电解质溶液界面中移动氧化还原界面的理论建立、实验验证以及区带界面的应用性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电解质溶液界面作为电化学的一个重要分支,已经成为分析化学领域的研究热点,特别是其中的移动化学反应界面和区带界面更是作为近十年的重点研究方向。本论文的研究工作主要集中在对电解质溶液界面中新型移动氧化还原界面的理论模型的初步创建、实验验证以及区带界面中毛细管区带电泳的应用性研究,具体研究内容如下:
     1、移动氧化还原界面模型的初步建立
     在本论文的第二章中,我们以移动化学反应界面(MCRB)为理论基础,结合以往已经研究成熟的其他反应界面,从一个简单的氧化还原反应出发(氧化剂为FeCl3,还原剂为KI),创新性的提出了移动氧化还原界面(MORB)的概念,建立了理论模型,并根据此模型进一步推导出了界面迁移的速度表达式,也是为移动化学反应界面理论做了一点拓展研究。
     2、移动氧化还原界面模型的实验验证
     在本论文的第三章中,我们紧紧围绕第二章中提出的移动氧化还原界面模型和界面迁移速度表达式进行了具体的大管实验验证,其结果与理论预测相符。验证结果显示:①施加电场后,能够清晰的观察到氧化剂FeCl3与还原剂KI之间形成的移动氧化还原界面。②氧化剂与还原剂的浓度比在界面迁移速度和方向上发挥着重要作用,通过改变二者之间的浓度配比可以控制界面的迁移速度。③通过理论推导出的界面迁移公式,理论预测的各参数对界面速度的影响和实验结果相符。以上结果都证明了理论模型和公式的正确性,也为今后的深入研究提供了坚实的理论基础。
     3、应用毛细管区带电泳分离灵芝发酵菌丝体中灵芝酸相似物
     在本论文的第四章中,我们基于区带界面中最常用的毛细管区带电泳作为分析方法,完成了对灵芝发酵菌丝体中多种灵芝酸同系物的同步分离与定量检测。在最终优化的最佳的实验条件下,当以245 nm为检测波长,甘草次酸为内标时,四种灵芝酸在9分钟左右即可达到基线分离。所有物质的标准曲线均呈较好的线性关系(r2 >0.9958),检测限(LOD)和定量限(LOQ)分别低于0.6和1.8μg mL-1,精密度和回收率的相对标准偏差均低于5%,回收率在91.4%到103.6%之间。所有实验结果表明,我们建立的这种方法真实、有效,为灵芝酸同系物的分离提供了一种可供选择的分析方法。
As one of the important branches of electrochemistry, the electrolyte solution boundary has become a very hot topic in analytical chemistry, among them moving chemical reaction boundary (MCRB) and zone boundary have come to be the main development trend in recent 10 years. The main work of this paper is focus on the establishment and verification of the newly moving oxidation-reduction boundary (MORB) and the application study of the capillary electrophoresis. The main points of this thesis are summarized as follows:
     1、Preliminary establishment of the moving oxidation-reduction boundary.
     In Chapter 2, based on the concept of MCRB and along with the previous research of other reaction boundary, a model of moving oxidation-reduction boundary was created by the common oxidant and reductant: FeCl3 and KI. Thus the model of MORB was established. From the MORB model, the expression of the velocity of MORB was deducted.
     2、Experimental verification of MORB.
     In Chapter 3, to avoid getting the parameters difficult to obtain required in the calculations involved and simplify the computation, a very convenient and efficient data processing method was worked out to validate the model and expression of MORB which submitted in Chapter 2. The experimental results well accord with the prediction, they showed:①The MORB between FeCl3 and KI could be observed clearly between oxidant and reductant by an electric field applied to the large tube.②The ratio of the concentrations of the oxidant and reductant played an important role in the migration of the boundary, and the velocity of the MORB could be controlled by changing the concentration ratio of the oxidant and reductant.③By the expressions of the theory, the influence on the parameters of the velocity were well accord with the predicted ones, which could prove the correctness of the MORB model and expression. Our work was hoped to offer a solid theory foundation and pave a way for further studies.
     3、Analysis of four ganoderic acids from fermentation mycelia powder of Ganoderma lucidum by capillary zone electrophoresis (CZE)
     In Chapter 4, a simple and reliable method was developed for the separation and quantitative determination of four ganoderic acids(GAs) from dried triterpene-enriched extracts of Ganoderma lucidum mycelia powder by CZE which was the most commonly used analysis method in zone boundary. Under the optimum conditions, the four GAs reached the baseline separation in 9 min with Glycyrrhetinic acid (GTA) as internal standard. The four GAs and internal standard (GTA) were detected at a wavelength 245 nm. All calibration curves showed good linearity (r2 >0.9958) within test ranges. Limit of detection (LOD) and limit of quantification (LOQ) were less than 0.6 and 1.8μg mL-1, respectively. The relative standard deviation (R.S.D.) values of precision and recoveries was less than 5% and recoveries ranged from 91.4% to 103.6%. It showed that the developed method was effective and stably, it could be regarded as an alternative method for the analysis of the four GAs.
引文
[1] H.Planck. Ueber die Potentialdifferenz zwischen zwei verdünnten L?sungen bin?rer Electrolyte. Ann.Physik[J]. 1890, 276(8): 561-576.
    [2] F.Kohlrausch. Displacement of concentrations by the current in solutions of electrolytes. Ann.Physik[J]. 1897, 62(6): 209-224.
