钛种植体表面改良喷砂处理对其骨性生物相容性影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙种植体已广泛应用于临床,每年有越来越多的病人接受这种治疗,但仍存在着很多难题没有解决,突出地表现为种植体的组织界面问题,从生物材料本身入手,也就是提高材料的生物相容性,是解决的一个根本途径。作者基于对生物材料学发展现状及发展未来的分析,提出“骨性生物相容性”的概念,并认为骨内种植材料在满足基本生物相容性的前提下,在生物组织相容性方面应有利于界面的骨愈合,在生物力学相容性方面应有利于骨界面的应力分布及力学传递。进一步作者从方法学角度引入了生物材料表面学的概念,认为生物材料的表面特性是决定其生物学表现,即生物相容性的重要因素。其中表面形貌对骨内种植材料的骨性生物相容性的影响最为显著。粗糙表面有利于种植体的骨融合及界面的生物力学特性,但何种形式最佳目前尚无定论。我们采用喷砂表面处理方法并对其进行改良,从体外及体内实验角度全面评价了改良喷砂表面对纯钛骨性生物相容性的影响,研究了在钛牙种植体中应用的可靠性及可行性,并在一定程度上揭示了它的作用机理。全文共分5个部分。
     一、人胚成骨细胞分离、培养
     采用组织块法进行原代分离、培养人胚成骨细胞。取材于6个月引产胎儿头盖骨,剪碎,接种,培养液为含10%胎牛血清、50μ/ml L—抗坏血酸的DMEM培养液。培养5天即有细胞自骨块内游出,12天细胞长满,可以进行传代培养。细胞经形态学和成骨细胞特异性指标鉴定证实为成骨细胞,尤其是透射电镜下见体外钙化结节的形成具有与体内成骨相似的矿化过程以及基本结构。细胞系生长过程稳定期持续时间相对较长(3代至30代),成骨细胞在稳定期具有稳定的增长速度(倍增时间为36小时)和较强的ALPase活性,并且出现明显的集落生长倾向。提示组织
Dental implants have been widely used in the clinics and more and more patients receive this treatment each year.However,there still exsita lot of problems which lie in the implant—tissue interface. The fundamental way to resolve it is to improve the biocompatibilities of biomaterials.Reviewing the biomaterial science's status quo,the author puts forward 'osteocompatibility' and defines it as the fact that the endosseous implant materials should favor the osseointegration in the bio—tissue compatibility ,and favor the stress distribution and mechanical transferring at the bone interface in the biomechanical compatibility , besides the prerequisite of meeting the basic biocompatibility.Furthermore,the author also brings forward 'biomaterial surface science',assuming that the surface characteristics of biomaterial be the main factors to determine the biological response to it.Of all the surface characteristics,the surface topography is the prevailing one to affect the osteocompatibility. We do know rough surface is advantageous,but we don't know which form is the perfect one. We employed the sandblasting technique modified with acid attack to improve the osteocompatibility of c.p.titanium and the possibility of its application in the dental titanium implant area was evaluated.Our study also revealed the mechanisms of its effects on the osteocompatibility to some extent.This paper is divided into five parts:
引文
1. MoΦr I A, Hensten—Pettersen A. Orstavik K. Biological properties.In: MjΦr IA, ed. Dental, materials: Biological properties and Clinical evaluations. Boca Raton: CRC Press, 1985;21—69
    2. ANSI/ADA Specification NO.41 in Biological Evaluation of Dental Materials. Washington DC: American National Standards Institute / American Dental Association, 1979
    3. BSI, Standard BS5828, in Methods of Biological Assessment of Dental Materials. London: British Standards Institution, 1980
    4. FDI, Federation Dentaire Internationale. Recommended standard Practices for Biological Evaluation of Dental Materials. Int Dent J, 1980;30:140-188
    5. Williams DF. Orthopedic implornts: Fundamental principals and the significance of biocompatibility In: Williams DF, ed. Biocompatibility of orthopedic implants, Vol 1.Boca Raton: CRC Press, 1982; 1-50
    6. Edgerton M and Levine MJ. Biocompatibility: Its future in prosthodontic research. J Prosthet Dent, 1983;69:406-415
    7. Sapatnekar S, Kieswetter KM, Merritt K, et al. Blood-biomaterial interactions in a flow system in the presence of bactaria: Effect of protein adsorption. J Biomed Mater Res, 1995;29:247-256
    8. Lee JH, Kopeckova P, Kopecek J, et al. Surface properties of copolymers of alkylmethacrylates with methoxycpolyethylene ox- ide methacrylates and their application as protein— resistant coatings.Biomaterials, 1990;l 1:455-464
    9. Yuhta T, Kikuta Y, Mitamura Y, et al. Blood compatibility of sputter—deposited alumina films. J Biomed Mater Res, 1994;28:217-224
    10. Ito T, Liu LS, Matsuo R, et al. Synthesis and nonthrombogenicity of ploymer membrane with sufface— graft polymers carrying thrombin inhibitor. J Biomed Mater Res, 1992;26:1065-1080
