微反应器法制备高性能稀土掺杂纳米发光颗粒及其成核生长过程控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机纳米发光颗粒在免疫生物学和临床检验学等研究领域中体现了极大的潜在应用价值。这类标记物主要包括半导体荧光量子点(Quantum Dots,QDs)及稀土掺杂纳米发光颗粒。目前研究较多的QDs如CdS,CdSe,CdTe等多为有机合成,制备条件苛刻,且本身存在光闪烁、重金属毒性等缺点,限制了其在生物标记上的应用。稀土掺杂纳米发光颗粒具有毒性低、Stokes位移宽,且对光漂白、闪烁以及光化学降解有较强的抵抗性等优势,因而在生物荧光标记上有着巨大的应用潜能。但目前传统方法制备的稀土掺杂纳米发光颗粒存在粒径分布宽、尺寸大、分散性差、发光效率不高等缺陷,难以达到生物荧光标记应用的可再分散、水溶性和发光性能良好等的要求。
     本文利用微流体反应器水相合成了LaF_3/LaPO_4:Ln~(3+)(Ln~(3+)=Ce~(3+),Tb~(3+),Eu~(3+)、)纳米发光颗粒,结合微流体力学控制了纳米颗粒在微空间中的成核生长过程;通过优化工艺提高了纳米颗粒的可再分散性、水溶性及荧光性能,并通过微波辐射加热提高了微反应器合成纳米颗粒的产率。全文主要研究工作如下:
     (1)利用内径为300μm的聚四氟乙烯微细管作微流体反应器,以醇类试剂(乙二醇(EG)和一缩二乙二醇(DEG)等)为溶剂,在较低反应温度(80~140℃),较短反应时间(5~60 s)内合成稀土掺杂纳米发光颗粒。通过X射线衍射(XRD),透射电子显微镜(TEM),傅立叶变换红外光谱(FTIR Spectrum),紫外可见吸收光谱(UV-Vis Absorption)和荧光光谱(PL Spectrum)等手段对所制备的纳米发光颗粒的结构和性能进行了表征,结果证明用微流体反应器所合成的纳米发光颗粒在结构和性能上都比传统制备方法有了显著提高。
     (2)基于高温快速成核和低温较慢生长的结晶理论,设计了两步法微流体反应器,并合成了稀土掺杂纳米发光颗粒。通过表征表明:两步法合成的LaF_3:Ce,Tb纳米发光颗粒具有较窄的粒径分布,粒径在4~5 nm,且表现出优异的水溶性和可再分散性;荧光性能得到了明显提高,尤其是荧光量子产率相对于传统制备方法获得样品有了显著提高,达到了49%。
     (3)采用微波辐射对微流体反应段加热,控制成核与生长过程,一步获得稀土掺杂纳米发光颗粒。经表征发现,微波辐射加热微反应器所合成的纳米颗粒在结晶性、分散性以及形貌控制上得到了显著的改进:获得LaF_3:Ce,Tb单分散纳米颗粒的平均粒径为4.5 nm,LaPO_4:Ce,Tb纳米棒的平均长度为65 nm,平均直径为12 nm;两个体系都表现出优异的可再分散性和水溶性;尤其是荧光性能和量子产率,都比油浴恒温加热获得的样品有明显提高。另外,利用微波辐射技术,解决了微流体反应器制备纳米颗粒产率低的问题:获得的Ce~(3+),Tb~(3+)共掺杂LaF_3纳米颗粒和LaPO_4纳米颗粒的产率分别达到了72.3%和91.2%。在微波辅助合成的LaPO_4:Eu纳米颗粒中,发现了由几个纳米单晶组成的25~30 nm大小的纳米颗粒粒组,并呈单分散状,在组内产生显著取向的现象;说明微波辐射对微流体反应器内的结晶过程具有特殊的作用。
     (4)为解决提高Eu~(3+)离子掺杂LaF_3纳米颗粒荧光性能的难点,设计了微流体反应器并连续合成了LaF_3:Eu@LaF_3(Core@Shell)核壳结构纳米颗粒。结果表明,在平均粒径为4.5 nm的LaF_3:Eu核粒子表面包覆了一层1.5 nm左右厚的LaF_3基质材料,形成了粒径为6nm核壳结构的纳米颗粒,并使颗粒的结晶性、水溶性及荧光性能得到了显著提高。
Inorganic fluorescent nanocrystals(NCs) show great potential in applications at research fields of immunobiology and clinical examination.Quantum dots(QDs) and lanthanide-doped fluorescent NCs are the two main kinds in these NCs.The QDs, such as CdS,CdSe,CdTe,are mostly prepared in organic phase with harsh conditions. What's more,they could hardly be used in bio-labeling because of the emissiontwinkling and heavy metal toxicity.The lanthanide-doped fluorescent NCs exhibit huge potential applications in bio-labeling because of the low-toxicity,wide Stokes-shift,high resistance to the photobleaching,emission-twinkling and photodegradation.However,the lanthanide-doped NCs produced by the conventional methods usually have wide size distribution,large diameter,poor dispersibility and low emission yield.They could hardly meet the requirements of bio-labeling,which need excellent redispersibility,well water-solubility,and strong emission intensity.