    [3] M.V. Laue. Ein Satz der Wahrscheinlichkeitsrechnung und seine Anwendung auf die Strahlungstheorie. Ann.Physik[J]. 1915, 352(15): 853-878.
    [4] E. N. Bunting, Bur.Standards. Phase Equilibria in the System Cr 2 O3 ?Al 2 O3. J. Res. [J]. 1931, 6(6): 947-949.
    [5] L.G. Longsworth. A modification of the Schlieren method for use in electrophoretic analysis. J.Am.Chem.Soc. [J]. 1939, 61(2): 529-530.
    [6] L.G. Longsworth. A Differential Moving Boundary Method for Transference Numbers. J.Am.Chem.Soc. [J]. 1943, 65(9): 1755-1765.
    [7] S.Hjerten, J.L. Liao, R.Zhang. New approaches to concentration on a microliter scale of dilute samples, particularly biopolymers with special reference to analysis of peptides and proteins by capillary electrophoresis I. Theory. J. Chromatogr.A. [J]. 1994, 676(2): 409-420.
    [8] V.P. Dole. A Theory of Moving Boundary Systems Formed by Strong Electrolytes. J. Am.Chem.Soc. [J]. 1945, 67(7): 1119-1126.
    [9] H.Svensson. The behavior of weak electrolytes in moving-boundary systems: I. Moving-boundary equation. Acta Chem.Scand. [J]. 1948, 2(1): 841-848.
    [10] L.G. Longsworth. Moving Boundary Studies on Salt Mixtures. J. Am. Chem.Soc. [J]. 1945, 67(7): 1109-1119.
    [11] L.G. Longsworth. An application of moving boundaries to a study of aqueous mixtures of hydrogen chloride and potassium chloride. J. Am. Chem.Soc. [J]. 1930, 52(5): 1897-1910.
    [12] L.G. Longsworth. The Concentration Distribution in Two-Salt Moving Boundaries. J. Am. Chem.Soc. [J]. 1944, 66(3): 449-453.
    [13] R.A. Alberty. Moving Boundary Systems Formed by Weak Electrolytes. Theory of Simple Systems Formed by Weak Acids and Bases. J.Am.Chem.Soc. [J]. 1950, 72(6): 2361-2367.
    [14] D.A. MacInnes, L.G.Longsworth. Transference Numbers by the Method of Moving Boundaries. Chem. Rev. [J]. 1932,11(2): 171-230.
    [15] A.Tiselius. Study of the electrophoresis of proteins by the moving-boundary method. Nova Acta Reg.Soc.Sci.Upsal. [J]. 1930, 4(1): 7-11.
    [16] J. Kendall, E. D. Crittenden. The Separation of Isotopes. Proc. Nat. Acad. Sci. U.S. [J]. 1923, 9(3): 75-78.
    [17] J.Kendall. Separations by the ionic migration method. Science[J]. 1928, 67(1728): 163-167.
    [18] J.Brittain, D.C. Henry. The cataphoresis of suspended particles. Part I.The equation of cataphoresis. Proc. Roy. Soc. [J]. 1931, 143A:106-110,.
    [19] J.Brittain, D.C. Henry. Cataphoresis. Part II. A New Experimental Method and a Confirmation of Smoluchowski’s Equation. Proc. Roy. Soc. [J]. 1931, 143A:136-138.
    [20] D.C. Henry, J. Brittain. Cataphoresis. Part III. A comparison of the results of measurements by the transport and moving boundary methods and a theory of the latter method. Trans. Faraday Soc. [J]. 1933, 29(1): 798-815.
    [21] A. Tiselius. A new apparatus for electrophoretic analysis of colloidal mixtures. Transf. Faraday Soc. [J]. 1937, 33(1): 524-531.
    [22] H. Rilbe. A scientific life with chemistry, optics, and mathematics. Electrophoresis[J]. 1984, 5(1): 1-17.
    [23] F.M. Everaerts, Jo.L. Beckers, E.M. Verheggen. Isotachophoresis: Theory, Instrumentation and Applications[M]. Elsevier Scientific Publishing Co., 1976. 1-4.
    [24] L.G. Longsworth. 8. Moving Boundary Separation of Salt Mixtures. Nat. Bur. Stand. (U.S.). Circ. [J]. 1953, 524(6): 59-63.
    [25] M.D. Poulik. Starch Gel Electrophoresis in a Discontinuous System of Buffers. Nature[J]. 1957, 180(2): 1477-1479.
    [26] E.A. Kaimakov, V.B. Fiks. Electron paramagnetic-resonance study of oxides of chromium. Russ. J. Phys. Chem. [J]. 1961, 35(1): 873-874.
    [27] E.A. Kaimakov, V.I. Sharkov. Determination of the transference numbers in aqueous solutions of ZnCl 2. Russ. J. Phys. Chem. [J]. 1964, 38(1): 893-900.
    [28] Z. Prusik. Free-flow electromigration separations. J. Chromatogr. [J]. 1974, 91(1): 867-872.
    [29] P. Gebauer, W. Thormann. Isotachophoresis of proteins in uncoated open-tubular fused-silica capillaries with a simple approach for column conditioning. J. Chromatogr. A[J]. 1991, 558(2): 423-429.
    [30] F. Acevedo, Isotachophoresis of proteins in sucrose density gradients. Electrophoresis[J]. 1993, 14(1): 1019-1022.