    11. Naji A and Harmand MF. Study of the effect of the surface state on the cytocompatibility of a Co-Cr alloy using human osteoblasts and fibroblasts. J Biomed Mater Res,1990;24:861-871
    12. Recum AF. New aspects of biocompatibility: Motion at the inter-face.In: Heimke G, Soltesz V, and Lee AJC eds. Clinical Implant materials. Advances in Biomaterials, Vol9. Amsterdam: Elsevier Science Publishers BV, 1990:297-302
    13. Asaoka K and Kuwayama N. Mechanical properties and biomechanical compatibility of porous titanium for dental implants. J Biomed Mater Res, 1985 ;19:699—713
    14. Parr GR, Gardner LK, and Toth KW. Titanium: The mystery metal of implant dentistry. Dental materials aspects. J Prosthet Dent, 1985; 54:410-414
    15. Kasemo B. Biocompatibility of titanium implants: Surface science aspects. J Prosthet Dent, 1983 ;49:832-837
    16. Wolfarth D and Ducheyne P. Effect of porous coating geometry on interfacial stress under a shear load. J Biomed Mater Res. 1993 ;27:1585-1589
    17. Deporter DA, Watson PA, Pilliar RM, et al. A histological as- sessment of the initial healing respense adjacent to porous surfaced titanium alloy dental implants in dogs. J Dent Res, 1986; 65( 8): 1064-1070
    18. Ratner BD, Hohnston AB, and Lenk TJ. Biomaterial surfaces. J Biomed Mater Res, 1987,21:59-90
    19. Hench LL and Pasechall HA. Direct chemical bond of bioactive glass—ceramic materials to bone and muscle. J Biomed Mater Res, 1973;7:25-42
    20. Ziats NP, Miller KM, and Anderson JM. In vitro and in vivo interactions of cells with biomaterials. Biomaterials, 1988;9:5—13
    21. Williams DF, Askill IN, and Smith R. Protein adsorption and desorption phenomena on clean metal surfaces. J Biomed Mater Res, 1985 ;19:313-320
    22. Sharma CP and Paul W. Protein interactin with tantalum: changes with oxide layer and hydroxyapatite at the interface. J Biomed Mater Res, 1992;26:1179-1184
    23. Ong JL, Chittur KK, and Lucas LC. Dissolution/reprecipitate and protein adsorption studies of calcium phosphate coalings by FT- IR/ATR techniques. J Biomed Mater Res, 1994;28:1337-1346
    24. Baier RE, Meyer AE, Natiella JR, et al. Surface properties determine bioadhesive outcomes: Methods and results. J Biomed Mater Res, 1984;18:337-355
    25. Doundoulakis JH. Sufrace analysis of titanium after sterilization:role in implant—tissure interface and bioadhesion. J Prosthet Dent, 1987 ;58(4):471-478
    26. Standford CM, Keller JC, and Solursh M. Bone cell expression on titanium surfaces is altered by sterilization treatments. J Dent Res,1994;73(5).1061-1071
    27. Ong JL, Prince CW, and Lucas LC. Cellular response to well—characterized calcium phosphate coatings and titanium surfaces in vitro. J Biomed Mater Res, 1995;29:165-172
    28. Schroeder A, van der Zypen, Stich H, et al. The reactions of bone,connective tissue, and epithelium to endosteal implants with titanium—sprayed surfaces. J Max—fac Surg, 1981;9(1): 15—25
    29. Gross U, Miiller—Mai Ch, Fritz Th, et al. Implant surface roughness and mode of load transmission influence periimplant bone structure. In:Heimke G, Soltesz U, and Lee AJC eds. Clinical Implant Materials. Advances in Biomaterials, Vol 9. Amsterdam: Elsevier Science Publishers BV, 1990;303-309
    30. Thomas KA and Cook SD. An evaluation of variables influencing implant fixation by direct bone apposition. J Biomed Mater Res, 1985;19:875-901
    31. Charkawi HGEI. Residual ridge changes under titanium plasma—sprayed screw implant systems. J Prosthet Dent, 1989;62:276-280
    32. Pilliar RM, Deporter DA, Watson PA, et al. Dental implant design—Effect on bone remodeling. J Biomed Mater Res, 1991;25:467-483
    33. Martin JY, Schwartz Z, Hummert TW, et al. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res, 1995 ;29:389-401