     In this paper,LaF_3/LaPO_4:Ln~(3+)(Ln~(3+)=Ce~(3+),Tb~(3+),Eu~(3+)) fluorescent NCs were prepared by microfluidic reactor in aqueous phase.The nucleation and growth processes were controlled in the microspace by microfluidic reactor combined with microfluid dynamics.The redispersibility,water-solubility and the fluorescent intensity were enhanced by optimizing the process in microreactor.The yields of NCs synthesized by microfluidic reactor were improved obviously by microwave irradiation.The studies finished are as follows:
     (1) The lanthanide-doped fluorescent NCs were synthesized by a microfluidic reactor made by a Teflon microcapillary with an inside diameter of 300μm.The ethylene glycol(EG) and the diethylene glycol(DEG) were used as the solvents,the reaction temperature is from 80℃to 140℃and the residence time in microcapillary is from 5 s to 60 s.X-Ray Diffraction(XRD),Transmission electron microscopy(TEM),Fourier transform infrared spectroscopy(FT-IR), UV-vis absorption spectroscopy and Photo-luminescence(PL) spectra were used to characterize the NCs.The results confirmed that the crystalinity and the performances were improved by microfluidic reactor.
     (2) Based on the classic crystallization theory,including the momentary nucleation at a high temperature and the slower growth at a lower temperature,the microfluidic reactor was designed as a two-steps path for preparing the lanthanide-doped fluorescent NCs.The results displayed the LaF_3:Ce,Tb NCs prepared by two-step microreactor had a narrow size distribution,about 4~5 nm,excellent redispersibility and water-solubility.The emission intensity was improved obviously.Another attractive improvement was that the quantum yield of the NCs has been improved to 49%,much higher than that by conventional methods.
     (3) The microwave(MW) irradiation was used to heat the microfluidic reacting section to control the nucleation and growth processes.The lanthanide-doped fluorescent NCs were obtained by one-step synthesis in microfluidic reactor.The obtained NCs revealed great improvements in crystallinity,dispersibility and shape control by microfluidic reactor under MW irradiation.The monodispersed LaF_3:Ce,Tb nanoparticles had a mean diameter of 4.5 nm,and the LaPO_4:Ce,Tb nanorods had a mean length of 65 nm and diameter of 12 nm.The two systems showed great redispersibility and water-solubility,with obvious improved fluorescent intensity and quantum yields compared to those by oilbath(OB) heating.What's more,the difficulty of how to improve the low yield in microreactor was handled by MW irradiation,LaF_3:Ce,Tb NCs showed a yield of 72.3%and the LaPO_4:Ce,Tb NCs 91.2%.For LaPO_4:Eu NCs,MW irradiation had special effects during the crystallization process.The monodispersed NCs-clusters in which 7~8 little NCs linked together as one had the same tropism.The size was from 25 nm to 30 nm.
     (4) LaF_3:Eu@LaF_3 core@ shell NCs were synthesized in a continual microfluidic reactor targeted at the difficulty of how to improve the fluorescent intensity of Eu~(3+) doped LaF_3 NCs.As a result,about a 1.5 nm LaF_3 host material was coated around a LaF_3:Eu core particle with a mean diameter of 4.5 nm,to form a core @ shell structure in size of about 6 nm.The crystallinity,water-solubility and the fluorescent intensity were improved obviously.