    [31] T. Hirokawa, W. Xia, Y. Kiso. Isotachophoretic separation of rare earth ions I. Separation behaviour of yttrium and fourteen lanthanide ions forming complexes with tartaric acid andα-hydroxyisobutyric acid. J. Chromatogr. A[J]. 1995, 689(1): 149-156.
    [32] L. Ornstein. Disc electrophoresis. I. Background and theory. Ann. N. Y. Acad. Sci. [J]. 1964, 121(1): 321-351.
    [33] D.N. Heiger. High Performance Capillary Electrophoresis-An Introduction [M]. Hewlett-Packard Co., USA, 1992. 12-19.
    [34] B.J. Davis. Disc electrophoresis. II. Method and application to human serum proteins. Ann. N. Y. Acad. Sci. [J]. 1964, 121(1): 404-428.
    [35] T.M. Jovin, Multiphasic zone electrophoresis. I. Steady-state moving-boundary systems formed by different electrolyte combinations. Biochem. [J]. 1973, 12(5): 871-879.
    [36] T.M. Jovin. Multiphasic zone electrophoresis. II. Design of integrated discontinuous buffer systems for analytical and preparative fractionation. Biochem. [J]. 1973, 12(5): 879-890.
    [37] T.M. Jovin. Multiphasic zone electrophoresis. III. Further analysis and new forms of discontinuous buffer systems. Biochem. [J]. 1973, 12(5): 890-898.
    [38] K.Shimao. Mathematical approach to zone boundary of isotachophoresis system. Electrophoresis[J]. 1986, 7(3): 121-128.
    [39] K.Shimao. Mathematical simulation of isotachophoresis boundary betweenprotein and weak acid. Electrophoresis[J]. 1986, 7(7): 297-303.
    [40] S.Hjerten. Free zone electrophoresis. Chromatogr. Rev. [J]. 1967, 9(2): 122-219.
    [41] J.W. Jorgenson, K.D. Lukacs. Capillary Zone Electrophoresis. Science[J]. 1983, 222(6): 266-272.
    [42] D.S. Burgi, R.L. Chien. Optimization in sample stacking for high-performance capillary electrophoresis. Anal. Chem.[J]. 1991, 63(18): 2042-2047.
    [43] R.L. Chien, D.S. Burgi. Sample stacking of an extremely large injection volume in high-performance capillary electrophoresis. Anal. Chem.[J]. 1992, 64(9): 1046-1050.
    [44] D.S. Burgi. Large volume stacking of anions in capillary electrophoresis using an electroosmotic flow modifier as a pump. Anal. Chem. [J]. 1993, 65(24): 3726-3729.
    [45] P. Jandik, W.R. Jones. Optimization of detection sensitivity in the capillary electrophoresis of inorganic anions. J. Chromatogr. [J]. 1991, 546(1): 431-443.
    [46] D.S. Stegehuis, U.R. Tjaden, J. Van der Greef. Analyte focusing in capillary electrophoresis using on-line isotachophoresis. J. Chromatogr. [J]. 1992, 591(1-2): 341-349.
    [47] F. Foret, E.Szoka, B.L. Karger. On-column transient and coupled column isotachophoretic preconcentration of protein samples in capillary zone electrophoresis. J. Chromatogr. [J]. 1992, 608(1-2): 3-12.
    [48] L. Krivankova, P. Gebauer, W. Thormann, R.A. Mosher, P. Bocek. Options in electrolyte systems for on-line combined capillary isotachophoresis and capillary zone electrophoresis. J. Chromatogr. [J]. 1993, 638(2): 119-135.
    [49] N.J. Reinhoud, U.R. Tjaden, J. Van der Greef. Strategy for setting up single-capillary isotachophoresis-zone electrophoresis. J. Chromatogr. [J]. 1993, 653(2): 303-312.
    [50] N.J. Reinhoud, U.R. Tjaden, J. Van der Greef, Automated isotachophoretic analyte focusing for capillary zone electrophoresis in a single capillary using hydrodynamic back-pressure programming. J. Chromatogr. [J]. 1993, 641(1-2): 155-162.
    [51] T. Hirokawa, A. Ohmori, Y. Kiso. Analysis of a dilute sample by capillary zoneelectrophoresis with isotachophoretic preconcentration. J. Chromatogr. [J]. 1993, 634(1): 101-106.
    [52] M. Mazereeuw, U.R. Tjaden, J. Ver der Greef. In-line isotachophoretic focusing of very large injection volumes for capillary zone electrophoresis using a hydrodynamic counterflow. J. Chromatogr. A[J]. 1994, 677(1): 151-157.
    [53] N.J. Reinhoud, U. R. Tjaden, J. Ver der Greef. Correlation between zone velocity and current in automated single capillary isotachophoresis-zone electrophoresis. J. Chromatogr. A[J]. 1994, 673(2): 239-253.
    [54] J.L. Beckers. Steady-state models in electrophoresis: From isotachophoresis to capillary zone electrophoresis. Electrophoresis[J]. 1995, 16(1): 1987-1998.
    [55] L. Krivankova, P. Gebauer, P. Bocek. Some practical aspects of utilizing the on-line combination of isotachophoresis and capillary zone electrophoresis. J. Chromatogr. A[J]. 1995, 716(1-2): 35-48.
    [56] M. Mazereeuw, U.R. Tjaden, N.J. Reinhoud. Single Capillary Isotachophoresis- Zone Electrophoresis: Current Practice and Prospects. J. Chromatogr. Sci. [J]. 1995, 33(12): 686-697.