    34. Babbush CA. Titanium plasma spray screw implant system for reconstruction of the edentulous mandible. Dent Clin North Am, 1986;30(1): 117-131
    35. Denissen HW, Kalk W, Veldhuis AAH, et al. 11- year study of hydroxyapatite implants. J Prosthet Dent, 1989; 61: 706-712
    36. Haddad RJ, Cook SD, and Thomas KA. Biological fixation of porous-coated implants. J Bone Joint Surg, 1987; 69-A(9): 1459-1466
    37. Deporter DA, Watson PA, Pilliar RM, et al. A Histological Evaluation of a Functional Endosseous, Porous-surfaced, Titanium Alloy Dental Implant System in the Dog. J Dent Res, 1988; 67(9): 1190-1195
    38. Buser D, Schack RK, Steinemann S, et al. Influence of Surface Characteristics on Bone Integration of Titanium Implants. A Histomorphometric Study in Miniature pigs. J Biomed Mater Res, 1991; 25: 889-902
    39. Cooley DR, van Dellen AF, Burgess JO, et al. The Advantages of Coated Titanium Implants Prepared by Radiofrequency Sputtering from Hydroxylapatite. J Prothet Dent, 1992; 69: 93-100
    40. Block MS, Delgado A, and Fontenot MG. The effect of diameter and length of hydroxyapatite-coated dental implants on ultimate pullout force in dog alveolar bone. J Oral Maxillofac Surg, 1990; 48: 174-178
    41. Jaffin RA and Berman CL. The excessive loss of Branemark fixtures in Type Ⅳ bone: A 5-year analysis. J Periodontol, 1991; 62: 2-4
    42. Thomas KA, Kay JF, Cook SD, et al. The Effect of Surface Macrotexture and Hydroxylapatite Coating on the mechanical Strengths and Histological Profiles of Titanium Implant Materials. J Biomed Mater Res, 1987; 21: 1395-1414
    43.张辉秋.表面多孔钛螺旋种植体及其复合BMP的实验研究.硕士论 文 1992
    44. Adell R,Lekholm U,Rockler B,et al.A 15-year study of osseointegrated implants in the treatment of the edentulous jaw.Int J Oral Surg, 1981;10:387—416
    45. Sisk AL,Steflik DE Parr GR,et al. A Light and Electron Microscopic Comparsion of Ossesintegration of Six Implant Types. J Oral Maxillofac Surg, 1992; 50:709-716
    46. Babbush CA,Kent JH, and Misiek DJ.Titanium plasma—sprayed ( TPS) screw implants for the reconstruction of the edentulous mandible. J Oral Maxillofac Surg, 1986;44:274-282
    47. Babbush CA.ITI endosteal hollow cylinder implant system. Dent Clin North Am,1986;30(1):133-149
    48. Albrektsson J and Sennerby L. State of the art in oral implants. J Clin Periodontol,1991;18:474-481
    49. ten Bruggenkate CM,Kuller K, Oosterbeek HS,et al. Clinical evaluation of the ITI(F—type) hollow cylinder implant.Oral Surg Oral Pathol, 1990;70:693-697
    50. Listgarten MA,Buser D,Steinemann SG,et al. Light and transmission Electron microscopy of the Intact Interfaces between Non-submerged Titanium—coated Epoxy Resin Implants and Bone or Gingiva.J Dent Res , 1992;71(2):364-371
    51. Buser D,Weber HP,Donath K, et al. Soft Tissue Reactions to Non— submerged Unloaded Titanium Implants in Beagle dogs. J Periodontol, 1992;63:226-236
    52. Maniatopoulos C, Pilliar RM,and Smith DC. Threaded versus Porous — surfaced Designs for Implant Stabilization in Bone—endodontic Implant model.J Biomed Mater Res, 1986 ;20:1309-1333
    53. Pilliar RM, Lee JM,and Maniatopoulos C. Observations on the Effect of Movement on Bone Ingrowth into Porous—surfaced Implants. Clin Orthop, 1986;208:108-113
    54. Steflik DE,Hanes PJ.Sisk AL, et al. Transmission Electron Microscopic and High Valtage Electron Microscopic Observations of the Bone and Osteocyte Activity Adjacant to Unloaded Dental Implants Placed in dogs. J Periodontol, 1992;63:443-452
    55. Deporter DA, Friedlant B, Watson PA, et al.A Clinical and Radiographic Assessment of a Porous- surfaced, Titanium Alloy Dental Implant System in Dogs. J Dent Res, 1986;65(8): 1071-1077
    56. Adell R.In:Branemark PI. ed. Tissue- Integrated Prostheses. Chicago: Quintessence Publishing Co, 1986:175-186
