. B, 2001,64:045123.
    
    109. Belonoshko AB, Ahuja R and Johansson B, Phys. Rev. Lett., 2000,84: 3638.
    
    110.Vocadlo L and Price G D, Phys. Chem. Miner., 1996,23:42.
    
    111.Moriarty J A, Young D A and Ross M, Phys. Rev. B, 1984,30: 578.
    112.Mei J and Davenport J W, Phys. Rev. B, 1992,46: 21.
    
    113.Straub G K, Aidun J B, Willis J M, Sanchez-Castro C R and Wallace D C, Phys. Rev. B, 1994, 50: 5055.
    
    114.Belonoshko A B and Ahuja R, Phys. Earth Planet. Inter., 1997,102:171.
    115.Belonoshko A B, Ahuja R, Eriksson O and Johansson B, Phys. Rev. B, 2000,61: 3838.
    116.Moriarty J A, Belak J F, Rudd R E, Soderlind P, Streitz F H and Yang L H, J. Phys.: Conden. Matter, 2002,14: 2825.
    
    117.Vocadlo L and Alfe D, Phys. Rev. B, 2002,64: 214105.
    118.Alfe D, Phys. Rev. B, 2003,68:064423.
    119.Vocadlo L, Alfe D, Price G D and Gillan M J, J. Chem. Phys., 2004,120:2872.
    
    120. Alfe D, Gillan M J and Price G D, Nature, 1999,401:462.
    
    121. Craig M S, Phys. Chem. Miner., 2004,31: 12.
    
    122. Lu K and Li Y, Phys. Rev. Lett., 1998,80:4474.
    
    123. Luo S N, Ahrens T J, Cagm T, Strachan A, Goddard III W A and Swift D C, Phys. Rev. B, 2003,68:134206.
    
    124. Theodorou D H and Sute U W, Macromol., 1986,19:139.
    
    125. Brown D and Clarke H R, Macromol., 1991,24: 2075.
    
    126. Rerendesen H J C, Postma J P M and Van Gunsteren W F, J. Chem. Phys., 1984,81: 3684.
    
    127. Parrinello M, J. Chem. Phys., 1982,76: 2662.
    
    128. Ray R J, Comp. Phys. Rep., 1988,8:109.
    
    129. Gusev A A, Zehnder M M and Suter U W, Phys. Rev. Rep., 1996, B54: 1.
    
    130. Jeanloz R and Morris S, Annu. Rev. Earth Planet. Sci., 1986,14: 377.
    
    131. Turcotte D L and Schubert G, Geodynamics. 1982, New York: John Wiley.
    
    132. Aki K and Richards P G, Quantitative Seismology: Theory and Methods. Vol. 2. 1980, New York: W. H. Freeman.
    
    133. Bukowinski M S T, Ann. Rev. Earth Planet. Sci., 1994,22:167.
    134. Stixrude L, Cohen R E and Hemley R J, Rev. Mineral., 1998,37: 639.
    
    135. Nye J F, Physical Properties of Crystals: Their Representation by Tensors and Matrices. 1985, New York: Clarendon.
    
    136. Weidner D J and Vaughan M T, J. Geophys. Res., 1982,87:9349.
    
    137. Ishii M and Tromp J, Science, 1999,285:1231.
    
    138. Garnero E J and Helmberger D V, Geophys. Res. Lett., 1996,23:977.
    
    139. Birch F, J. Geophys. Res., 1952,57: 227.
    
    140. Jeanloz R and Thompson A, Rev. Geophys., 1983,21: 51.
    
    141. Montagner J P, Pure Appl. Geophys., 1998,151: 223.
    
    142. Anderson D L, J. Geophys. Res., 1987,92: 13968.
    
    143. Robertson G S and Woodhouse J H, J. Geophys. Res., 1996,101: 20041.
    
    144. van der Hilst R, Widiyantoro S and Engdahl E R, Nature, 1997,386: 578.
    