    [57] A.J. Tomlinson, L. M. Benson, S. Jameson, S. Naylor. Rapid loading of large sample volumes, analyte cleanup, and modified moving boundary transient isotachophoresis conditions for membrane preconcentration-capillary electrophoresis in small diameter capillaries. Electrophoresis[J]. 1996, 17(12): 1801-1807.
    [58] J. Bergmann, U. Jeahde, M. Mazereeuw, U. R. Tjaden, W. Schunack. Potential of on-line isotachophoresis-capillary zone electrophoresis with hydrodynamic counterflow in the analysis of various basic proteins and recombinant human interleukin-3. J. Chromatogr. A[J]. 1996, 734(2): 381-389.
    [59] C.X. Zhang, W. Thormann. Head-Column Field-Amplified Sample Stacking in Binary System Capillary Electrophoresis: A Robust Approach Providing over 1000-Fold Sensitivity Enhancement. Anal. Chem. [J]. 1996, 68(15): 2523-2532.
    [60] A.M. Enlund, D. Westerlund. Enhancing detectability in CE by combining an isotachophoretic preconcentration with capillary zone electrophoresis in a single capillary. Chromatographia[J]. 1997, 46(1): 315-321.
    [61] S.J. Chen, M.L. Lee. Counterflow Isotachophoresis?Capillary Zone Electrophoresis on Directly Coupled Columns of Different Diameters. Anal. Chem. [J]. 1998, 70(18): 3777-3780.
    [62] A.B. Wey, C.X. Zhang, W. Thormann. Head-column field-amplified sample stacking in binary system capillary electrophoresis: Preparation of extracts for determination of opioids in microliter amounts of body fluids. J. Chromatogr. A[J]. 1999, 853(1-2): 95-106.
    [63] M. Stastna, K. Slais. Use of micellar partition in capillary isotachophoretic focusing. J. Chromatogr. A[J]. 1999, 832(1-2): 265-271.
    [64] J. Deman, W. Rigole. Chemical reaction during electromigration of ions. J. Phys. Chem. [J]. 1970, 74(5): 1122–1126.
    [65] J. Deman. Precipitation during electromigration of ions. Anal. Chem. [J]. 1970, 42(3): 321–324.
    [66] J. Pospichal, M. Deml, P. Bocek. Electrically controlled electrofocusing of ampholytes between two zones of modified electrolyte with two different values of pH. J. Chromatogr. [J]. 1993, 638(2): 179–186.
    [67] M. Deml, J. Pospichal. Electrically controlled focusing of proteins and ampholytes between two modified electrolytes. Computer simulation. Appl. Theor. Electrophor. [J]. 1994, 4(3): 107–115.
    [68] C.X. Cao. Moving chemical reaction boundary and isoelectric focusing: I. Conditional equations for Svensson–Tiselius' differential equation of solute concentration distribution in idealized isoelectric focusing at steady state. J. Chromatogr. A[J]. 1998, 813(1): 153–171.
    [69] C.X. Cao. Moving chemical reaction boundary formed by weak reaction electrolytes: Theory. Acta Chem. Scand.[J]. 1998, 52(6): 709–713.
    [70] C.X. Cao, W.K. Chen. Experimental study of the moving chemical reaction boundary formed by CO2+ and OH- . Acta Chem. Scand. [J]. 1998, 52(6): 714–717.
    [71] C.X. Cao, R.Z. Li, S.L. Zhou, W.K. Chen, Y.T. Qian. Stable colloid of Co(OH)prepared by moving chemical reaction boundary method (MCRBM) in agarose gel2 . Colloids Surf. A[J]. 2001, 180(1-2): 17–21.
    [72] C. X. Cao, J. H. Zhu, H. Liu. Judgment expressions for a moving chemical reaction boundary and isoelectric focusing. Acta Chem. Scand. [J]. 1999, 53(11):955–962.
    [73] J.P. Quirino, J.B. Kim, S. Terabe. Sweeping: concentration mechanism and applications to high-sensitivity analysis in capillary electrophoresis. J. Chromatogr. A[J]. 2002, 965(1-2): 357–373.
    [74] K. Isoo, S. Terabe, Analysis of Metal Ions by Sweeping via Dynamic Complexation and Cation-Selective Exhaustive Injection in Capillary Electrophoresis. Anal. Chem. [J]. 2003, 75(24): 6789–6798.
    [75] C.X. Cao, L.Y. Fan, W. Zhang. Review on the theory of moving reaction boundary, electromigration reaction methods and applications in isoelectric focusing and sample pre-concentration. Analyst[J]. 2008, 133(1): 1139 - 1157.
    [76] C.X. Cao, Y.T. Qian, W.E. Gan. Quantitative studies on the preparation of colloidal particles of cobalt hydroxide by the moving chemical reaction boundary method in agarose gel. Colloid Polym. Sci.[J]. 2004, 282(6): 1059–1062.
    [77] S. Li, C.X. Cao, Z.X. Lin, J.F. Luo. Theoretical study on colloid/or inorganic material preparation by moving reaction boundary method in gel. Colloid Polym. Sci.[J]. 2005, 283(10): 1131–1136.
    [78] J. Deman. Separation of rare earth ions by precipitation during electromigration. Anal.Chem. [J]. 1970, 42(9): 983–989.
