复制缺陷型腺病毒介导糖调节蛋白GRP94表达应用于肿瘤免疫基因治疗
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Cancer Immuno-gene Therapy by Use of Adenovirus-mediated Glucose-regulated Protein 94 (GRP94) Expression
  • 作者:刘珊玲
  • 论文级别:博士
  • 学科专业名称:妇产科学
  • 学位年度:2005
  • 导师:彭芝兰
  • 学科代码:100211
  • 学位授予单位:四川大学
  • 论文提交日期:2005-11-15
摘要
研究背景:肿瘤细胞群为克隆性生长,包含大量的基因突变,因而每一种肿瘤均有其独特的抗原肽,具有潜在的引起肿瘤免疫反应的功能。一般情况下肿瘤细胞并不能引起足够的免疫反应,其中很重要的一个原因是因为抗原递呈细胞功能不足或不适。因此提高肿瘤抗原的递呈能力,有可能引起有效的抗肿瘤免疫反应。
     糖调节蛋白94(GRP94)是热休克蛋白HSP90家族的一员,位于细胞内质网,其功能与蛋白质在内质网中的折叠与装配密切相关。在细胞经受压力的情况下(如热压力,糖缺乏等),GRP94表达显著升高,结合并保护细胞蛋白不被降解,对蛋白质结构、功能有非常重要的作用。
     近年来,由于GRP94可能在肿瘤免疫治疗中有重要作用而受到广泛注意。研究显示,在小鼠肿瘤模型中,肿瘤组织来源的GRP94可以刺激抗肿瘤免疫反应一它既能刺激天然免疫反应,也可引起适应性免疫反应。对其深入研究可能为肿
Background: It has been shown that tumor associated glucose-regulated protein 94 (GRP94/gp96), a HSP90 family member, elicits both innate and adaptive immune responses and shows great promise as a tumor vaccine. However, current protein-based approaches require the availability of large quantities of tumor tissue, which are often not possible. In addition, the efficacy of many immunotherapies is often not ideal when used alone.
    Adenoviruses have been characterized extensively since their initial description. Replication-deficient adenoviruses are attractive vectors for cancer gene therapy and adenoviruses-mediated gene therapy has been proposed as an alternative treatment for advanced cancers.
    In this study, we explored the therapeutic efficacy of a combined adenovims mediated-GRP94 immunotherapy and radiation therapy strategy in the weakly immunogenic and highly metastatic 4T1 murine mammary cancer model.
引文
1. Stoler, DL, Chen, N, Basik, M, et al. The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc Natl Acad Sci U S A, 1999; 96(26): 15121-15126.
    2. Banchereau, J and Steinman, RM Dendritic cells and the control of immunity. Nature, 1998; 392(6673): 245-252.
    3. Chang, SC, Erwin, AE, and Lee, AS Glucose-regulated protein (GRP94 and GRP78) genes share common regulatory domains and are coordinately regulated by common trans-acting factors. Mol Cell Biol, 1989; 9(5): 2153-2162.
    4. Lee, AS, Bell, J, and Ting, J Biochemical characterization of the 94- and 78-kilodalton glucose-regulated proteins in hamster fibroblasts. J Biol Chem, 1984; 259(7): 4616-4621.
    5. Lee, AS, Delegeane, A, and Scharff, D Highly conserved glucose-regulated protein in hamster and chicken cells: preliminary characterization of its cDNA clone. Proc Natl Acad Sci U S A, 1981; 78(2): 4922-4925.
    6. Munro, S and Pelham, HR An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell, 1986; 46(2): 291-300.
    7. Munro, S and Pelham, HR A C-terminal signal prevents secretion of luminal ER proteins. Cell, 1987; 48(5): 899-907.
    8. Pelham, HR Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell, 1986; 46(1): 959-961.
    9. Little, E, Ramakrishnan, M, Roy, B, Gazit, G, and Lee, AS The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit Rev Eukaryot Gene Expr, 1994; 4(1): 1-18.
    10. Melnick, J, Aviel, S, and Argon, Y The endoplasmic reticulum stress protein GRP94, in addition to BiP, associates with unassembled immunoglobulin chains. J Biol Chem, 1992; 267(30): 21303-21306.
    11. Kozutsumi, Y, Segal, M, Normington, K, Gething, MJ, and Sambrook, J The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature, 1988; 552(6163): 462-464.