    145. van der Hilst R and Karason H, Science, 1999,283: 1885.
    
    146. Anderson D L and Given J W, J. Geophys. Res., 1982,87: 3893.
    
    147. Liebermann R C and Li B, Rev. Mineral., 1998,37:459.
    
    148. da Silva C, Stixrude Land Wentzcovitch R M, Geophys. Res. Lett., 1997,24: 1963.
    
    149. Karki B B and Crain J, J. Geophys. Res., 1998,103: 12405.
    
    150. Duan W H, Karki B B and Wentzcovitch R M, Am. Mineral., 1999,84:1961.
    
    151. Maradudin A A, Montroll E W, Weiss G H and Ipatova I P, Theory of Lattice Dynamics in the Harmonic Approximation. 1971, London: Academic Press.
    
    152. Blanco MA, Francisco E and Luana V, Comput. Phys. Commun., 2004,158: 57.
    
    153. Blanco M A, Martin Pendas A, Francisco E, Recio J M and Franco R, J. Molec. Struct. Theochem., 1996,368: 245.
    
    154. Francisco E, Recio J M, Blanco M A and Martin Pendas A, J. Phys. Chem., 1998, 102: 1595.
    
    155. Francisco E, Sanjurjo G and Blanco MA, Phys. Rev. B, 2001,63:094107.
    
    156. Florez M, Recio J M, Francisco E, Blanco M A and Martin Pendas A, Phys. Rev. B, 2002, 66:144112.
    
    157. Welch D O, Dienes G J and Paskin A, J. Phys. Chem. Solids, 1978,39: 589.
    
    158. Oganov A R, Brodholt J P and Price G D, Phys. Earth Planet. Inter., 2000,122: 277.
    
    159. Price G D, Parker S C and Leslie M, Phys. Chem. Miner., 1987,15: 181.
    160. Dorogokupets P I, Doklady Earth Sciences, 2000, 375A: 1459.
    161. Zharkov V N and Kalinin V A, Equations of state of solids at high pressures and temperatures. 1968: Moscow: Nauka.
    162. Birch F. Phys. Rev., 1947, 71: 809.
    163. Birch F, J. Geophys. Res., 1978, 95: 1257.
    164. Poirier J P and Tarantola A, Phys. Earth Planet. Inter., 1998, 109: 1.
    165. Vinet P, Ferrante J, Smith J R and Rose J H, J. Phys.: Conden. Matter, 1986, 19: L467.
    166. Vinet P, Rose J H, Ferrante J and Smith J R, J. Phys.: Conden. Matter, 1989, 1: 1941,
    167. Anderson O L, Equations of state of solids for geophysics and ceramic science. 1995, Oxford: Oxford University Press.
    168. Nye J F, Physical properties of crystals. Their representation by tensors and matrices. 1998, Oxford: Oxford University Press.
    169. Sirotin Y I and Shaskolskaya M P, Fundamentals of crystal physics. 1975, Moscow: Nauka.
    170. Wallace D C, Thermodynamics of crystals. 1998, New York: Dove.
    171. Born M and Huang K, Dynamical theory of crystal lattices. 1954, Oxford: Clarendon Press.
    172. Belikov B P, Aleksandrov K S and Ryzhova T V, Elastic constants of rock-forming minerals. 1970, Moscow: Nauka.
    173. Fedorov F I, Theory of elastic waves in crystals. 1968, New York: Plenum Press.
    174. Vaughan M T and Weidner D J, Phys. Chem. Miner., 1978, 3: 133.
    175. Hill R, Proc. Phys. Soc. Lond., 1952, 65A: 349.
    176. Hashin Z and Shtrikman S, J. Mech. Phys. Solids, 1962, 10: 343.
    177. Barron T H K and Klein M L, Proc. Phys. Soc., 1965, 85: 523.
    178. Iitaka T and Ebisuzaki T, Phy. Rev. B, 2001, 65: 012103.
    179. Cowley R A, Phys. Rev. B, 1976, 13: 4877.
    180. Terhune R W, Kushida T and Ford G W, Phys. Rev. B, 1985, 32: 8416.
    181. Wang J and Yip S, Phys. Rev. Lett., 1993, 71: 4182.
    182. Wang J, Li J and S. Y, Phys. Rev. B, 1995, 52: 12627.
    183. Karld B B, Stixrude L, Clark S J, Warren M C, Ackland G J and Crain J, Am. Mineral., 1997, 82: 51.
    184. Parr R G and Yang W, Density-Functional Theory of Atoms and Molecules. 1989, Oxford: Oxford University Press.
    185. Landau L D and Lifshitz E M, Mechanics. 4th ed. 2001, Moscow: Nauka.
    