    57. Rieger MR,Adams WK,Kinzel GL,et al. Finite element analysis of bone—adapted and bone—bonded endosseous implants. J Prosthet Dent, 1989; 62:436-440
    58. Kononen M, Hormia M, Kivilahti J, et al. Effects of Surface Processing on the Attachment,Orientation,and Proliferation of Human Gingival Fibroblasts on Titanium.J Biomed Mater Res, 1992;26:1325-1341
    59. Lowenberg BF,Pilliar RM,Aubin JE,et al. Migration, Attachment, and Orientation of Human Gingival Fibroblasts to Root Slices, Naked and Porous—surfaced Titianium alloy Discs,and Zircalloy 2 Discs in vitro. J Dent Res, 1987;66(5): 1000-1005
    60. Hosaka N, and Nagata T. Evaluation of New Dense- porous Hydroxylapatite Endosteal Dental Implant.J Oral Maxillofac Surg, 1987;45:583-593
    61. Delange GL,De Putter C,De Groot K,et al. A Clinical, Radiographic , and Histological Evaluation of Permucosal Dental Implants of Dense Hydroxylapatite in Dogs.J Dent Res, 1989;68(3):509-518
    62. Pilliar RM et al. The effect of partial coating with hydroxyapatite on bone remodeling in relation to porous—coated titanium— alloy dental implants in the dog.J Dent Res, 1991,70(10):1338
    63. De Goot k et al. Plasma sprayed coatings of hydroxylapatite. J Biomed Mater Res, 1987,21:1375
    64. Ducheyne P et al. In vivo metal—ion release from porous titanium -fiber material.J Biomed Mater Res, 1984,18:293
    65. Wilke HJ.Claes L,and Steinemann S. The influence of various titanium surfaces on the interfac shear strength between implants and bone. In:Heimke G,Soltesz U,and Lee AJC eds.Clinical Implant Materials. Advances in Bo materials, vol 9. Amsterdam:Else-vier Science Publishers BV, 1990:309-314
    66. Wong M Eulenberger J,Schenk R,et al. Effect of surface topology on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res, 1995 ;29:1567-1575
    67. Gotfredsen K,Wennerberg A, Johansson C,et al.Archorage of Tio_2-blasted,HA—coated ,and maghined implants: An experimental study with rabbits. J Biomed Mater Res, 1995 ; 29:1223-1231
    68. Wisbey A et al.Effect of surface treatments on the dissolution of titanium-based implant materials.Biomaterials, 1991,12:470
    69. Weingart D, Steinemann S, Schilli W, et al. Titanium deposition inregional lymph nodes after insertion of titanium screw implants inmaxillo facial region.Int J Oral Maxillofac Surg,1994;23:450-452
    70. Albrektsson T et al. Osseointegrated oral implants. J Periodo ntol, 1988; 59(5): 287-296
    71. Inoue T et al. Effect of the surface geometry of smooth and porous-coated titanium alloy on the orientation of fibroblasts in vitro. J Biomed Mater Res, 1987, 21: 107
    72. Healy KE et al. A physical model for the titanium-tissue interface. ASAIO Transactions, 1991, 37: M150-151
    73.张益,李自力,李晓新.钛板植入术后血清钛离子浓度变化及其影响因素分析.口腔颌面外科杂志,1994;4(1):1-4
    1. Hefley TJ, Stern PH, and Brand JS. Enzymatic isolation of cells from neonatal calvaria using two purified enzymes form clostridium histolyticum. Exp Cell Res, 1983; 149: 227-236
    2. Ecatot-charrier B, Glorieux FH, van der Rest M, et al. Osteoblasts isolated from mouse calvaria initiate matrix mineralization in cultrue. J Cell Biol, 1983; 96: 639-643
    3. Marks SC and Popoff SN. Bone cell biology: The regulation of development, structure, and function in the skeleton. Am J Anat, 1988; 183: 1-44
    4. Maniatopoulos C, Sodek J, and Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res, 1988; 254: 317—330
    5.刘鼎新,吕证实,主编.细胞生物学研究方法与技术第1版,北京:北京医科大学与中国协和医科大学联合出版社 1990:273-283
    6. Satomura K and Nagayama M. Ultrastructure of mineralized nodules formed in rat bone marrow stromal cell culture in vitro. Acta Anat, 1991; 142: 97-104
    7. Sudo H, Kodama HA, Amagai Y, et al. In vitro differentiation and calcification in a new clonal osteogenic cell line derived form newborn mouse calvaria. J Cell Biol, 1983; 96: 191-198
    8. Boskey AL, Mineral—matrix interactions in bone and cartilage. Clin Orthop Rel Res, 1992;281:244-270