    12. Udono, H and Srivastava, PK Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J Immunol, 1994; 752(11): 5398-5403.
    13. Blachere, NE, Udono, H, Janetzki, S, Li, Z, Heike, M, and Srivastava, PK Heat shock protein vaccines against cancer. J Immunother, 1993; 14(4): 352-356.
    14. Blachere, NE, Li, Z, Chandawarkar, RY, et al. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med, 1997; 756(8): 1315-1322.
    15. Heikema, A, Agsteribbe, E, Wilschut, J, and Huckriede, A Generation of heat shock protein-based vaccines by intracellular loading of gp96 with antigenic peptides. Immunol Lett, 1997; 57(1-3): 69-74.
    16. Srivastava, PK Purification of heat shock protein-peptide complexes for use in vaccination against cancers and intracellular pathogens. Methods, 1997; 72(2): 165-171.
    17. Tamura, Y, Peng, P, Liu, K, Daou, M, and Srivastava, PK Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science, 1997; 275(5335): 117-120.
    18. Heike, M, Weinmann, A, Bethke, K, and Galle, PR Stress protein/peptide complexes derived from autologous tumor tissue as tumor vaccines. Biochem Pharmacol, 1999; 55(9): 1381-1387.
    19. More, S, Breloer, M, Fleischer, B, and von Bonin, A Activation of cytotoxic T cells in vitro by recombinant gp96 fusion proteins irrespective of the 'fused' antigenic peptide sequence. Immunol Lett, 1999; 69(2): 275-282.
    20. Nair, S, Wearsch, PA, Mitchell, DA, Wassenberg, JJ, Gilboa, E, and Nicchitta, CV Calreticulin displays in vivo peptide-binding activity and can elicit CTL responses against bound peptides. J Immunol, 1999; 762(11); 6426-6432.
    21. Yedavelli, SP, Guo, L, Daou, ME, Srivastava, PK, Mittelman, A, and Tiwari, RK Preventive and therapeutic effect of tumor derived heat shock protein, gp96, in an experimental prostate cancer model. Int J Mol Med, 1999; 4(3): 243-248.
    22. Klein, G, Sjogren, HO, Klein, E, and Hellstrom, KE Demonstration of resistance against methylcholanthrene-induced sarcomas in the primary autochthonous host. Cancer Res, 1960; 20(1561-1572.
    23. Srivastava, PK, DeLeo, AB, and Old, LJ Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci U S A, 1986; 55(10): 3407-3411.
    24. Nicchitta, CV Re-evaluating the role of heat-shock protein-peptide interactions in tumour immunity. Nat Rev Immunol, 2003; 3(5): 427-432.
    25. Ishii, T, Udono, H, Yamano, T, et al. Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J Immunol, 1999; 162(3): 1303-1309.
    26. Altmeyer, A, Maki, RG, Feldweg, AM, et al. Tumor-specific cell surface expression of the-KDEL containing, endoplasmic reticular heat shock protein gp96. Int J Cancer, 1996; 69(4): 340-349.
    27. Wallin, RP, Lundqvist, A, More, SH, von Bonin, A, Kiessling, R, and Ljunggren, HG Heat-shock proteins as activators of the innate immune system. Trends Immunol, 2002; 23(3): 130-135.
    28. Radsak, MP, Hilf, N, Singh-Jasuja, H, et al. The heat shock protein Gp96 binds to human neutrophils and monocytes and stimulates effector functions. Blood, 2003; 101(1): 2810-2815.
    29. Hilf, N, Singh-Jasuja, H, and Schild, H The heat shock protein Gp96 links innate and specific immunity. Int J Hyperthermia, 2002; 18(6): 521-533.
    30. Strbo, N, Oizumi, S, Sotosek-Tokmadzic, V, and Podack, ER Perform is required for innate and adaptive immunity induced by heat shock protein gp96. Immunity, 2003; 75(3): 381-390.
    31. Baker-LePain, JC, Sarzotti, M, Fields, TA, Li, CY, and Nicchitta, CV GRP94 (gp96) and GRP94 N-terminal geldanamycin binding domain elicit tissue nonrestricted tumor suppression. J Exp Med, 2002; 796(11): 1447-1459.
    32. Nicchitta, CV, Carrick, DM, and Baker-Lepain, JC The messenger and the message: gp96 (GRP94)-peptide interactions in cellular immunity. Cell Stress Chaperones, 2004; 9(4): 325-331.
    33. Russell, WC Update on adenovirus and its vectors. J Gen Virol, 2000; 57(Pt 11): 2573-2604.
    34. Brody, SL and Crystal, RG Adenovirus-mediated in vivo gene transfer. Ann N Y Acad Sci, 1994; 776(90-101; discussion 101-103.