    186. Hohenberg P and Kohn W, Phys. Rev., 1964,136: B864.
    
    187. Jones R O and Gunnarsson O, Rev. Mod. Phys.s, 1989,61: 689.
    
    188. Kohn W, Rev. Mod. Phys., 1999,71:1253.
    
    189. Kohn W and Sham L J, Phys. Rev., 1965,140: A1133.
    
    190. Baerends E J and Gritsenko O V, J. Phys. Chem. A, 1997,101: 5383.
    
    191. Stowasser R and Hoffmann R, J. Am. Chem. Soc., 1999,121: 3414.
    
    192. Hobbs D, Kresse G and Hafner J, Psi-k Newsletter, 2000,41:135.
    
    193. Ceperley D M and Alder B J, Phys. Rev. Lett., 1980,45: 566.
    
    194. Ortiz G and Ballone P, Phys. Rev. B, 1994,50:1391.
    
    195. Perdew J and Zunger A, Phys. Rev. B, 1981,23: 5048.
    
    196. Perdew J P and Wang Y, Phys. Rev. B, 1992,45: 13244.
    
    197. Vosko S H, Wilk L and Nusair M, Can. J. Phys., 1980,58: 1200.
    
    198. Wang Y and Perdew J P, Phys. Rev. B, 1991,44: 13298.
    
    199. Perdew J P, Burke K and Ernzerhof M, Phys. Rev. Lett., 1996,77:3865.
    
    200. Singh D J, Planewaves, Pseudopotentials and the LAPW Method. 1994, Boston: Kluwer.
    
    201. Thijssen J M, Computational Physics. 1999, Cambridge: Cambridge University Press.
    
    202. Blochl P E, Phys. Rev. B, 1994,50: 17953.
    
    203. Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmatskaya E V and Nobes R H, Int. J. Quant. Chem., 2000,77: 895.
    
    204. Holzwarth N A W, Matthews G E, Dunning R B, Tackett A R and Zeng Y, Phys. Rev. B, 1997,55:2005.
    
    205. Louie S G, Froyen S and Cohen M L, Phys. Rev. B, 1982,26: 1738.
    
    206. Lacks D J and Gordon R G, Phys. Chem. Miner., 1995,22:145.
    
    207. Jansen L and Lombardi E, Disc. Far. Soc., 1965,40: 78.
    
    208. Burnham C W, Am. Mineral., 1990,75:443.
    
    209. Kitaigorodsky A I, Molecular Crystals. 1971, Moscow: Nauka.
    
    210. Mackrodt W C, Phys. Chem. Miner., 1988,15: 228.
    
    211 .Sutton A P, Electronic Structure of Materials. 1993, Oxford: Oxford University Press.
    
    212. Burdett J K, Chemical Bonding in Solids. 1995, N.Y.: Oxford University Press.
    
    213. Gale J D, Phil. Mag. B, 1996,73: 3.
    214. Lewis G V and Catlow C R A, J. Phys. C: Solid State Phys., 1985,18: 1149.
    