引文
[1]Miyawaki A,Visualization of the spatial and temporal dynamics of intracellular signaling,Dev.Cell,2003,4(3),295-305
    [2]Bruchez JM,Moronne M,Gin P,Weiss S,Alivisatos AP,Semiconductor nanocrystals as fluorescent biological labels,Science,1998,281(5385),2013-2016
    [3]Chan WCW,Nie SM,Quantum dot bioconjugates for ultrasensitive nonisotopic detection,Science,1998,281(5385),2016-2018
    [4]Guo H,Photoluminescent properties of CeF_3:Tb~(3+) nanodiskettes prepared by hydrothermal microemulsion,Appl.Phys.B,2006,84,365-369
    [5]Cedric L,Rana B,Christophe AM,Jean-Luc B,Stephane R,Gilles L,BrunoM,Lo(l|¨)c B,Pascal P,Olivier T,Nanosized hybrid particles with double luminescence for biological labeling,Chem.Mater.,2005,17,1673-1682
    [6]Bawendi MG,Steigerwald ML,Brus LE,The quantum mechanics of larger semiconductor clusters("quantum dots"),Annu.Rev.Phys.Chem.,1990,41,477-496
    [7]Parak WJ,Pellegrino T,Plank C,Labelling of cells with quantum dots,Nanotechnology,2005,16(2),9-25
    [8]Gao XH,Yang LL,Petros JA,Marshall FF,Simons JW,Nie S,In vivo molecular and cellular imaging with quantum dots,Curr.Opin.Biotechnol.,2005,16(1),63-72
    [9]Gerion D,Parak WJ,Williams SC,Zanchet D,Micheel CM,Alivisatos AP,Sorting fluorescent nanocrystals with DNA,J.Am.Chem.Soc.,2002,124(24),7070-7074
    [10]Kairdolf BA,Smith AM,Nie SM,One-pot synthesis,encapsulation,and solubilization of size-tuned quantum dots with amphiphilic multidentate ligands,J.Am.Chem.Soc.,2008,130,12866-12867
    [11]Jesse MK,Warren CWC,Quantum dots in biological and biomedical research:recent progress and present challenges,Adv.Mater.,2006,18,1953-1964
    [12]李建宇,稀土发光材料及其应用,北京:化学工业出版社,2003,5-15
    [13]Qian LW,Du WM,Gong Q,Qian XF,Controlled synthesis of light rare earth phosphate nanowires via a simple solution route,Mater.Chem.Phys.,2009,114,479-484
    [14]张希艳,卢梨平,柏朝晖等,稀土发光材料,北京:国防工业出版社,2005,1-19
    [15]Yu CC,Yu M,Li CX,Liu XM,Yang J,Yang PP,Lin J,Facile sonochemical synthesis and photo luminescent properties of lanthanide orthophosphate nanoparticles,J.Solid State Chem.,2009,182,339-347
    [16]Yu LX,Song HW,Lu SZ,Liu ZX,Yang LM,Kong XG,Luminescent properties of LaPO_4:Eu nanoparticles and nanowires,J.Phys.Chem.B,2004,108,16697-16702
    [17]Yu LX,Song HW,Liu ZX,Yang LM,Lu SZ,Zheng ZH,Electronic transition and energy transfer processes in LaPO_4:Ce~(3+)/Tb~(3+) nanowires,J.Phys.Chem.B,2005,109,11450-1455
    [18]Erdei S,Ainger FW,Ravichandran D,White WB,Cross LE,Preparation of Eu~(3+):YVO_4,red and Ce~(3+),Tb~(3+):LaPO_4,green phosphors by hydrolyzed colloid reaction (HCR) technique,Mater.Lett.,1997,30,389-393
    [19]Buissette V,Giaume D,Gacoin T,Boilot JP,Aqueous routes to lanthanide-doped oxide nanophosphors,J.Mater.Chem.,2006,16,529-539
    [20]Buissette V,Moreau M,Gacoin T,Boilot JP,Chane-Ching JY,Mercier TL,Colloidal synthesis of luminescent rhabdophane LaPO_4:Ln~(3+)·xH_2O(Ln=Ce,Tb,Eu;x≈0.7) nanocrystals,Chem.Mater.,2004,16,3767-3773
    [21]Yu LX,Song HW,Liu ZX,Yang ML,Lu SZ,Fabrication and photoluminescent characteristics of La_2O_3:Eu~(3+) nanowires,Phys.Chem.Chem.Phys.,2006,8,303-308