    35. Bramson, JL, Graham, FL, and Gauldie, J The use of adenoviral vectors for gene therapy and gene transfer in vivo. Curr Opin Biotechnol, 1995; 6(5): 590-595.
    36. Trapnell, BC and Gorziglia, M Gene therapy using adenoviral vectors. Curr Opin Biotechnol, 1994; 5(6): 617-625.
    37. Kozarsky, KF and Wilson, JM Gene therapy: adenovirus vectors. Curr Opin Genet Dev, 1993; 5(3); 499-503.
    38. Anderson, KM and Srivastava, PK Heat, heat shock, heat shock proteins and death: a central link in innate and adaptive immune responses. Immunol Lett, 2000; 74(1): 35-39.
    39. Graner, M, Raymond, A, Romney, D, He, L, Whitesell, L, and Katsanis, E Immunoprotective activities of multiple chaperone proteins isolated from murine B-cell leukemia/lymphoma. Clin Cancer Res, 2000; 6(3): 909-915.
    40. Janetzki, S, Palla, D, Rosenhauer, V, Lochs, H, Lewis, JJ, and Srivastava, PK Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: a pilot study. Int J Cancer, 2000; 55(2): 232-238.
    41. Li, Z Priming of T cells by heat shock protein-peptide complexes as the basis of tumor vaccines. Semin Immunol, 1997; 9(5): 315-322.
    42. Srivastava, PK and Amato, RJ Heat shock proteins: the 'Swiss Army Knife' vaccines against cancers and infectious agents. Vaccine, 2001; 79(17-19): 2590-2597.
    43. 金冬雁主编,分子,第三版,科学出版社, 1990.887
    44. Graham, FL, Smiley, J, Russell, WC, and Nairn, R Characteristics of a human cell line transformed by DNA from human adeno virus type 5. J Gen Virol, 1977; 36(1): 59-74.
    45. Graham, FL, Harrison, T, and Williams, J Defective transforming capacity of adenovirus type 5 host-range mutants. Virology, 1978; 55(1): 10-21.
    46. Harrison, T, Graham, F, and Williams, J Host-range mutants of adenovirus type 5 defective for growth in HeLa cells. Virology, 1977; 77(1): 319-329.
    47. Srivastava, P Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol, 2002; 20(395-425.
    48. Liu, B, Dai, J, Zheng, H, Stoilova, D, Sun, S, and Li, Z Cell surface expression of an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune diseases. Proc Natl Acad Sci U S A, 2003; 700(26): 15824-15829.
    49. Baker-LePain, JC, Sarzotti, M, and Nicchitta, CV Glucose-regulated protein 94/glycoprotein 96 elicits bystander activation of CD4+ T cell Th1 cytokine production in vivo. J Immunol, 2004; 172(7): 4195-4203.
    50. Basu, S, Binder, RJ, Ramalingam, T, and Srivastava, PK CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity, 2001; 14(3): 303-313.
    51. Suto, R and Srivastava, PK A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science, 1995; 269(5230): 1585-1588.
    52. Singh-Jasuja, H, Hilf, N, Scherer, HU, et al. The heat shock protein gp96: a receptor-targeted cross-priming carrier and activator of dendritic cells. Cell Stress Chaperones, 2000; 5(5): 462-470.
    53. Udono, H, Levey, DL, and Srivastava, PK Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proc Natl Acad Sci U S A, 1994; 97(8): 3077-3081.
    54. Doody, AD, Kovalchin, JT, Mihalyo, MA, Hagymasi, AT, Drake, CG, and Adler, AJ Glycoprotein 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function. J Immunol, 2004; 172(10): 6087-6092.
    55. Tsan, MF and Gao, B Cytokine function of heat shock proteins. Am J Physiol Cell Physiol, 2004; 286(4): C739-744.
    56. Mosmann, T Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 1983; 65(1-2): 55-63.
    57. Zhang, X, Li, Y, Huang, Q, et al. Increased resistance of tumor cells to hyperthermia mediated by integrin-linked kinase. Clin Cancer Res, 2003; 9(3): 1155-1160.
    58. Matzinger, P The JAM test. A simple assay for DNA fragmentation and cell death. J Immunol Methods, 1991; 745(1-2): 185-192.
    59. Taguchi, T, McGhee, JR, Coffman, RL, et al. Detection of individual mouse splenic T cells producing IFN-gamma and IL-5 using the enzyme-linked immunospot (ELISPOT) assay. J Immunol Methods, 1990; 725(1): 65-73.