    215. Lewis G V, Physica, B&C, 1985,131: 114.
    
    216. Sanders M J, Leslie M and Catlow C R A, J. Chem. Soc., Chem. Commun., 1984,19: 1271.
    
    217. Bush T S, Gale J D, Catlow C R A and Battle P D, J. Mater. Chem., 1994,4: 831.
    
    218. Gale J D, Catlow C R A and Mackrodt W C, Modell. Simul. Mater. Sci. Engin., 1992,1: 73.
    
    219. Catlow C R A, Proc. Roy. Soc. Lond. A, 1977,353: 533.
    
    220. Tsuneyuki S, Matsui Y, Aoki H and Tsukada M, Nature, 1989,339: 209.
    
    221. Gale J D, J. Chem. Soc. - Farad. Trans., 1997,93: 629.
    
    222. Urusov V S, Energetic Crystal Chemistry. 1975, Moscow: Nauka.
    
    223. Urusov V S and Dubrovinsky L S, Computer modelling of structure and properties of minerals. 1989, Moscow: Moscow State University Press.
    
    224. Urusov V S, Acta Crystallogr. B, 1995,51: 641.
    
    225. Urusov V S, Geologiya i Geofisika, 1993,34: 92.
    
    226. Dick B G and Overhauser A W, Phys. Rev., 1958,112:90.
    
    227. Price G D and Parker S C, Phys. Chem. Miner., 1984,10: 209.
    
    228. Schroder U, Solid State Commun., 1966,4: 347.
    
    229. Matsui M, J. Chem. Phys., 1998,108: 3304.
    
    230. Baroni S, de Gironcoli S, Corso AD and Giannozzi P, Rev. Mod. Phys., 2001,73: 515.
    
    231. White J C and Hess A C, J. Phys. Chem., 1993,97: 6398.
    
    232. Urusov V S, Eremin N N and Oganov A R, Crystall. Rep., 1999,44: 356.
    
    233. Dove M, Structure and Dynamics. 2002, Oxford: Oxford University Press.
    
    234. Nose S, Mol. Phys., 1984,52: 255.
    
    235. Parrinello M and Rahman A, J. Appl. Phys., 1981,52: 7182.
    
    236. Remler D K and Madden PA, Mol. Phys., 1990,70: 921.
    
    237. de Wijs G A, Kresse G, Vocadlo L, Dobson D, Alfe D, Gillan M J and Price G D, Nature, 1998,392: 805.
    
    238. Oganov A R, Brodholt J P and Price G D, Nature, 2001,411: 934.
    
    239. Ancilotto F, Chiarotti G L, Scandolo S and Tosatti E, Science, 1997,275: 1288.
    240.Cavazzoni C, Chiarotti G L, Scandolo S, Tosatti E, Bernasconi M and Parrinello M, Science, 1999,283:44.
    
    241. Sugino O and Car R, Phys. Rev. Lett., 1995,74:1823.
    242. Buda F, Car R and Parrinello M, Phys. Rev. B, 1990,41: 1680.
    