    [79] S.L. Zhou, C.X. Cao, Y.Z. He, W.K. Chen, Y.T. Qian. A Novel and Optimized Method for Electro-focusing and Moving Neutralization Reaction Boundary Formed by HCl and NaOH. Chin. Chem. Lett. [J]. 2001, 12(2): 179–182.
    [80] J.P. Quirino, S.Terabe. Exceeding 5000-Fold Concentration of Dilute Analytes in Micellar Electrokinetic Chromatography. Science[J]. 1998, 282(5388): 465-468.
    [81] J. Palmer, N.J. Munro, J.P. Landers. A Universal Concept for Stacking Neutral Analytes in Micellar Capillary Electrophoresis. Anal. Chem. [J]. 1999, 71(9): 1679-1687.
    [82] L.Y. Fan, C.J. Li, W. Zhang, P. Zhou, C.X. Cao. Quantitative investigations on moving chelation boundary within a continuous EDTA-based sample sweeping system in capillary electrophoresis. Electrophoresis[J]. 2008, 29(19): 3989-3998.
    [83] A. Tiselius, H. Svensson. The influence of electrolyte concentration on the electrophoretic mobility of egg albumin. Trans. Faraday Soc. [J]. 1940, 35(1): 16-22.
    [84] R.A. Alberty. Moving Boundary Systems Formed by Weak Electrolytes. Theoryof Simple Systems Formed by Weak Acids and Bases. J. Am. Chem. Soc. [J]. 1950, 72(6): 2361–2367.
    [85] C.X. Cao. Chinese Invention Patent Bulletin, 1991, Apply No. 90102551.8, Publishing No. CN 1056261A.
    [86] C.X. Cao. Stationary Chemical Reaction Boundary: Theory and Test. Acta Phys.–Chim. Sin.[J]. 1997, 13(9): 843–848.
    [87] C.X. Cao. Moving chemical reaction boundary and isoelectric focusing: II. Existence of quasi/equal fluxes (or transference numbers) of hydrogen and hydroxyl ions in stationary electrolysis and Svensson's isoelectric focusing. J. Chromatogr. A[J]. 1998, 813(1): 173–177.
    [88] C.X. Cao, Moving chemical reaction boundary and isoelectric focusing: III. Comparisons between transference numbers of hydrogen ion in the acids HBr, HCl, HI and hydroxyl ion in the alkali KOH. Prog. Nat. Sci. [J]. 1999, 9(8): 602–609.
    [89] E. Ahlgren, K.E. Eriksson, O. Vesterberg. Characterization of cellulases and related enzymes by isoelectric focusing, gel filtration and zone electrophoresisⅠ.Studies on aspergillus enzymes. Acta Chem. Scand. [J]. 1967, 21(1): 937–944.
    [90] O. Vesterberg. Synthesis of carrier ampholytes for isoelectric focusing. Acta Chem. Scand. [J]. 1969, 23(7): 2653–2666.
    [91] H. Svensson. Isoelectric fractionation, analysis and characterisation of ampholytes in natural pH gradients.Ⅰ.The differential equation of solute concentrations at a steady state and its solution for simple cases. Acta Chem. Scand. [J]. 1961, 15(1): 325–341.
    [92] H. Svensson, Eine genaue und vielseitig anwendbare vorrichtung zur erzeugung von flussikeitsgradienten. Acta Chem. Scand.[J]. 1962, 16(1): 456–466.
    [93] C.X. Cao, S.L. Zhou, Y.Z. He, X.Y. Zheng, W.K. Chen, Y.T. Qian. Experimental study on moving neutralization reaction boundary created with the strong reactive electrolytes of HCl and NaOH in agarose gel. J.Chromatogr. A[J]. 2000, 891(2): 337–347.
    [94] R. Hayedorn, G. Fuhr. Steady state electrolysis and isoelectric focusing.Electrophoresis[J]. 1990, 11(4): 281–289.
    [95] J. Pospichal, E. Glovinova. Analytical aspects of carrier ampholyte-free isoelectric focusing. J. Chromatogr. A[J]. 2001, 918(1): 195–203.
    [96] A. Chrambach, P. Doerr, G.D. Finlayson, L.E. Miles, R. Sherins, D. Rodbard. Instability of pH gradients formed by isoelectric focusing in polyacrylamide gel. Ann. N. Y. Acad. Sci. [J]. 1973, 209(1): 44–64.
    [97] G. Baumann, A. Chrambach. Progress in isoelectric focusing and isotachophoresis[M]. P. G. Righetti, NorthHolland Publishing Co., Amsterdam, Oxford, 1975. 13–23.
    [98] N.Y. Nguyen, A. Chrambach. Nonisoelectric focusing in buffers. Anal. Biochem. [J]. 1976, 74(1): 145–153.
    [99] N.Y. Nguyen, D. Rodbard, P.J. Svendsen, A. Chrambach. Cascade stacking and cascade electrofocusing: Their interconversion and fundamental unity. Anal. Biochem. [J]. 1977, 77(1): 39-55.
    [100] S. Hjerten, M.D. Zhu. Adaptation of the equipment for high-performance electrophoresis to isoelectric focusing. J. Chromatogr. [J]. 1985, 346(1): 265–270.
    [101] S. Hjerten, K. Elenbring, F. Kilar, J. L. Liao. Carrier-free zone electrophoresis, displacement electrophoresis and isoelectric focusing in a high-performance electrophoresis apparatus. J. Chromatogr. [J]. 1987, 403(1): 47–61.