    60. Worgall, S, Wolff, G, Falck-Pedersen, E, and Crystal, RG Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Ther, 1997; 5(1): 37-44.
    61. Ochsenbein, AF, Klenerman, P, Karrer, U, et al. Immune surveillance against a solid tumor fails because of immunological ignorance. Proc Natl Acad Sci U S A, 1999; 96(5): 2233-2238.
    62. Chouaib, S, Asselin-Paturel, C, Mami-Chouaib, F, Caignard, A, and Blay, JY The host-tumor immune conflict: from immunosuppression to resistance and destruction. Immunol Today, 1997; 75(10): 493-497.
    63. Saas, P, Walker, PR, Hahne, M, et al. Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? J Clin Invest, 1997; 99(6): 1173-1178.
    64. Jain, RK, Koenig, GC, Dellian, M, Fukumura, D, Munn, LL, and Melder, RJ Leukocyte-endothelial adhesion and angiogenesis in tumors. Cancer Metastasis Rev, 1996; 15(2): 195-204.
    65. Wu, NZ, Klitzman, B, Dodge, R, and Dewhirst, MW Diminished leukocyte-endothelium interaction in tumor microvessels. Cancer Res, 1992; 52(15): 4265-4268.
    66. Restifo, NP, Kawakami, Y, Marincola, F, et al. Molecular mechanisms used by tumors to escape immune recognition: immunogenetherapy and the cell biology of major histocompatibility complex class I. J Immunother, 1993; 14(3): 182-190.
    67. Restifo, NP, Esquivel, F, Kawakami, Y, et al. Identification of human cancers deficient in antigen processing. J Exp Med, 1993; 177(2): 265-272.
    68. Aslakson, CJ and Miller, FR Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res, 1992; 52(6): 1399-1405.
    69. Ostrand-Rosenberg, S, Clements, VK, Terabe, M, Park, JM, Berzofsky, JA, and Dissanayake, SK Resistance to metastatic disease in STAT6-deficient mice requires hemopoietic and nonhemopoietic cells and is IFN-gamma dependent. J Immunol, 2002; 169(10): 5796-5804.
    70. Santin, AD, Hermonat, PL, Ravaggi, A, et al. The effects of irradiation on the expression of a tumour rejection antigen (heat shock protein gp96) in human cervical cancer. Int J Radiat Biol, 1998; 73(6): 699-704.
    71. Santin, AD, Hermonat, PL, Hiserodt, JC, et al. Effects of irradiation on the expression of major histocompatibility complex class I antigen and adhesion costimulation molecules ICAM-1 in human cervical cancer. Int J Radiat Oncol Biol Phys, 1997; 39(3): 737-742.
    72. Albert, ML, Sauter, B, and Bhardwaj, N Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature, 1998; 392(6671): 86-89.
    1. Renkvist N, Castelli C, Robbins PF, et al. (2001) A listing of hman tumor antigens recognized by T cells. Cancer Immunol Immunother 50: 3
    2. Wang X, Kaneko Y, Repasky E, et al. (2000) Heat shock proteins and cancer immunotherapy. Immunol Invest 29(2): 131-137
    3. Bukau B, Deuerling E, Pfund C, et al. (2000) Getting newly synthesized proteins into shape. Cell 101: 119-122
    4. Craig EA, Weissman JS, Horwich AL. (1994) Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell. Cell 78: 365
    5. Gupta RS. (1995) Evolution of the chaperonin families (hsp60, hsp10 and tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol 15(1): 1-11
    6. Gupta RS, Knowlton AA. (2002) Cytosolic heat shock protein 60, hypoxia, and apoptosis. Circulation 106(21): 2727-2733
    7. Walter S. (2002) Structure and function of the groe chaperone. Cell Mol Life Sci 59(10): 1589-1597
    8. Flynn GC, Chappell TG, and Rothman JE. (1989) Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245(4916): 385-390
    9. Boostein WR, Ziegelhoffer T, and Craig EA. (1994) Molecular evolution of the hsp70 multigene family. J Mol Evol 38(1): 1-17
    10. Csermely P, Schnaider T, Soti C, et al. (1998) The 90-kda molecular chaperone family: structure, function, and clinical applications, a comprehensive review. Pharmacol Ther 79(2): 129-168
    11. Koch G, Smith M, Macer D, et al. (1986) Endoplasmic reticulum contains a common, abundant calcium-binding glycoprotein, endoplasmin. J Cell Sci 86: 217-232
    12. Gupta RS. Phylogenetic analysis of the 90 kd heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol Biol Evol 12(6): 1063-1073
    13. Srivastava PK, Deleo AB, and Old LJ. (1986) Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci USA 83(10): 3407-3411