    [22]Stouwdam JW,van Veggel FCJM,Near-infrared emission of redispersible Er~(3+),Nd~(3+),and Ho~(3+) doped LaF_3 nanoparticles.Nano Lett.,2002,2,733-37
    [23]Pandey A,Roy MK,Verma HC,Sol-gel synthesis and characterization of Eu~(3+)/Y_2O_3 nanophosphors by an alkoxide precursor,Mater.Chem.Phy.,2006, 96,466-470
    [24]Yu M,Lin J,Fu J,Han YC,Sol-gel fabrication,patterning and photoluminescent properties of LaPO_4:Ce~(3+),Tb~(3+) nanocrystalline thin films,Chem.Phy.Lett.,2003,371,178-183
    [25]Morimo R,Matac K,Preparation of Zn_2SiO_4:Mn phosphors by alkoxide method,Mater.Res.Bull.,1989,24(2),175-179
    [26]Meyssamy H,Riwotzld K,Wet-chemical synthesis of doped colloidal nanomaterials:particles and fibers of LaPO_4:Eu,LaPO_4:Ce and LaPO_4:Ce,Tb,Adv.Mater.,1999,11(10),840-844
    [27]Kutty TRN,Jagannathan R,Rao RP,Luminescence of Eu~(3+) in strontium aluminates prepared by the hydrothermal method,Mater.Res.Bull.,1990,25(11),1355-1362
    [28]Kutty TRN,Jagannathan R,Rao RP,Luminescence of Ce~(3+)-doped aluminoborates,M_3Al_6B_8O_(24)(M=Mg,Ca,Sr,Ba),Mater.Res.Bull.,1990,25(3),343-348
    [29]Kutty TRN,Jagannathan R,Rao RP,Luminescence of Ce~(3+)-sensitized and Dy~(3+)-activated aluminoborates,M_3Al_6B_8O_(24)(M=Ca,Ba),Mater.Res.Bull.,1990,25(4),485-493
    [30]于立新,宋宏伟,刘钟馨,杨林梅,吕少哲,郑著宏,LaPO_4:Ce~(3+)/Tb~(3+)纳米线的合成和发光特性,发光学报,2005,26(3),369-374
    [31]Chai RT,Lian HZ,Yang PP,Fan Y,Hou ZY,Kang XJ,Lin J,In situ preparation and luminescent properties of LaPO_4:Ce~(3+),Tb~(3+) nanoparticles and transparent LaPO_4:Ce~(3+),Tb~(3+)/PMMA nanocomposite,J.Colloid Interface Sci,2009,336(1),46-50
    [32]杨水金,袁良杰,孙聚堂,掺杂Eu~(3+)离子LaPO_4的合成及其发光特性研,发光学报,2003,24(5),527-530
    [33]Riegler J,Nann T,Application of luminescent nanocrystals as labels for biological molecules,Anal.Bioanal.Chem.,2004,379,913-919
    [34]Rozenzhak SM,Kadakia MP,Caserta TM,Westbrook TR,Stone MO,Naik RR,Cellular internalization and targeting of semiconductor quantum dots,Chem. Commun.,2005,2217-2219
    [35]Chan WCW,Maxwell DJ,Gao XH,Bailey RE,Han MY,Nie SM,Luminescent quantum dots for multiplexed biological detection and imaging,Curr.Opin.Biotechnol.,2002,13,40-46
    [36]Meiser F,Cortez C,Caruso F,Biofunctionalization of fluorescent rare-earthdoped lanthanum phosphate colloidal nanoparticles,Angew.Chem.Int.Ed.,2004,43,5954-5957
    [37]Giaume D,Buissette V,Lahlil K,Gacoin T,Boilot JP,Casanova D,Beaurepaire E,Sauviat MP,Alexandrou A,Emission properties and applications of nanostructured luminescentoxide panoparticles,Prog.Solid State Chem.,2005,33,99-106
    [38]Huignard A,Buissette V,Laurent G,Gacoin T,Boilot JP,Synthesis and characterizations of YVO_4:Eu Colloids,Chem.Mater.,2002,14(5),2264-2269
    [39]Stubicar N,Potentiometric and dynamic lights cattering investigation of the precipitation of lanthanum-fluoride,Progr.Colloid.Polym.Sci.,1999,112,200-205
    [40]Sudarsan V,vanVeggel FCJM,Herring RA,Raudsepp M,Surface Eu~(3+) ions are different than "bulk" Eu~(3+) ions in crystalline doped LaF_3 nanoparticles,J.Mater.Chem.,2005,15,1332-1342
    [41]Evanics F,Diamente PR,vanVeggel FCJM,Stanisz GJ,Prosser RS,Water-soluble GdF_3 and GdF_3/LaF_3 nanoparticless physical characterization and NMR relaxation properties,Chem.Mater.,2006,18,2499-2505