    [102] F. Kilar, S. Hjerten. Fast and high resolution analysis of human serum transferrin by high performance isoelectric focusing in capillaries. Electrophoresis[J]. 1989, 10(1): 23-29.
    [103] M. Conti, C. Gelfi, P.G. Rightti. Screening of umbilical cord blood hemoglobins by isoelectric focusing in capillaries. Electrophoresis[J]. 1995, 16(1): 1485–1491.
    [104] K.T. Manabe, A. Miyamoto, A. Iwasaki. Effects of catholytes on the mobilization of proteins after capillary isoelectric focusing. Electrophoresis[J]. 1997, 18(1): 92–97.
    [105] K.T. Manabe, A. Iwasaki, H. Miyamoto. Separation of human plasma/serum proteins by capillary isoelectric focusing in the absence of denaturing agents. Electrophoresis[J]. 1997, 18(7): 1159–1165.
    [106]W. Thormann, J. Caslavska. R.A. Mosher, Modeling of electroosmotic and electrophoretic mobilization in capillary and microchip isoelectric focusing. J. Chromatogr. A[J]. 2007, 1155(2): 154–163.
    [107]罗国安,王义明.毛细管电泳的原理及应用.色谱[J].1995,13(1):254-255.
    [108]刘志松,方肇伦.HPCE在药物分析中的应用.色谱[J].1996,14(5):364-368.
    [109] Cohen A. Capillary electrophoresis separation of drugs. J Chromatography[J]. 1996, 735(1): 1-8.
    [110]周晔,李培学,张福娟.高效毛细管电泳在药物分析中的应用.天津药学[J].1999,11(1):4-6.
    [111]邹定,吴学华,南国柱.CZE测定复方氯丙那片中3种药物含量.中国药学[J].1998,33(6): 360-366.
    [112]车宝泉,田南卉,李进忠.大观霉素的高效毛细管电泳测定.药物分析[J].1998,18(4): 273-274.
    [113]黄宗玉,金瓯.高效毛细管电泳法测定泛昔洛韦的杂质.药物分析[J].2000,20(2): 111-113.
    [114]尹茶,吴玉田.高效毛细管电泳法同时测定四种喹诺酮类药物.药物分析[J]. 1997,17(6): 371-373.
    [115]祝仕清,牛长群,张惠敏.高效毛细管电泳法分离四环素类抗生素及测定四环素中杂质.药物分析[J].1998,18(4): 248-250.
    [116]张金兰,周国惠.高效毛细管区带电泳测定河豚毒素.药物分析[J].1998,18(4): 231-233.
    [117]张朝晖,范国荣,徐国钧.12种海马、海龙类药材高效毛细管电泳法鉴别.中国中药[J].1998,23(5): 259-260.
    [118]梁统,周克元,丁航.毛细管电泳法分析血清中华法林对映体的浓度.中国药科大学学报[J].1997,28(1): 36-38.
    [119]祝仕清,牛长群,刘志全.高效毛细管电泳法分离测定枸橼酸托瑞米芬的Z,E异构体.药物分析[J].1998,18(4): 250-252.
    [120]俞奇,王义明,罗国安.氧氟沙星对映体的毛细管电泳手性分离.药学学报[J].1997,32(3): 203-206.
    [121]钟英,郑勇军.重组人粒细胞集落刺激因子肽谱分析方法初探.药物分析[J],2000,20(2): 84-87.
    [122]廖海明,杨昭鹏,徐康森.重组人胰岛素及其相关物质的CZE分析法.药物分析[J].2000,20(1): 12-14.
    [123]周国华,罗国安,周勇.高效毛细管电泳分析重组人红细胞生成素.中国药学[J].1998,33(7): 424-427.
    [124] J.Frenz, S.L. Wu, W.S. Hancock. Characterization of human growth hormone by capillary electrophoresis. J.Chromatogr. [J]. 1989, 480(1): 379-391.
    [125] R.G. Nielsen, G.S. Sittampalam, E.C. Rickard. Capillary zone electrophoresis of insulin and growth hormone. Anal.Biochem. [J]. 1989, 177(1): 20-26.
    [126] S.L. Wu, G.Jeshima, J.Cacia, W.S. Hancock. Use of high-performance capillary electrophoresis to monitor charge heterogeneity in recombinant-DNA derived proteins. J.Chromatogr. [J]. 1990, 516(1): 115-122.
    [127] K.W. Yim. Fractionation of the human recombinant tissue plasminogen activator (rtPA) glycoforms by high-performance capillary zone electrophoresis and capillary isoelectric focusing. J.Chromatogr. [J]. 1991, 559(1-2): 401-410.
    [128] A.D. Tran, S.Park, P.J. Lisi. Separation of carbohydrate-mediated microheterogeneity of recombinant human erythropoietin by free solution capillary electrophoresis: Effects of pH, buffer type and organic additives. J.Chromatogr. [J]. 1991, 542(1): 459-471.
    [129] L.R. Gurley, J.E. London, J.G. Valdez. High-performance capillary electrophoresis of histones. J.Chromatogr. [J]. 1991, 559(1-2): 431-443.
    [130] E.Wenisch, C.Tauer, A.Jungbauer. Capillary zone electrophoresis for monitoring r-DNA protein purification in multi-compartment electrolysers with immobiline membranes. J.Chromatogr. [J]. 1990, 516(1): 133-146.