    14. Schild H, Arnold-Schild D, Lammert E, et al. (1999) Stress proteins and immunity mediated by cytotoxic T lymphocytes. Curr Opin Immunol 11: 109
    15. Suto R, Srivastava PK. (1995) A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 69: 1585
    16. Ishii T, Udono H, Yamano T, et al. (1999) Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J Immunol 162: 1303
    17. Bervin B, Nicchitta CV. (2001) To find the road traveled to tumor immunity: the trafficking itineraries of molecular chaperones on antigen-presenting cells. Traffic 2: 690
    18. Schild H, Rammmersee HG. (2000) gp96-the immune system's Swiss army knife. Nat Immunol 1: 100
    19. Johnson JL, Craig EA. (1997) Protein folding in vivo: unraveling complex pathways. Cell 90: 201
    20. Srivastava PK. (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20: 395
    21. Udono H and Srivastava PK. (1994) Comparison of tumor-specific immunogenicities of stress-induced proteins gp96,hsp90 and hsp70. J Immunol 152(11): 5398-5403
    22. Nair S, Wearsch PA, Mitchell DA, et al. (1999) Calreticulin displays in vivo peptide-binding activity and can elicit CTL responses against bound peptides, J Immunol 162(11): 6426-6432
    23. Castelli C, Ciuoitu AM, Rini F, et al. (2001) Human heat shock protein 70 peptide complexes specifically activate anti-melanoma T cells. Cancer Res 61: 222
    24. Noessner E, Gastpar R, Milani V, et al. (2002) Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendretic cells. J Immunol 169: 5424
    25. Menoret A, Li Z, Niswonger ML, et al. (2001) An endoplasmic reticulum protein implicated in chaperoning peptides to major histocompatibility of class I is an aminopeptidase. J Biol Chem 276: 33313
    26. Serwold T, Gaw S, Shastri N. (2001) ER aminopeptidases generate a unique pool of peptides for MHC class I molecules. Nat Immunol 2: 644
    27. Wearsch PA, Nicchita CV. (1997) Interaction of endoplasmic reticulum chaperone GRP94 with peptide substrates is adenine nucleotide-independent. J Biol Chem 272: 5152
    28. Wearsch PA, Voglino L, Nicchitta CV. (1998) Structural transitions accompanying the activation of peptide binding to the endoplasmic reticulum Hsp90 chaperone GRP94. Biochemistry 37: 5709
    29. Linderoth NA, Popowicz A, Sastry S. (2000) Identification of the peptide-binding site in the heat shock chaperone/tumor rejection antigen gp96 (Grp94). J Biol Chem 275: 5472
    30. Fourie AM, Sambrook JF, Gething MJ. (1994) Common and divergent peptide binding specificities of hsp70 molecular chaperones. J Biol Chem 269: 30470
    31. Spee P, Neefjes J. (1997) TAP-translocated peptides specifically bind proteins in the endoplasmic reticulum, including gp96, protein disulfide isomerase and calreticulin. Eur J Immunol 27: 2441
    32. Nieland TJ, Tan MC, Monne-van Muijen M, et al. (1996) Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein gp96/GRP94. Proc Natl Acad Sci USA 93:6135
    33. Rivoltini L, Castelli C, Carabba M, et al. (2003) Cross-presentation of human tumor-derived heat shock protein gp96 associated peptides leads to in vitro activation and in vivo expansion of melanoma and colon carcinoma-specific T cells. J Immunol 171: 3467
    34. Heath WR, Carbone FR. (2001) Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 19: 47
    35. Srivastava PK, Udono H, Blanchere NE, et al. Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 39: 93
    36. Arnold-Schild D, Hanau D, Spehner D, et al. (1999) Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol 162: 3757
    37. Singh-Jasuja H, Toes RE, Spee P, et al. (2000) Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J Exp Med 191: 1965
    38. Wassenberg JJ, Dezfulian C, Nicchitta CV. (1999) Receptor mediated and fluid phase pathways for intemalization of the ER Hsp90 chaperone GRP94 in murine macrophages. J Cell Sci 112: 2167
    39. Basu S, Binder RJ, Ramalingam T, et al. (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14: 303
    40. Becker T, Hart FU, Wieland F. (2002) CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 158: 1277
    41. Binder RJ, Nan DK, Srevastava PK. (2000) CD91: a receptor for heat shock protein gp96. Nat Immunol 1: 151-155
    42. Asea A, Kraeft SK, Kurt-Jones EA, et al. (2000) HSP70 stumulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cyrokine. Nat Med 6: 435