    [42]Diamente PR,van Veggel FCJM,Water-soluble Ln~(3+)-doped LaF_3 nanoparticles:retention of strong luminescence and potential as biolabels,J.Fluoresc.,2005,15(4),543-551
    [43]Wang F,Zhang Y,Fan X P,Wang MQ,Facile synthesis of water-soluble LaF_3:Ln~(3+) nanocrystals,J.Mater.Chem.,2006,16,1031-1034
    [44]Zhang YW,Sun X,Si R,You LP,Yan CH,Crystalline and monodisperse LaF_3triangular nanoplates from a single-source precursor,J.Am.Chem.Soc.,2005,127,3260-3261
    [45]Mounir F,Karima HN,Mokhtar FCJM,Combustion synthesis and luminescence properties of LaPO_4:Eu(5%),J.Rare Eearths,2009,27(2),82-186
    [46]Lo AY,Sudarsan V,Sivakumar S,van Veggel F,Schurko RW,Multinuclear solid-state NMR spectroscopy of doped lanthanum fluoride nanoparticles,J.Am.Chem.Soc.,2007,129,4687-4700
    [47]Nakamura H,Tashiro A,Yamaguchi Y,Miyazaki M,Watari T,Shimizu H,Maeda H,Application of a microfluidic reaction system for CdSe nanocrystal preparation:their growth kinetics and photoluminescence analysis,Lab Chip,2004,4,237-240
    [48]Yoshida J,Nagaki A,Yamada T,Flash chemistry:fast chemical synthesis by using microreactors,Chem.Eur.J.,2008,14,7450-7459
    [49]Derek AB,Alison PMG,George MW,Fabrication of amodular tissue construct in a microfluidic chip,Lab Chip,2008,8,663-671
    [50]Bhagat AAS,Jothimuthu P,Papautsky I,Photodefinable polydimethylsiloxane (PDMS) for rapid lab-on-a-chip prototyping,Lab Chip,2007,7,1192-1197
    [51]Cottam BF,Krishnadasan S,deMello AJ,deMello JC,Shaffe MSP,Accelerated synthesis of titanium oxide nanostructures using microfluidic chips,Lab Chip,2007,7,167-169
    [52]Krishnadasan S,Brown RJC,deMello AJ,deMello JC,Intelligent routes to the controlled synthesis of nanoparticles,Lab Chip,2007,7,1434-1441
    [53]Sia SK,Whitesides GM,Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies,Electrophoresis,2003,24,3563-3576
    [54]Li W,Pham HH,Nie ZH,MacDonald B,G(u|¨)enther A,Kumacheva E,Multi-step microfluidic polymerization reactions conducted in droplets:the internal trigger approach,J.Am.Chem.Soc.,2008,130,9935-9941
    [55]Wang HZ,Nakamura H,Uehara M,Yamaguchi Y,Miyazaki M,Maeda H,Highly luminescent CdSe/ZnS nanocrystals synthesized using a single-molecular ZnS source in a microfluidic reactor,Adv.Funct.Mater.,2005,15,603-608
    [56]Edel JB,Fortt R,deMello JC,deMello AJ,Microfluidic routes to the controlled production of nanoparticles,Chem.Commun.,2002,1136-1137
    [57]Murray CB,Norris DB,Bawendi MG,Synthesis and characterization of nearly monodisperse CdE(E=sulfur,selenium,tellurium) semiconductor nanocrystallites,J.Am.Chem.Soc.,1993,115(19),8706-8715
    [58]魏刚,黄海燕,熊蓉春,微反应器法纳米颗粒制备技术,功能材料,2002,33(5),471-473
    [59]Derfus AM,Chan WCW,Bhatia SN,Probing the cytotoxicity of semiconductor quantum dots,Nano Lett.,2004,4(1),11-18
    [60]Murray CB,Kagan CR,Bawendi MGA,Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,Rev.Mater.Sci.,2000,30,545-610
    [61]Zheng B,Tice JD,Ismagilov RF,Formation of droplets in microfluidic channels alternating composition and applications to indexing of concentrations in droplet-based assays,Anal.Chem.,2004,76(17),4977-4982