    [131] A.Vinther, S.E. Bjrn, H.H. Srensen, H.Seberg. Identification of aprotinin degradation products by the use of high-performance capillary electrophoresis, high-pressure liquid chromatography and mass spectrometry. J.Chromatogr. [J]. 1990, 516(1): 175-184.
    [132] R. Aebersold, H.D. Morrison. Analysis of dilute peptide samples by capillary zone electrophoresis. J.Chromatogr. [J]. 1990, 516(1): 79-88.
    [133] W. Nashabeh, Z.E. Rassi. Capillary zone electrophoresis ofα1-acid glycoprotein fragments from trypsin and endoglycosidase digestions. J.Chromatogr. [J]. 1991, 536(1): 31-42.
    [134] R.J. Krueger, T.R. Hobbs, K.A. Mihal. Analysis of endoproteinase Arg C action on adrenocorticotrophic hormone by capillary electrophoresis and reversed-phasse high-performance liquid chromatography. J.Chromatogr. [J]. 1991, 543(1): 451-461.
    [135] R.G. Nielsen, R.M. Riggin, E.C. Rickard. Capillary zone electrophoresis of peptide fragments from trypsin digestion of biosynthetic human growth hormone. J.Chromatogr. [J]. 1989, 480(1): 393-401.
    [136] M.A. Moseley, L.J. Deterding, K.B. Tomer, J.W. Jorgenson. Coupling of capillary zone electrophoresis and capillary liquid chromatography with coaxial continuous-flow fast atom bombardment tandem sectro mass spectrometry. J.Chromatogr. [J]. 1989, 480(1): 197-209.
    [137] R.M. Caprioli, W.T. Moore, M. Martin. Coupling capillary zone electrophoresis and continuous- flow fast atom bombardment mass spectrometry for the analysis of peptide mixtures. J.Chromatogr. [J]. 1989, 480(1): 247-257.
    [138] R.D. Smith, J.A. Loo, C.J.Barinaga. Capillary zone electrophoresis and isotachophoresis-mass spectrometry of polypeptides and proteins based upon an electrospray ionization interface. J.Chromatogr. [J]. 1989, 480(1): 211-232.
    [139] I.M. Johansson, E.C. Huang, J.D. Henion, J. Zweienbaum. Capillary electrophoresis-atmospheric pressure ionization mass spectrometry for the characterization of peptides: Instrumental considerations for mass spectrometric detection. J.Chromatogr. [J]. 1991, 554(1-2): 311-327.
    [140] C.X. Cao, S.L. Zhou, Y.T. Qian. Experimental investigation on moving chemical reaction boundary theory for weak-acid–strong-base system with background electrolyte KCl in large concentration. J. Chromatogr. A[J]. 2001, 922(1-2): 283-292.
    [141] C.X. Cao, S.L. Zhou, Y.Z. Qian. Corrections to moving chemical reactionboundary equation for weak reactive electrolytes under the existence of background electrolyte KCl in large concentrations. J. Chromatogr. A[J]. 2001, 907(1-2): 347-352.
    [142] M. Hjelmeland, A. Chrambach. Formation of natural pH gradients in sequential moving boundary systems with solvent counterions. I. Theory. Electrophoresis[J]. 1983, 4(1): 20-26.
    [143] C.X. Cao, S.L. Zhou, Y.Z. He. Experimental study on moving neutralization reaction boundary created with the strong reactive electrolytes of HCl and NaOH in agarose gel. J. Chromatogr. A[J]. 2000, 891(3): 337-347.
    [144] J. Deman, W. Rigole. Chemical reaction during electromigration of ions. J. Phys. Chem. [J]. 1970, 74(5): 1122-1126.
    [145] J. Deman. Precipitation during electromigration of ions. Anal. Chem. [J]. 1970, 42(3): 321-322.
    [146] J. Pospichol, M. Deml, P. Bocek. Electrically controlled electrofocusing of ampholytes between two zones of modified electrolyte with two different values of pH. J. Chromatogr. [J]. 1993, 638(2): 179-184.
    [147]李发美.分析化学[M].人民卫生出版社,第五版,112-112.
    [148] R.M. Paterson. Ganoderma– A therapeutic fungal biofactory. Phytochemistry. 2006, 67 (18): 1985–2001.
    [149] Y.J. Tang, J.J. Zhong. Modeling the kinetics of cell growth and ganoderic acid production in liquid static cultures of the medicinal mushroom Ganoderma lucidum. Biochem. Eng. J. [J]. 2004, 21 (3): 259-264.
    [150] Z.B. Lin. Ganoderma: Genetics, Chemistry, Pharmacology and Therapeutics[M]. Beijing Medical University Press, Beijing, 2002.
    [151] M.S. Shiao, K.R. Lee, L.J. Lin, C.T. Wang. Food Phytochemicals for Cancer Prevention II[M], ACS Symposium Series 547, American Chemical Society, Washington, DC, 1994.
    [152] H. Kohda, W. Tokumoto, K. Sakamoto, M. Fujii, Y. Hirai, K. Yamasaki, Y. Komoda, H. Nakamura, S. Ishihara, M. Uchida. The biologically active constituents of Ganoderma lucidum (Fr.) KARST. Histamine release-inhibitory triterpenes. Chem. Pharm. Bull. [J]. 1985, 33 (4): 1367-1374.