    43. Kuppner MC, Gastpar R, Gelwer S, et al. (2001) The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur J Immunol 3: 1602
    44. Singh-Jasuja H, Scherer HU, Hilf N, et al. (2000) The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur J Immunol 30(8): 2211-2215
    45. Vabulas RM, Ahmad-Nejad P, Ghose S, et al. (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277: 15107
    46. Vabulas RM, Braedel S, Hilf N, et al. (2002) The endoplasmic reticulum-resident heat shock protein Gp96 actvites dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 277: 20847
    47. Somersan S, Larsson M, Fonteneau JF, et al. (2001) Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J immunol 167(9): 4844-4852
    48. Basu S, Binder J, Suto R, et al. (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the nf-kappa b pathway. Int Immunol 12(11):1539-1546
    49. Berwin B, Reed RC, and Nicchitta CV. (2001) Virally induced lytic cell death elicits the release of immunogenic grp94/gp96. J Biol Chem 276(24): 21083-21088
    50. Berwin B, Rosser MF, Brinker KG, et al. (2002) Transfer of grp94(gp96)-associated peptides onto endosomal MHC class I molecules. Traffic 3(5: 358-366)
    51. Castelli C, Rivoltini L, Rini Francesca, et al. (2004) Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol Immunother 53: 227-233
    52. Belli F, Testori A, Rivoltini L, et al. (2002) Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol 20: 4169
    53. Mazzaferro V, Coppa J, Carabba M, et al. (2003) Vaccination with autologous tumor derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin cancer Res 9: 3235
    54. Figueras J, Valls C, Rafecas A, et al. (2001) Resection rate and effect of postoperative chemotherapy on survival after surgery for colorectal liver metastasis. Br J Surg 88: 980
    55. Minagawa M, Makuuchi M, Torzilli G, et al. (2000) Extension of the frontiers of surgical indications in the treatment of liver metastases from colorectal caner: long-term results. Ann Surg 231: 487
    1. Russell WC. Update on adenovirus and its vectors. J Gen Virol. 2000; 81:2573-604.
    2. Bauerschmitz GJ, Barker SD, Hemminki A. Adenoviral gene therapy for cancer: From Vectors to targeted and replication competent agents (Review). Int J Oncol. 2002; 21:1161-74.
    3. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA,Krithivas A, Hong JS, et al. Isolation of a common receptorfor Coxsackie B viruses and adenoviruses 2 and 5. Science. 1997;275:1320-3.
    4. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins alpha v beta 3 and alpha v beta 5 promoteadenovirus internalization but not virus attachment. Cell.1993;73:309-19.
    5. Hemminki A, Alvarez RD. Adenoviruses In Oncology: A Viable Option? BioDrugs. 2002; 16:77-87.
    6. Miller CR, Buchsbaum DJ, Reynolds PN, Douglas JT, Gillespie GY, Mayo MS, et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res. 1998;58:5738-48.
    7. Okegawa T, Pong RC, Li Y, Bergelson JM, Sagalowsky AI, Hsieh JT. The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: a functional analysis of car protein structure. Cancer Res. 2001;61:6592-600.
    8. Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci U S A. 2001; 98:15191-6.
    9. Shayakhmetov DM, Li ZY, Ni S, Lieber A. Targeting of adenovirus vectors to tumor cells does not enable efficient transduction of breast cancer metastases. Cancer Res. 2002;62:1063-8.
    10. Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G, et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol. 1998; 72:9706-13.
    11. Kanerva A, Wang M, Bauerschmitz GJ, Lam JT, Desmond RA, Bhoola SM, et al. Gene transfer to ovarian cancer versus normal tissues with fiber- modified adenoviruses. Mol Ther. 2002;5:695-704.
    12. Anders M, Hansen R, Ding RX, Rauen KA, Bissell MJ, Korn WM. Disruption of 3D tissue integrity facilitates adenovirus infection by deregulating the coxsackievirus and adenovirus receptor. Proc Natl Acad Sci U S A. 2003;100:1943-8.
    13. Anders M, Christian C, McMahon M, McCormick F, Korn WM. Inhibition of the Raf/MEK/ERK pathway upregulates expression of the coxsackievirus and adenovirus receptor in cancer cells. Cancer Res. 2003;63:2088-95.