    [62]Thorsen T,Roberts RW,Quake SR,Dynamic pattern formation in a vesiclegenerating microfluidic device,Phys.Rev.Lett.,2001,86(18),4163-4166
    [63]Khan SA,Jensen KF,Microfluidic synthesis of titania shells on colloidal silica,Adv.Mater.,2007,19,2556-2560
    [64]Nakamura H,Yamaguchi Y,Miyazaki M,Maeda H,Uehara M,Mulvaney P Preparation of CdSe nanocrystals in a micro-flow-reactor,Chem.Commun.,2002,2844-2845
    [65]Wang HZ,Nakamura H,Uehara M,Miyazaki M,Maeda H,Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor,Chem.Commun.,2002,1462-1463
    [66]Wang HZ,Wei J,Yu MH,Li YG,Sun JF,Zhu MF,Hollow fiber membrane as a low-cost and high-efficient micromixer to synthesize CdS nanoparticles,Chem.Lett.,2006,10,1156-1168
    [67]Wang HZ,Li XY,Uehara M,Yamaguchi Y,Nakamura H,Miyazaki M,Shimizu H,Maeda H,Continuous synthesis of CdSe-ZnS composite nanoparticles in a microfluidic reactor,Chem.Commun.,2004,48-49
    [68]Yen BKH,Stott NE,Jensen KF,Bawendi MG,A continuous-flow microcapollary reactor for the preparation of a size series of CdSe nanocrystals,Adv.Mater.,2003,15,1858-1862
    [69]Zong LM,Zhou SJ,Sgriccia N,Hawley MC,Dielectric properties of an epoxy-amine system at a high microwave frequency,Polym.Eeg.Sci.,2005,45,1576-1580
    [70]麻孝勇,莫羡忠,微波在合成纳米材料中的应用,化工技术与开发,2007,36(2),38-41
    [71]Washington Ⅱ AL,Strouse GF,Microwave synthesis of CdSe and CdTe nanocrystals in nonabsorbing alkanes,J.Am.Chem.Soc.,2008,130,8916-8922
    [72]Tao H,Kang YL,Taldone T,Chiosis G,Microwave-assisted one step synthesis of 8-arylmethyl-9H-purin-6-amines,Bioorg.Med.Chem.Lett.,2009,19,415-417
    [73]Dexter DL,Possibility of luminescent quantum yields greater than unity,Phys.Rev.,1957,108(3),630-633
    [74]Loddo V,Addamo M,Augugliaro V,Palmisano L,Schiavello M,Optical properties and quantumyield determination in photocatalytic suspensions,AIChE J.,2006,52(7),2565-2574
    [75]K(o|¨)mpe K,Borchert H,Storz J,Lobo A,Adam S,M(o|¨)ller T,Haase M,Greenemitting CePO_4:Tb/LaPO_4 core-shell nanopartMes with 70%photoluminescence quantum yield,Angew.Chem.Int.Ed.,2003,42,5513-5516
    [76]Kundu S,Peng LH,Liang H,A new route to obtain high-yield multiple-shaped gold nanoparticles in aqueous solution using microwave irradiation,Inorg.Chem.,2008,47,6344-6352
    [77]Chen YF,Kim M,Lian GD,Johnson MB,Peng XG,Side reactions in controlling the quality,yield,and stability of high quality colloidal nanocrystals,J.Am.Chem.Soc.,2005,127,13331-13337
    [78]国家环境保护总局编委会,水和废水检测分析方法,北京:中国环境科学出版社,2002,190-195
    [79]Sudarsan V,Sivakumar S,van Veggel FCJM,General and convenient method for making highly luminescent sol-gel derived silica and alumina films by using LaF_3 nanoparticles doped with lanthanide ions(Er~(3+),Nd~(3+),Ho~(3+)),Chem.Mater.,2005,17,4736-4742
    [80]Ferhi M,Naifer KH,Ferid M,Hydrothermal synthesis and photoluminescence of the monophosphate LaPO_4:Eu(5%),J.Lumin.,2008,128,1777-1782
    [81]Wang XJ,Gao MY,A facile route for preparing rhabdophane rare earth phosphate nanorods,J.Mater.Chem.,2006,16,1360-1365
