松属单维管束亚属植物rDNA的染色体定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松属植物的基因组十分庞大(大于20000Mbp),其中约90%是由重复序列组成的,我们对其结构和组成仍知之甚少。松属在系统分类上分为两个亚属:单维管束亚属和双维管束亚属。基因组大小研究发现单维管束亚属植物的基因组更大。rDNA作为一类有功能的多基因家族重复序列,其自身特性决定了它在基因组研究中的重要性。FISH技术为rDNA在染色体上物理定位提供了有力的工具。尽管现在对松属rDNA FISH已有不少报道,但主要集中在双维管束亚属,对单维管束亚属的研究几乎是空白。本研究选择5个单维管束亚属松属植物P. bungeana, P. koraiensis, P. armandii, P. wallichiana, P. strobus,进行rDNA FISH研究。旨在弄清18S-25S rDNA和5S rDNA在单维管束亚属植物染色体上的位点数目和分布模式。结合前人对松属双维管束亚属植物的工作,对单、双维管束亚属植物之间rDNA FISH结果进行比较,从而可以从整体上认识松属植物的18S-25S rDNA和5S rDNA在染色体上的分布式样。在此基础上进一步探讨18S-25S rDNA和5S rDNA这些重复序列在松属植物基因组结构和组成中的地位和作用。本研究主要结果如下:
     1.rDNA FISH在松属染色体核型分析中的作用
     本研究中5种松属单维管束亚属植物染色体数目均为2n=24,除最短一条染色体为亚中部着丝粒染色体外,其余11条均为中部着丝粒染色体,长度和臂比也十分接近,同源染色体的不容易鉴定,很难排出精确的核型。在我们的研究结果中,5个松属植物中,除了白皮松外,18S-25S rDNA和5S rDNA分布在12对染色体中的10对染色体上,这些位点可作为染色体标记,大大提高了同源染色体鉴定的准确度,但是染色体之间排序问题依然没有很好地解决。核型比较认为种间是否存在部分同源染色体关系也不是十分明确,仅Ⅺ号和Ⅻ号染色体有这种关系,这主要由于Ⅺ号和Ⅻ号染色体容易准确地鉴别出来。核型分析的精确仍有待增加标记来提高。
     2.rDNA位点数目在松属两个亚属间的比较及其与基因组大小的关系松属植物18S-25S rDNA位点通常为5-10个,5S rDNA位点为1-4个。其中单维管束亚属18S-25S rDNA位点通常为9-10个(除白皮松为4个外),5S rDNA位点为2- 4个;双维管束亚属为18S-25S rDNA位点通常为5-10个,5S
Pines have large genomes (>20000) composed of 90% highly repetitive DNA. The genus Pinus is divided into two subgenera: Strobus (Haploxylon) and Pinus (Diploxylon). Early investigations have shown that members of the subgenus Strobus generally have lager genomes than those of the subgenus Pinus. The genome structure of pines, however, is still poorly understood, as is the differentiation between the two subgenera at the genome level. Characterized as multigene families, the tandem repeated genes encoding 18S-25S and 5S ribosomal RNA are major components of the repetitive DNA in plant genome. Fluorescence in situ hybridization (FISH) has proved to be useful tool for chromosomal localization of 18S-25S rDNA and 5S rDNA. Although there have been a few reports available on rDNA FISH in Pinus species, almost all of them are on subgenus Pinus. There is virtually no report till today on the rDNA FISH characterization in subgenus Strobus. In this study, the 18S-25S rDNA and 5S rDNA were localized simultaneously on metaphase chromosomes of five species of subgenus Strobus, P. bungeana, P. koraiensis, P. armandii, P. wallichiana, and P. strobus by FISH. Combined with previous rDNA FISH reports on those species of subgenus Pinus, the comparison of the 18S-25S rDNA and 5S rDNA loci number and localization pattern between the two subgenera can be made, which is necessary to generalize the rDNA loci distribution pattern in Pinus. This study aimed to explore the genome organization and structure of Pinus. The main results and conclusions are followings:
     1. The karyotype analysis with 18S-25S rDNA and 5S rDNA markers
引文
洪德元.1990.植物细胞分类学.科学出版社,北京.
    奇文清, 李懋学. 1996.植物染色体原位杂交技术的发展与应用. 武汉植物学研究,14(3):269-278
    张德玉, 钟少斌.1995.麦类作物原位杂交影响因素的研究.植物学报,37(3):181-185
    钟筱波,Fransz PF.1997.用荧光原位杂交技术构建高分辨率的DNA物理图谱.遗传,l9(3):44-48
    李楠.1995.论松科植物的地理分布、起源和扩散.植物分类学报,33(2):105-130
    李懋学,张敩方.1991.植物染色体研究技术.东北林业大学出版社,哈尔滨.