    14. Hemminki A, Kanerva A, Liu B, Wang M, Alvarez RD, Siegal GP, et al. Modulation of coxsackie-adenovirus receptor expression for increased adenoviral transgene expression. Cancer Res. 2003;63:847-53.
    15. Alemany R, Suzuki K, Curiel DT. Blood clearance rates of adenovirus type 5 in mice. J Gen Virol. 2000;81 Pt11:2605-9.
    16. Tao N, Gao GP, Parr M, Johnston J, Baradet T, Wilson JM, et al. Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol Ther. 2001;3:28-35.
    17. Hong SS, Karayan L, Tournier J, Curiel DT, Boulanger PA. Adenovirus type 5 fiber knob binds to MHC class I alpha2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO J. 1997; 16:2294-306.
    18. Dechecchi MC, Melotti P, Bonizzato A, Santacatterina M, Chilosi M, Cabrini G. Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. J Virol. 2001;75:8772-80.
    19. Smith TA, Idamakanti N, Rollence ML, Marshall-Neff J, Kim J, Mulgrew K, et al. Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice. Hum Gene Ther. 2003; 14:777-87.
    20. Douglas JT, Rogers BE, Rosenfeld ME, Michael SI, Feng M, Curiel DT. Targeted gene delivery by tropism-modified adenoviral vectors. Nat Biotechnol. 1996;14:1574-8.
    21. Rancourt C, Rogers BE, Sosnowski BA, Wang M, Piche A, Pierce GF, et al. Basic fibroblast growth factor enhancement of adenovirus-mediated delivery of the herpes simplex virus thymidine kinase gene results in augmented therapeutic benefit in a murine model of ovarian cancer. Clin Cancer Res. 1998;4:2455-61.
    22. Haisma HJ, Pinedo HM, Rijswijk A, der Meulen-Muileman I, Sosnowski BA, Ying W, et al. Tumor-specific gene transfer via an adenoviral vector targeted to the pan-carcinoma antigen EpCAM. Gene Ther. 1999;6:1469-74.
    23. Kelly FJ, Miller CR, Buchsbaum DJ, Gomez-Navarro J, Barnes MN, Alvarez RD, et al. Selectivity of TAG-72-targeted adenovirus gene transfer to primary ovarian carcinoma cells versus autologous mesothelial cells in vitro. Clin Cancer Res. 2000;6:4323-33.
    24. Tillman BW, Hayes TL, DeGruijl TD, Douglas JT, Curiel DT. Adenoviral vectors targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomavirus 16-induced tumor cells in a murine model. Cancer Res. 2000;60:5456-63.
    25. Dmitriev I, Kashentseva E, Rogers BE, Krasnykh V, Curiel DT. Ectodomain of coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adenovirus targeting to epidermal growth factor receptor-positive cells. J Virol. 2000;74:6875-84.
    26. Kashentseva EA, Seki T, Curiel DT, Dmitriev IP. Adenovirus targeting to c-erbB-2 oncoprotein by single-chain antibody fused to trimeric form of adenovirus receptor ectodomain. Cancer Res. 2002;62:609-16.
    27. Koizumi N, Mizuguchi H, et al. Generation of fiber-modified adenovirus vectors containing heterologous peptides in both the HI loop and C terminus of the fiber knob. J Gene Med. 2003;5:267-276.
    28. Kanerva A, Mikheeva GV, Krasnykh V, Coolidge CJ, Lam JT, Mahasreshti PJ, et al. Targeting adenovirus to the serotype 3 receptor increases gene transfer efficiency to ovarian cancer cells. Clin Cancer Res. 2002;8:275-80.
    29. Barker SD, Coolidge CJ, Kanerva A, Hakkarainen T, Yamamoto M, Liu B, et al. The secretory leukoprotease inhibitor (SLPI) promoter for ovarian cancer gene therapy. J Gene Med. 2003;5:300-10.
    30. Yamamoto M, Alemany R, Adachi Y, Grizzle WE, Curiel DT. Characterization of the cyclooxygenase-2 promoter in an adenoviral vector and its application for the mitigation of toxicity in suicide gene therapy of gastrointestinal cancers. Mol Ther. 2001;3:385-94.
    31. Kanerva A, Bauerschmitz GJ, Yamamoto M, Lam JT, Alvarez RD, Siegal GP, et al. A cyclooxygenase-2 promoter based conditionally replicating adenovirus with enhanced infectivity for treatment of ovarian adenocarcinoma. Gene Ther. 2004;11:552-9.