    [82]Yan ZG,Zhang YW,You LP,Si R,Yan CH,General synthesis and characterization of monocrystalline lD-nanomaterials of hexagonal and orthorhombic lanthanide orthophosphate hydrate,J.Cryst.Growth,2004,262,408-414
    [83]Wang ZL,Quan ZW,Jia PY,Lin CK,Luo Y,Chen Y,Fang J,Zhou W,O'Connor CJ,Lin J,A facile synthesis and photoluminescent properties of redispersible CeF_3,CeF_3:Tb~(3+),and CeF_3:Tb~(3+)/LaF-3(core/shell) nanoparticles,Chem.Mater.,2006,18,2030-2037
    [84]Riwotzki K,Meyssamy H,Schnablegger H,Komowski A,Haase M,Liquid-phase synthesis of colloid and redispersible powders of strongly luminescing LaPO_4:Ce,Tb nanocrystals,Angew.Chem.Int.Ed.,2001,40(3),573-577
    [85]Nakamura K,Hasegawa Y,Kawai H,Yasuda N,Kanehisa N,Kai Y,Nagamura T,Yanagida S,Wada Y,Enhanced lasing properties of dissymmetric Eu(Ⅲ)complex with bidentate phosphine ligands,J.Phys.Chem.A,2007,111,3029-3037
    [86]Molina C,Dahmouche K,Santilli CV,Craievich AF,Ribeiro SJL,Structureand luminescence of Eu~(3+)-doped class Ⅰ siloxane-poly(ethyleneglycol) hybrids,Chem.Mater.,2001,13,2818-2823
    [87]Shchukin DG,Sukhorukov GB,Mohwald H,Fabrication of fluorescent rare earth phosphates in confined media of polyelectrolyte microcapsules,J.Phys.Chem.B,2004,108,19109-19113
    [88]deMello J,deMello A,Microscale reactors:nanoscale products,Lab Chip,2004, 4,11-15
    [89]LaMer VK,Dinegar RH,Theory,production and mechanism of formation of monodispersed hydrosols,J.Am.Chem.Soc.,1950,72(11),4847-4854
    [90]Yan ZG,Yan CH,Controlled synthesis of rare earth nanostructures,J.Mater.Chem.,2008,18,5046-5059
    [91]Pan DC,Wang Q,An LJ,Controlled synthesis of monodisperse nanocrystals by a two-phase approach without the separation of nucleation and growth processes,J.Mater.Chem.,2009,19,1063-1073
    [92]Rempel JY,Bawendi MG,Jensen KF,Insights into the kinetics of semiconductor nanocrystal nucleation and growth,J.Am.Chem.Soc.,2009,131,4479-4489
    [93]Stubicar N,Kinetics of growth of submicrometer crystalline lanthanum fluoride particles using the pF-stat method,Progr.Colloid Polym.Sci.,2001,118,118-122
    [94]Ying Y,Chen GW,Zhao YC,Li SL,Yuan Q,A high throughput methodology for continuous preparation of monodispersed nanocrystals in microfluidic reactors,Chem.Eng.J.,2008,135,209-215
    [95]B(u|¨)hler G,Feldmann C,Microwave-assisted synthesis of luminescent LaPO_4:Ce,Tb nanocrystals in ionic liquids,Angew.Chem.Int.Ed.,2006,45,4864-4867
    [96]Ferdova S,Ferreirab RAS,Lin Z,Optical properties and local structure of Eu~(3+)-doped synthetic analogue of the microporous titanosilicate mineral sitinakite,J.Lumin.,2008,128,1108-1112
    [97]Perreux L,Loupy A,A tentative rationalization of microwave effects in organic ynthesis according to the reaction medium and mechanistic considerations,Tetrahedron,2001,57,9199-9223
    [98]Mullin JW,Crystallization,London:Butterworths,1972
    [99]Wang RY,Distribution of Eu~(3+) ions in LaPO_4 nanocrystals,J.Lumin.,2004,106,211-217
    [100]Bovero E,van Veggel FCJM,Conformational characterization of Eu~(3+)-doped LaF_3 core-shell nanoparticles through luminescence anisotropy studies,J.Phys.Chem.C,2007,111,4529-4534

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700