    9. Bernard GW and Pease DC. An electron microscopic study of initial intramembranous osteogenesis. Am J Anat, 1969;125:271—290
    10. Bab IA, Muhlrad A, and Scla J. Ultrastructural and biochemical study of extracellular matirx vesicles in normal alveolar bone of rats.Cell Tissue Res, 1979;202:1-7
    11. Boshwy AL. Current concepts of physiology and biochemistry of calcification. Clin Orthop Rel Res, 1981 ;157:225—257
    1. Mjφr IA, Hensten-pettersen A, φrstavik D. Biological properites. In: Mjφr IA, ed. Dental materials: biological properties and clinical evaluations. Boca Raton: CRC Press, 1985: 21-69
    2. Edgerton M and levine MJ. Biocompatibility: Its future in prosthodontic research. J Prosthet Dent, 1993; 69: 406-415
    3. Itakura Y, Tajima T, Ohoke S, et al. Osteocompatibility of platinum-plated titanium assessed in vitro Biomaterials, 1989; 10: 489-493
    4. Williams DF. Summary of the definitions. In: williams DF, ed. Deffinitions in biomaterials. New York: Elsevier Science Publ. 1987; 66: —72
    5. Bretaudies JP and Spillman T. Alkaline phosphatase. In: Bergmeyer ed. Methods of enzymatic analysis, Vol4, 3rd ed, Verlag Chemie, Weinheim, Germany, 1984; 75-86
    6. Chen TL, Hauschka PV, Cabrales S, et al. The effects of 1, 25-dihydroxyvitamin D_3and dexamethasone on rat osteoblast-like primary cell cultures: receptor occupancy and functional expression patterns for three different bioresponses, Endocrinology, 1986; 118: 25-259
    7. Baier RE, Meyer AE, Natiella JR, et al. Surface properties determine bioadhesive outcomes: Mcthods and results. J Biomed Mater Res, 1984;18:337-355
    8. Horbett TA and Schway MB. Correlations between mouse 3T3 cell spreading and serum fibronectin adsorption on glass and hydroxyethylmethacrylate—ethylmethacrylate copolymers. J Biomed Mater Res, 1988 ;22:763-793
    9. Grinnell F and Feld MK, Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in derum-containing medium. J Biol Chem, 1982;257(9):4888-4893
    10. Ong JL, Chittur KK, and lucas LC. Dissolution/reprecipitation and protein adsorption studies of calcium phosphate coatings by FT-IR / ART techniques. J Biomed Mater Res, 1994;28:1337-1346
    11. Perez—luna VH, Horbett TA,and Ratner BD.Developing correlations between fibrinogen adsorption and surface properties using multivariable statisitcs. J Biomed Mater Res, 1994;28:1111-1126
    12. Ziats NP, Killer KM, and Anderson JM. In vitro and in vivo interactions of cells with biomaterials. Biomaterials, 1988 ;9:5—13
    13. Steele JG, Johnson G, and Underwood PA. Role of serum vitronectin and fibronectin in adhesion of fibroblasts following seeding onto tissue culture polystyrene. J Biomed Mater Res, 1992;26:861-884
    14. Obara M, Kang MS, and Yamada KM. Site— directed mutagenesis of the cell—binding domain of human fibronectin: Separable synergistic site mediate adhesive function.Cell, 1988;53:649-657
    15. Aota SI, Nagai T, and Yamada KM. Characterization of regions of fibronectin besides the arginine-glycine—aspartic acid sequence required for adhesive function of the cell—binding domain using site—directed mutagenesis. J Biol Chem, 1991 ;266(24): 15938-15943
    16. Lewandowsha K, Pergament E, Sukenik CN, et al. Cell- type- specific adhesion mechanisms mediated by fibronectin adsorbed to chemically derivatized substrata. J Biomed Mater Res, 1992;26:1343-1363
    17. Iuliano DJ, Saavedra SS, and Truskey GA. Effect of the conformation and orientation of adsorbed fibronectin on endothelial cell spredading and the strength of adhesion. J Biomed Mater Res, 1993 ;27:1103-1113
    18. Schwarz MA and Juliano RL. Two distinct mechanisms for the interaction of cells with fibronectin substrata. J Cell Physiol 1985;124:113—119
    19. Lewandowska K, Balachander N, Sukenik CN, et al. Modulation of fibronectin adhesive functions for fibroblasts and neural cells by chemically—derivatized surfaces. J Cell physiol, 1989;141:334—345