    32. Harrington KJ, Linardakis E, Vile RG. Transcriptional control: an essential component of cancer gene therapy strategies? Adv Drug Del Rev. 2000;44:167-84.
    33. Barker SD, Dmitriev IP, Nettelbeck DM, Liu B, Rivera AA, Alvarez RD, et al. Combined transcriptional and transductional targeting improves the specificity and efficacy of adenoviral gene delivery to ovarian carcinoma. Gene Ther. 2003;10:1198-204.
    34. Reynolds PN, Nicklin SA, Kaliberova L, Boatman BG, Grizzle WE, Balyasnikova IV, et al. Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nat Biotechnol. 2001;19:838-42.
    35. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 1996;274:373-6.
    36. Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P, et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene. 2000; 19:2-12.
    37. Wirth T, Zender L, Schulte B, Mundt B, Plentz R, Rudolph KL, et al. A telomerase-dependent conditionally replicating adenovirus for selective treatment of cancer. Cancer Res. 2003;63:3181-8.
    38. Adachi Y, Reynolds PN, Yamamoto M, Wang M, Takayama K, Matsubara S, et al. A Midkine Promoter-based Conditionally Replicative Adenovirus for Treatment of Pediatric Solid Tumors and Bone Marrow Tumor Purging. Cancer Res. 2001;61:7882-8.
    39. Yu DC, Chen Y, Dilley J, Li Y, Embry M, Zhang H, et al. Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. Cancer Res. 2001;61:517-25.
    40. Chen Y, DeWeese T, Dilley J, Zhang Y, Li Y, Ramesh N, et al. CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity. Cancer Res. 2001; 61:5453-60.
    41. Geoerger B, Grill J, Opolon P, Morizet J, Aubert G, Lecluse Y, et al. Potentiation of radiation therapy by the oncolytic adenovirus dl1520 (ONYX-015) in human malignant glioma xenografts. Br J Cancer. 2003;89:577-84.
    42. Shao R, Karunagaran D, Zhou BP, Li K, Lo SS, Deng J, et al. Inhibition of nuclear factor-kappaB activity is involved in E1A-mediated sensitization of radiation-induced apoptosis.J Biol Chem. 1997;272:32739-42.
    43. Martin-Duque P, Sanchez-Prieto R, Romero J, Martinez-Lamparero A, Cebrian-Sagarriga S, Guinea-Viniegra J, et al. In vivo radiosensitizing effect of the adenovirusElAgene inmurine and human malignant tumors. Int J Oncol. 1999;15:1163-8.
    44. Hemminki A, Dmitriev I, Liu B, Desmond RA, Alemany R, Curiel DT. Targeting oncolytic adenoviral agents to the epidermal growth factor pathway with a secretory fusion molecule. Cancer Res. 2001;61:6377-81.
    45. Douglas JT, Kim M, Sumerel LA, Carey DE, Curiel DT. Efficient oncolysis by a replicating adenovirus (ad) in vivo is critically dependent on tumor expression of primary ad receptors. Cancer Res. 2001 ;61:813— 7.
    46. Suzuki K, Fueyo J, Krasnykh V, Reynolds PN, Curiel DT, Alemany R. A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res. 2001 ;7:120-6.
    47. Bauerschmitz GJ, Lam JT, Kanerva A, Suzuki K, Nettelbeck DM, Dmitriev I, et al. Treatment of ovarian cancer with a tropism modified oncolytic adenovirus. Cancer Res. 2002;62:1266-70.
    48. Kanerva A, Zinn KR, Chaudhuri TR, Lam JT, Suzuki K, Uil TG, et al. Enhanced therapeutic efficacy for ovarian cancer with a serotype 3 receptor-targeted oncolytic adenovirus. Mol Ther. 2003;8:449-58.
    49. Van Beusechem VW, Mastenbroek DC, van den Doel PB, Lamfers ML, Grill J, Wurdinger T, et al. Conditionally replicative adenovirus expressing a targeting adapter molecule exhibits enhanced oncolytic potency on CAR-deficient tumors. Gene Ther. 2003; 10:1982-91.
    50. Bauzon M, Castro D, Karr M, Hawkins LK, Hermiston TW. Multigene expression from a replicating adenovirus using native viral promoters. Mol Ther. 2003;7:526-34.
    51. Freytag SO, Rogulski KR, Paielli DL, Gilbert JD, Kim JH. A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum Gene Ther. 1998;9:1323—33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700