    243. Chandler D, Introduction to Modern Statistical Mechanics. 1987, New York: Oxford University Press.
    
    244. Landau L D and Lifshitz E M, Statistical Physics. Part I. (Theoretical Physics, v. 5). 3rd ed. 1980, Nauka: Moscow.
    
    245. Cheung P S Y, Mol. Phys., 1977,33:519.
    
    246. Matsui M, J. Chem. Phys., 1989,91:489.
    
    247. Agee C B, J.Geophys. Res., 1993,98:5317.
    
    248. Solomatov V S and Stevenson D J, J. Geophys. Res., 1993,98: 5391.
    
    249. Matsui M and Price G D, Nature, 1991,351:735.
    
    250. Kapusta B and Guillope M, Phys. Earth Planet. Inter., 1993,75:205.
    
    251. Kubicki J D and Lasaga A C, Am. J. Sci., 1992,292: 153.
    
    252. Chaplot S L, Choudhury N and Rao K R, Am. Mineral, 1998,83:937.
    
    253. Liu Z J, Cheng X L, Yang X D, Zhang H and Cai L C, Chin. Phys., 2006,15: 224.
    
    254. Cohen R E and Gong Z, Phys. Rev. B, 1994,50:12301.
    
    255. Strachan A, Cagin R and Goddard III W A, Phys. Rev. B, 2001,63: 096102.
    
    256. Alfe D, Phys. Rev. Lett., 2005,94: 235701.
    
    257. Alftedsson M, Brodholt J P, Dobson D P, Oganov A R, Catlow C R A, Parker S C and Price G D, Phys. Chem. Miner., 2005,31: 671.
    
    258. Belonoshko A B, Ahuja R and Johansson B, Phys. Rev. B, 2000,61:11928.
    
    259. Sun X W, Liu Z J, Chen Q F, Lu H W and Song T, Solid State Commun., 2006,140: 219.
    
    260. Chen Q F, Cai L C, Duan S Q and Chen D Q, Chin. Phys., 2004,13:1091.
    
    261. Matsui M, Akaogi M and Matsumoto T, Phys. Chem. Miner., 1987,14: 101.
    
    262. Matsui M, Phys. Chem. Miner., 1988,16: 234.
    
    263. Wall A, Lower mantle minerals: computer simulation and analogue studies. Thesis, 1988, University of London: London.
    
    264. Leinenweber K and Navrotski A, Phys. Chem. Miner., 1988,15: 588.
    
    265. Choudhury N, Chaplot S L, Rao K R and Ghose S, Pram. J. Phys., 1988,30:423.
    
    266. Kubicki J D and Lasaga AC, Phys. Chem. Miner., 1991,17: 661.
    
    267. Stuart J A and Price G D, Phil. Mag. B, 1996,73: 41.
    
    268. Patel A, Price G D, Matsui M, Brodholt J P and Howarth R J, Phys. Earth Planet. Inter., 1996, 98: 55.
    269. Allan N L, Braithwaite M, Cooper D L, Mackrodt W C and Wrigh S C, J. Chem. Phys., 1991, 95: 6792.
    270. Cohen A J and Gordon R G, Phys. Rev. B, 1976, 14: 4503.
    271. Isaak D G, Cohen R E and Mehl M E, J. Geophys. Res., 1990, 95: 055.
    272. Wolf G H and Bukowinski M S T, Phys. Chem. Miner., 1988, 15: 209.
    273. Stoneham A M and Sangster M I, Phil. Mag. B, 1985, 52: 717.
    274. Fincham D, Mackmdt W C and Mitchell P I, J. Phys.: Conden. Matter, 1994, 6: 393.
    275. Mitchell P I and Fincham D, J. Phys.: Conden. Matter, 1993, 5: 1031.
    276. Hoover W G, Phys. Rev. A, 1985, 31: 1695.
    277. Ewald P P, Annal Physik, 1921, 64: 253.
    278. Yaganeh-Haeri A, Phys. Earth Planet. Inter., 1994, 87: 111.
    279. Liu Z J, Cheng X L, Zhang F P, Yang X D and Guo Y, Chin. J. Chem. Phys., 2006, 19: 65.
    280. Ross N L and Hazen R M, Phys. Chem. Miner., 1989, 16: 415.
    281. Wang Y, Weidner D J, Liebermann R C and Zhao Y, Phys. Earth Planet. Inter., 1994, 83: 13.
    282. Knittle E and Jeanloz R, Science, 1987, 235: 668.
    283. Fiquet G andrault D, Dewaele A, Charpin. T, Kunz M and Haüsermann D, Phys. Earth Planet. Inter., 1998, 105: 21.
    284. Shanker J and Kushwah S S, Physica B, 1998, 254: 45.
    285. Anderson O L and Zou K, J. Phys. Chem. Ref. Data, 1990, 19: 69.
    286. Jackson I and Niesler H, High-Pressure, Research in Geophysics. 1982, Tokyo: Center for Academic Publications.
    287. Duffy T S and Ahrens T J, J. Geophys. Res., 1995, 100: 529.
    288. Fei Y, Am. Mineral., 1999, 84: 272.
    289. Fecht H J and Johnson W L, Nature, 1983, 334: 50.
    290. Tallon J L, Nature, 1989, 342: 658.
    291. Rethfeld B, Sokolowski-Tinten K, von der Linde D and Anisimow S I, Phys. Rev. B, 2002, 65: 092103.
    292. Liu Z J, Sun X W, Chen Q F, Cai L C, Tan X M and Yang X D, Phys. Lett. A, 2006, 353: 221.
    293. Liu Z J, Sun X W, Yang X D, Cheng X L and Guo Y D, Chin. J. Chem. Phys., 19, 19: 311.
    294. Aguado A and Madden P A, Phys. Rev. Lett., 2005,94: 068501.
    