    20. Burmeister JS, Vrany JD, Reichert WM, et al. Effect of fibronectin amount and conformation of the strength of endothelial cell adhesionto HEMA/EM A copolymers. J Biomed Mater Res, 1996;30:13-22
    21. Boyan BO, Schwartz Z, Dean DD, et al. Response of bone and cartilage cells to biomaterials in vivo and in vitro. J Oral Implantol, 1993;19(2): 116-122
    22. Marks SC and Popoff SN. Bone cell biology: The regulation of development, structure, and function in the skeleton. Am J Anal, 1988 ;183:1-44
    23. Kohavi D, Schwartz Z, Amir D, et al. Effect of titanium implants on primary mineralization following 6 and 14 days of rat tibial healing. Biomaterials. 1992;13(4):255-260
    24. Wuthier RE. A review of the primary mechnisms of endochondral calcificatin with special emphasis on the role of cells mitochondria and matrix vesicles. Clin Orthop Rel Res, 1982;169:219—242
    1. Albrektsson T, Branemark P-I, Hansson HA, et al. Osseointegrated titanium inmplants. Requirements for ensuring a long-lasting direct bone anchoring in man. Acta Orthop Scand, 1981; 52: 155-170
    2. Rather BD, Johnston AB, and Lenk TJ. Biomaterial surfaces. J Biomed Mater Res, 1987; 21: 59-90
    3. Chesmel KD and Black J. Cellular responses to chemical and morphologic aspects of biomaterial surfaces. Ⅰ. A novel in vitro model system. J Biomed Mater Res, 1995; 29: 1089-1099
    4. Hench LL and Pasechall HA. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res, 1973; 7: 25-42
    5. Ziats NP, Killer KM, and Anderson JM. In vitro and in vivo interactions of cells with biomaterials. Biomaterials. 1988; 9: 5-13
    6. Lewandowska K, Pergament E, Sukenik CN, et al. Cell— type—specific adhesion mechanisms mediated by fibronectin adsorbed to chemicaUyd erivatized substrata. J Biomed Mater Res, 1992; 26: 1343-1363
    7. Perez-Luna VH, Horbett TA, and Ratner BD. Developing correlations between fibrinogen adsorption and surface properties using multivariable statistics. J Biomed Mater Res, 1994; 28: 1111-1126
    8. Stanislawski L, Serne H, Stanislawski M, et al. Conformational changes of fibronectin induced by polystyrene derivatives with a heperin-like function. J Biomed Mater Res, 1993; 27: 619-626
    9. Sharma CP and Paul W. Protein interactin with tantalum: Changes with oxide layer and hydroxyapatite at the interface. J Biomed Mater Res, 1992; 26: 1179-1184
    10. Williams DF, Askill TN, and Smith R. Protein adsorption and desorption phenomena on clean metal surfaces. J Biomed Mater Res, 1985 ;19:313-320
    11. Julian DJ, Saavedra SS, and Truskey GA. Effect of the conformation and orientation of adsorbed fibronectin on endothelial cell spreading and the strength of adhesion. J Biomed Mater Res, 1993; 27:1103-1113
    12. Truskey GA and Pirone JS. The effect of fluid shear stress upon cell adhesion to fibronectin -treated surfaces. J Biomed Mater Res,1990; 24:1333-1353
    13. Petlit DK, Horbett TA, and Hoffman AS. Influence of the substrata binding characteristics of fibronectin on corneal epithelial cell outgrowth. J Biomed Mater Res, 1992;26:1259-1275
    14. Grinnell F and Feld MK. Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum—containing medium. J Biol Chem, 1982;257(9):4888-4893
    15. Stanford C, Gohring D, and Keller J, Collagen expressin on cpTi as a function of sterilization treatment. J Dent Res, 1992;71(AADR Abstracts): 183
    16. Thomas KA and Cook SD. An evaluation of variables influencing implant fixation by direct bone apposition. J Biomed Mater Res, 1985; 19: 875-901
    17. Coetzee WJC, Botha SJ, and Alexander JJ. Sensitivity of fibroblast attachment for roughness of titanium implant surfaces. J Dent Res, 1994;73(IADR Abstracts):401