    [153] C.H. Su, Y.Z. Yang, H.O. Ho, C.H. Hu, M.T. Sheu. High-Performance Liquid Chromatographic Analysis for the Characterization of Triterpenoids from Ganoderma. J. Chromatogr. Sci. [J]. 2001, 39 (3): 93-100.
    [154] R. Joachim, A.K. Wilfried. Constituents of various wood-rotting basidiomycetes. Phytochemistry[J]. 2000, 54 (6): 603-610.
    [155]丁平,梁英娇,罗进辉,苏健芬,灵芝中6种主要三帖酸类成分的HPLC定量分析.中国药学[J].2009,44(2): 822-824.
    [156] X.M. Wang, R.X. Liu, J.H. Sun, S.H. Guan, M. Yang, K.S. Bi. HPLC method for the determination and pharmacokinetic studies of four triterpenoids in rat plasma after oral administration of Ganoderma lucidum extract. Biomed. Chromatogr. [J]. 2007, 21 (1): 389-396.
    [157] M.S. Shiao, L.J. Lin, C.S. Chen. Determination of stereo- and positional isomers of oxygenated triterpenoids by reversed phase high performance liquid chromatography. J. Lipid Res. [J]. 1989, 30(1): 287-291.
    [158] W. Tang, T.Y. Gu, J.J. Zhong. Separation of targeted ganoderic acids from Ganoderma lucidum by reversed phase liquid chromatography with ultraviolet and mass spectrometry detections. Biochem. Eng. J. [J]. 2006, 32 (3): 205–210.
    [159] P.B. Wright, A.S. Lister, J.G. Dorsey. Behavior and Use of Nonaqueous Media without Supporting Electrolyte in Capillary Electrophoresis and Capillary Electrochromatography. Anal. Chem. [J]. 1997, 69 (16): 3251-3259.
    [160] J.L. Robert, T. Toshihiko. Ultra-High Resolution Separation Comes of Age. Science[J]. 2002, 298 (5597): 1441-1442.
    [161] J.M. Davis, E.A. Arriaga. Estimation of Migration-Time and Mobility Distributions in Organelle Capillary Electrophoresis with Statistical-Overlap Theory. Anal. Chem. [J]. 2010, 82(1): 307-315.
    [162] E.T. Ritschdorff, M.L. Plenert, J.B. Shear. Microsecond Analysis of Transient Molecules Using Bi-Directional Capillary Electrophoresis. Anal. Chem. [J]. 2009, 81 (21): 8790-8796.
    [163] L. Richard, B.M. Philip. Differential Rates of Glutathione Oxidation for Assessment of Cellular Redox Status and Antioxidant Capacity by CapillaryElectrophoresis-Mass Spectrometry: An Elusive Biomarker of Oxidative Stress. Anal. Chem. [J]. 2009, 81 (16): 7047-7056.
    [164] I.G. Pérez, M. Vallejo, A. García, C.L. Quigley, C. Barbas. Metabolic fingerprinting with capillary electrophoresis. J. Chromatogr. A[J]. 2008,1204 (2): 130-139.
    [165] P. Yang, Y.Q. Li, X. Liu, S.X. Jiang. Determination of free isomeric oleanolic acid and ursolic acid in Pterocephalus hookeri by capillary zone electrophoresis. J. Pharm. Biomed. Anal. [J]. 2007, 43 (4): 1331-1334.
    [166] S. Emara, K.M. Mohamed, T. Masujima, K. Yamasaki. Separation of naturally occurring triterpenoidal saponins by capillary zone electrophoresis. Biomed. Chromatogr. [J]. 2001, 15 (4): 252-256.
    [167] S.D. Qi, L. Ding, K. Tian, X.G. Chen, Z.D. Hu. Novel and simple nonaqueous capillary electrophoresis separation and determination bioactive triterpenes in Chinese herbs. J. Pharm. Biomed. Anal. [J]. 2006, 40 (1): 35-41.
    [168] J. Vindevogel, P. Sandra. Resolution optimization in micellar electrokinetic chromatography: use of Plackett-Burman statistical design for the analysis of testosterone esters. Anal. Chem. [J]. 1991, 63(15) : 1530-1536.
    [169] C. Schwer, E. Kenndler. Electrophoresis in fused-silica capillaries: the influence of organic solvents on the electroosmotic velocity and the zeta. potential. Anal. Chem. [J]. 1991, 63 (17): 1801-1807.
    [170] C.A. Monning, R.T. Kennedy. Capillary Electrophoresis. Anal. Chem.[J]. 1994, 66 (12): 280R-314R.
    [171] J.W. Jorgenson, K.D. Lukacs. Zone electrophoresis in open-tubular glass capillaries. Anal. Chem. [J]. 1981, 53 (8) : 1298-1302.
    [172] M.L. Riekkola, M. Jussila, S.P. Porras, I.E. Valkó. Non-aqueous capillary electrophoresis. J. Chromatogr. A[J]. 2000, 892 (1-2) : 155-170.
    [173] F. Steiner, M. Hassel. Nonaqueous capillary electrophoresis: A versatile completion of electrophoretic separation techniques. Electrophoresis[J]. 2000, 21(18): 3994-4016.
    [174] Y. Marcus. The properties of Solvents[M], John Wiley & Sons, Chichester,1998.
    [175] B.P. Johnson, M.G. Khaledi, J.G. Dorsey. Solvatochromic solvent polarity measurements and retention in reversed-phase liquid chromatography. Anal. Chem. [J]. 1986, 58 (12): 2354-2365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700