    295. Brown J M, Science, 1993,262: 529.
    
    296. Belonoshko A B, Am. Mineral., 2001,86:193.
    
    297. Belonoshko A B, Ahuja R and Johansson B, Nature, 2003,424:1032.
    
    298. Alfe D, Gillan M J and Price G D, J. Chem. Phys., 2002,116:6170.
    
    299. Duffy T S, Hemley R J and Mao H K, Phys. Rev. Lett., 1995,74:1371.
    
    300. Oganov A R and Dorogokupets P I, Phys. Rev. B, 2003,67: 224110.
    
    301. Oganov A R, Gillan M J and Price G D, J. Chem. Phys., 2003,118:10174.
    
    302. Habas M P, Dovesi R and Lichanot A, J. Phys.: Conden. Matter, 1998,10: 6897.
    
    303. Jaffe J E, Snyder J A, Lin Z and Hess A C, Phys. Rev. B, 2000,62:1660.
    
    304. Mehl M J and Cohen R E, J. Geophys. Res., 1988,93: 8009.
    
    305. Chang K J and Cohen M L, Phys. Rev. B, 1984,30: 4774.
    
    306. Cortona P and Monteleone A V, J. Phys.: Conden. Matter, 1996,8: 8983.
    
    307. Zhang H and Bukowinski M S T, Phys. Rev. B, 1991,44: 2495.
    
    308. Drummond N D and Ackland G J, Phys. Rev. B, 2002,65:184104.
    
    309. Kalpana G, Palanivel B and Rajagopalan M, Phys. Rev. B, 1995,52:4.
    
    310. Causa M, Dovesi R, Pisani C and Roetti C, Phys. Rev. B, 1986,33: 1308.
    311.Strachan A, Cagin T and Goddard III W A, Phys. Rev. B, 1999,60: 15084.
    
    312. Matsui M, Parker S C and Leslie M, Am. Mineral., 2000,85: 312.
    
    313. Rowley A J, Jemmer P, Wilson M and Madden P A, J. Chem. Phys., 1998,108: 10209.
    
    314. Karki B B and Wentzcovitch R M, Phys. Rev. B, 2000,61: 8793.
    
    315. Karki B B, Wentzcovitch R M, de Gironcoli S and Baroni S, Science, 1999,286: 1705.
    
    316. Karki B B, Stixrude L and Wentzcovitch R M, Rev. Geophys., 2001,39: 509.
    
    317. Lichanot A, Solid State Commun., 2000,116: 543.
    
    318. Sinogeikin S V and Bass J D, Phys. Rev. B, 1999,59: R14141.
    
    319. Sinogeikin S V and Bass J D, Phys. Earth Planet. Inter., 2000,120:43.
    
    320. Zha C S, Mao H K and Hemley R J, Proc. Natl. Acad. Sci. U.S.A., 2000,97: 13494.
    
    321 .Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C, J. Phys.: Conden. Matter, 2002,14: 2717.
    322.Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C, Phys. Rev. B, 1992,46: 6671.
    323. Hamann D R, Schluter M and Chiang C, Phys. Rev. Lett., 1979,43: 1494.
    