    18. Green AM, Jansen JA, van der Waerden JPCM, et al. Fibroblast response to microtextured silicone surfaces: Texture orientation into or out of the surface. J Biomed Mater Res, 1994;28:647-653
    19. Pearson BS, Rlebe RJ, Boyan BD, et al. Comments on the clinical application of fibronectin in dentistry. J Dent Res, 1988; 67:515-517
    20. Meyle J, Gultig K, Wolburg H, et al. Fibroblast anchorage to microtextured surfaces. J Biomed Mater Res, 1993;27:1553-1557
    21. Meyle J, Gultig K, and Nisch W. Variation in contact guidance by human cells on a microstructured surface. J Biomed Mater Res, 199529:81-88
    22. Dean D, Cochran D, Luna M, et al. Effect of titanium surface roughness on chondrocyte proliferation and differentiation. J Dent Res,1995;74(AADR Abstracts): 190
    23. Groessner— Schreiber B and Tuan KS. Enhanced extracellular matrix production and mineralization by osteoblasts cultured on titanium surface in vitro. J Cell Sci, 1992;101:209-217
    24. Clark GCF and williams DF. The effects of proteins on metallic corrosion. J Biomed Mater Res, 1982;16:125-134
    25. Healy KE and Ducheyne P. Hydyration and preferential molecular adsorption on titanium in vitro. Biomaterials. 1992;13(8): 553—561
    26. Inoue T, Cox JE, Pilliar RM, et al. Efferct of the surface geometry of smooth and porous-coated titanium alloy on the orientation of fibroblasts in vitro. J Biomed Mater Res, 1987;21:107-126
    27. Wong M, Eulenberger J, Schenk R, et al. Effect of surface topology on the osseointegration of implomts materials in trabecular bone. J Biomed Mater Res, 1995 29:1567-1575
    28. Micheals CM, Keller J, Stanford CE, et al. In vitro connective tissue cell attachment to cp Ti. J Dent Res, 1989;68:276
    29. Keller JC, Stanford CM, Wightman JP, et al. Characterizations of titanium implant gurfaces Ⅲ . J Biomed Mater Res, 1994;28:939-946
    30. Cooper LF and Guckes AD. Binding of the clonal MC3T3- E,osteoblast-like cell to cp titanium. J Dent Res, 1992;71(AADR Abstracts): 183
    31. Martin JY, Schwartz Z, Hummert TW, et al. Effect of titanium surface roughness on proliferation, differentiation,and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res,1995 ;29:389-401
    32. Buser D, Schenk RK, Steinemann S, et al. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res, 1991;25:889-902
    33. Folkman J and Moscona A. Role of cell shape in growth control.Nature, 1978; 273:345-349
    1. Marks SC and Popoff SN. Bone cell biology: The regulation of development. structure, and function in the skeleton. Am J Anat, 1988; 183: 1-44
    2. Itakura Y, Kosugi A, Sudo H, et al. Development of a new system for evaluating the biocompatibility of implant materials using an osteogenic cell line(MC3T3-E 1). J Biomed Mater Res, 1988; 22: 613-622
    3. Davies JE, Lowenberg B, and Shiga A. The bone- titanuium interface in vitro. J Biomed Mater Res, 1990; 24: 1289-1306
    4. Schor SL, Schor M, and Bazill GW. The effects of fibronectin on the migration of human foreskin fibroblasts and syrian hamster melanoma cells into three—dimensional cells of native collagen fibres. J Cell Sci, 1981; 48: 301-314
    5. Lowenberg BF, Pilliar RM, Aubin JE, et al. Migration, attachment and orientation of human gingival fibroblasts to root slices, naked and porous-surfaced titanium alloy discs, and Zircalloy 2 discs in vitro. J Dent Res, 1987; 66(5): 1000-1005
    6. Hench LL and Pasechall HA. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed mater Res, 1973; 7: 25-42
    7. Steel JG, Johnson G, and Underwood PA. Role of serum vitronectin and fibronectin in adhesion of fibroblasts following seeding onto tissue culture polystyrene. J Biomed Mater Res, 1992;26:861-884
    8. Ziats NP, Miller KM, and Anderson JM. In vitro and in vivo interactions of cells with biomaterials. Biomaterials. 1988; 9: 5—13
    9. Inoue T, Cox JE, Pilliar RM, et al. Effect of the surface geometry of smooth and porous- coated titanium alloy on the orientation of fibroblasts in vitro. J Biomed Mater Res, 1987;21:107-126