    324. Wentzcovitch R M, Martins J L and Price G D, Phy. Rev. Lett., 1993,70: 3947.
    
    325. Fischer T H and Almlof J, J.Phys. Chem., 1992,96: 9768.
    
    326. Monkhurst H J and Pack J D, Phys. Rev. B, 1976,13: 5188.
    
    327. Tsuchiya T and Kawamura K, J. Chem. Phys., 2001,114: 10086.
    
    328. Guo Y D, Cheng X L, Zhou L P, Liu Z J and Yang X D, Physica B, 2006,373: 334.
    329.Baltache H, Khenata R, Sahnoun M, Driz M, Abbar B and Bouhafs B, Physica B, 2004,344: 334.
    
    330. Speziale S, Zha C S, Duffy T S, Hemley R J and Mao H K, J. Geophys. Res., 2001, 106: 515.
    
    331. Vassiliou M S and Ahrens J J, Geophys. Res. Lett., 1981,8: 729.
    
    332. Cohen A J and Gordon R G, Phys. Rev. B, 1976,14: 4593.
    
    333. Watt J P, Davies G F and O'Connell R J, Rev. Geophys. Space Phys., 1976,14:,541.;
    
    334. Salje E K H, Phase Transitions in Ferroelastic and Co-Elastic Crystals. 1990, New York: Cambridge University Press.
    
    335. Karki B B, Warren M C, Stixrude L, Ackland G J and Crain J, Phys. Rev. B, 1997,55: 3465.
    
    336. Mizushima K, Yip S and Kaxiras E, Phys. Rev. B, 1994,50:14952.
    
    337. Tang M and Yip S, Phys. Rev. Lett., 1995,75:2738.
    
    338. Silver P and Chan W W, Nature, 1988,335:34.
    
    339. Kaneshima S J, J. Phys. Earth, 1995,43: 301.
    
    340. Bukowinski M S T, J. Geophys.l Res., 1980,85: 285.
    
    341. IrifuneT, Nature, 1994,370:131.
    
    342. O'Neill B and Jeanloz R, Geophys. Res. Lett., 1990,17: 1477.
    
    343. Ita J J and Stixrude L, J. Geophys. Res., 1992,97: 6849.
    
    344. Gasparik T, Wolf K and Smith C M, Am. Mineral., 1994,79: 1219.
    
    345. Swamy V and Dubrovinsky L S, Geochim. Cosmochim. Acta, 1997,61: 1181.
    
    346. Kung J, Angel R J and Ross N L, Phys. Chem. Miner., 2001,28: 35.
    
    347. Karki B B and Crain J, Geophys. Res. Lett, 1998,25: 2741.
    
    348. Singh A K, Balasingh C, Mao H K, Hemley R J and Shu J, J. Appl. Phys., 1998,83: 7567.
    
    349. Kavner A and Duffy T S, Geophys. Res. Lett., 2001,28: 2691.
    
    350. Merkel S, Jephcoat A P, Shu J, Mao H K, Gillet P and Hemley R J, Phys. Chem. Miner., 2002, 29: 1.
    351. Shieh S R, Duffy T S and Shen G. Phys. Earth Planet. Inter., 2004, 143-144: 93.
    352. Mao H K, Chen L C, Hemley R J, Jephcoat A P, Wu Y and Bassett W A, J. Geophys. Res., 1989, 94: 17889.
    353. Wang Y, Weidner D J and Guyot F, J. Geophys. Res., 1996, 101: 661.
    354. Hemley R J, Jackson M D and Gordon R G, Phys. Chem. Miner., 1987, 14: 2.
    355. Sherman D M, J. Geophys. Res., 1993, 98: 19795.
    356. Wentzcovitch R M, Ross N L and Price G D, Phys. Earth Planet. Inter., 1995, 91: 101.
    357. Akber-Knutson S, Bukowinski M S T and Matas J, Geophys. Res. Lett., 2002, 29: 1034.
    358. Magyari-Kope B, Vitos L, Grimavall G, Johansson B and Kollar J, Phys. Rev. B, 2002, 65: 193107.
    359. Shim S H, Jeanloz R and Duffy T S, Geophys. Res. Lett., 2002, 29: 2166.
    360. Li L, Weidner D J, Brodholt J, Alfe D, Price G D, Caracas R and Wentzcovitch R, Phys. Earth Planet. Inter., 2006, 155: 249.
    361. Ono S, Ohishi Y and Mibe K, Am. Mineral., 2005, 89: 1480.
    362. Kurashina T, Hirose K, Ono S, Sata N and Ohishi Y, Phys. Earth Planet Int., 2004, 145: 67.
    363. Shim S H and Duffy T S, J. Geophys. Res., 2000, 105: 25955.
    364. Magyari-Kope B, Vitos L, Grimavall G, Johansson B and Kollar J, Comput. Mater. Sci., 2002, 25: 615.
    365. Jung D Y and Oganov A R, Phys. Chem. Miner., 2005, 32: 146.
    366. Wolf G H and Jeanloz R, Geophys. Res. Lett., 1985, 12: 413.
    367. Tamai H and Yagi T, Phys. Earth Planet. Inter., 1989, 54: 370.
    368. Ahrens T J, Mineral physics and crystallography: a handbook of physical constants. 1995, Washington: American Geophysical Union.
    369. Liu L G. Geophys. Res. Lett., 1974, 1: 277.
    370. Saxena S K, Dubrovinsky L S, Lazor P, Cerenius Y, Haggkvist P, Hanfland M and Hu J, Science, 1996, 274: 1357.
    371. Mao H K, Science, 1997, 278: 2098.
    372. Shim S H, DuffyT S and Shen GY, Science, 2001, 293: 2437.
    373. Murakami M, Hirose K, Kawamura K, Sata N and Ohishi Y, Science, 2004, 304: 855.
    374. Oganov A R and Ono S, Nature, 2004, 430: 445.
    375. Tsuchiya T, Tsuchiya J, Umemoto K and Wentzcovitch R M, Earth Planet. Sci. Lett., 2004, 224: 241.
    
    376. Sidorin I, Gurnis M and Helmberger D V, Science, 1999,286:1326.
    
    377. Wentzcovitch R M, Karki B B, Karato S and da Silva C R.S, Earth Planet. Sci. Lett., 1998, 164: 371.
    
    378. Karki B B, Stixrude L, Clark S J, Warren M C, Ackland G J and Crain J, Am. Mineral., 1997,82:635.
    
    379. Shieh S R, Duffy T S, Kubo A, Shen G, Prakapenka V B, Sata N, Hirose K and Ohishi Y, Proc. Natl. Acad. Sci. U.S.A., 2006,103: 3039.
    
    380. Oganov A R, Brodholt J P and Price G D, Earth Planet. Sci. Lett., 2001,184: 555.
    
    381. Marton F C and Cohen R E, Phys. Earth Planet. Inter., 2002,134: 239.
    
    382. Cohen R E, Geophys. Res. Lett., 1987,14: 1053.
    
    383. Ross N L and Hazen R M, Phys. Chem. Miner., 1990,17: 228.
    
    384. Tsuchiya T, Tsuchiya J, Umemoto K and Wentzcovitch R M, Geophys. Res. Lett., 2004,31: L14603.
    
    385. Iitaka T, Hirose K, Kawamura K and Murakami M, Nature, 2004,430:442.
    
    386. Stackhouse S, Brodholta J P, Wookey J Kendall J M and Price G D, Earth Planet. Sci. Lett., 2005,230:1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700