    10. Schroeder A, van der Zypen E, Stich H, et al. The reactions of bone, connective tissue and epithelium to endosteal implants with titanium-sprayed surfaces. J Max-fac Surg, 1981 ; 9: 15-25
    11. Pearson BS, Rlebe RJ, Boyan BD, et al. Comments on the clinical application of fibronectin in dentistry. J Dent Res, 1988; 67:515-517
    12. Juliano DJ, Saavedra SS, and Truskey GA. Effect of the conformation and orientation of adsorbed fibronectin on endothelial cell spreading and the strength of adhesion. J Biomed Mater Res, 1993; 27:1103-1113
    13. Dunn GA, and Heath JP. A new hypothesis of contact guidance in tissue cells. Exp Cell Res, 1976;101:l-14
    14. McAbee DD and Grinnell F. Binding phagocytosis of fibronectin-coated beads by BHK cells: Receptor specificity and dynamics. J Cell Physiol, 1985 ;124:240-246
    1. Cameron HU, Pilliar RM, and Macnab I, The effect of movement on the bonding of porous metal to bone. J Biomed Mater Res, 1973; 7:301
    2. Bassett CAL and Herrman Ⅰ. Infuence of oxygen concentration and mechancial factors on differentiation of connective tissue in vitro. Nature, 1996; 190: 460
    3. Bobyn JD, Pilliar RM, Cameron HU, et al. The optimun pore size forthe fixation of porous-surfaced metal implants by the ingrowth of bone.Clini Orthop Rel Res, 1980;150:263-270
    4. Pilliar RM, Cameron HU, Welsh RP, et al. Radiographic and morphologic studies of load-bearing porous- surfaced structured implants. Clin orthop Rel Res, 1981 ;156:249-256
    5. Maniatopoulos C, Pilliar RM, and Smith DC. Threaded versus porous-surfaced designs for implant stabilization in bone— endodontic implant model. J Biomed Mater Res, 1986;20:1309-1333
    6. Sun ZL, Wataha JC, and Hanks CT. Effect of metal ions on osteogenic gene expression. J Dent Res, 1995;74(AADR Abstracts): 191
    7. Montatth MR, Zaharias R, and Keller JC. Effects of soluble Ti ion in vitro osteoblast mineralization. J Dent Res, 1994;73(IADR Abstracts) :400
    8. Goftrodsen K, Wennerberg A, Johansson C, et al. Anchorage of TiO_2—blasted, HA-coated and machined implants: An experimental study with rabbits. J Biomed Mater Res, 1995 ;29:1223-1231
    9. Wong M, Eulenberger J, Schenk R, et al. Effect of surface topology on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res, 1995; 29:1567-1575
    10. Wilke HJ, Claes L, and Steinemann S. The influence of various titanium surfaces on the interface shear strength between implants and bone. In: Heimke G, Soltesz U, and Lee AJC eds. Clinical Implant Materials. Advances in Biomaterials, Vol 9. Elsevier Science Publishers BV, Amsterdam, 1990:309-315
    11. Buser D, Schenk KK, Steinemann S, et al. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res, 1991 ;25:889—902
    12. Gross U, Muller-Mai Ch, Fritz Th, et al. Implant surface roughness and mode of load transmission influence periimplant bone structure. In:Heimke G, Soltesz U, and Lee AJC eds. Clincal Implant Materials.Advance in Biomterials, Vol9. Amsterdam: Elsevier Science Publishers B.V, 1990;303:308
    13. Schroeder A, van der Zypen E, Stich H, et al. The reactions of bone,con-nective tissue, and epithelium to endosteal implants with titanium—sprayed surfaces. J Max-fac. Surg, 1981;9:15-25
    14. Asaoka K and Kuwayama N. Mechanical properties and biomechanical compatibility of porous titanium for dental implants. J Biomed Mater Res, 1985;19:699-713
    15. Listgarten MA, Buser D, Steinemann SG, et al. Light and transmission electron microscopy of the intact interfaces between non— submerged titanium-coated epoxy resin implants and bone or gingiva. JDent Res, 1992;71(2):364
    16. Pilliar RM, Deporter DA, Watson PA, et al. Dental implant design on bone remodeling. J Biomed Mater Res, 1991;25:467

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700