    Wallace FM (1997) Interactions of chromatin with the nuclear envelope. PhD thesis. University of califonia, San Francisco
    Amarasinghe V, Carlson JE (1998) Physical mapping and characterization of 5S rRNA genes in Douglas-fir. J Hered 89:495-500.
    Appels R, Dvorak J (1982) The wheat ribosomal DNA spacer regions: its structure and variation in populations and among species. Theor Appl Genet 63:337-348
    Appels R, Honeycutt RL (1986) rDNA: Evolution over a billion years. CRC Press, Boca Raton, Florida.
    Badaeva ED, Friebe B, Gill BS (1996b) Genome differentiation in Aegilops. 2. Physical mapping of 5S and 18S-26S ribosomal RNA gene families in diploid species. Genome 39:1150-1158
    Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Missouri Bot Gard 82:247-277.
    Besendorfer V, Kraja?i?-Sokol I, Jeleni? S, Puizina J, Mlinarec J, Sviben T, Pape? D (2005) Two classes of 5S rDNA unit arrays of the silver fir, Abies alba Mill.: structure, localization and evolution. Theor Appl Genet 110:730-741
    Bobola MS, Smith DE, Klein AS (1992) Five major nuclear ribosomal repeats represent a large and variable fraction of the genomic DNA of Picea rubens and P. mariana. Mol Biol Evol 9:125-137
    Boggs BA, Chinault AC (1997) Analysis of DNA replication by fluorescence in situ hybridization. Methods 13:259-70
    Brown GR, Carlson JE (1997) Molecular cytogenetics of the genes encoding 18s-5.8s-26s rRNA and 5s rRNA in two species of spruce (Picea). Theor Appl Genet 95:1-9
    Brown GR, Newton CH, Carlson JE (1998) Organization and distribution of a Sau3A tandem repeated DNA sequence in Picea (Pinaceae) species. Genome 41:560-565.
    Brown SE, Stephens JL, Lapitan NL, Knudson DL (1999) FISH landmarks for barley chromosomes (Hordeum vulgare L.). Genome 42:274-281.
    Castilho A, Heslop-Harrison JS (1995) Physical mapping of 5S and 18S-25S rDNA and repetitive DNA sequences in Aegilops umbellulata. Genome 38:91-96
    Cerbah M, Coulaud J, Siljak-Yakovlev S (1998.) rDNA organization and evolutionary relationships in the genus Hypochaeris (Asteraceae). J Hered 89:312-318.
    Cheng ZK, Buell CR, Wing RA, Jiang JM (2002.) Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Research 10:379-387
    Cheng ZK, Presting GG, Buell RC, Wing RA, Jiang JM (2001) High-resolution pachytene chromosome mapping bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics 157:1749-1757
    Clark M, Karp A, Archer S (1989) Physical mapping of the B-hordein loci on barley chromosome 5 by in situ hybridization. Genome 32:925-929
    Cullis CA, Creissen GP, Gorman SW, Teasdale RD (1988) The 25S, 18S, and 5S ribosomal RNA genes from Pinus radiata D. Don. Canadian Forest Service, Petawawa National Forest Institute.
    de Bustos A, Cuadrado A, Soler C, Jouve N (1996) Physical mapping of repetitive DNA sequences and 5S and 18S-26S rDNA in five wild species of the genus Hordeum. Chromosome Research 4:491-499
    Deng H-S, Zhang D-M, Fu C-X (2006) Meiotic behavior of Pinus wallichiana, Pinus strobus and their hybrid and rDNA localization in PMCs of Hybrid by FISH. (in press)
    de Jong HJ, Fransz P, Zabel P (1999) High resolution FISH in plants-techniques and applications. Trends in Plant Science 4:258-263
    Dietrich AG (1824) Flora der gegend um Berlin. Berlin: G. E. Nauck.
    Dong F, Song J, Naess SK, Helgeson JP, Gebhardt C, Jiang JM (2000) Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet 101:1001-1007
    Doudrick RL, Heslop-Harrison JS, Nelson CD, Schmidt T, Nance WL, Schwarzacher T (1995) Karyotype of slash pine (Pinus elliottii var elliottii) using patterns of fluorescence in situ hybridzation and fluorochrome banding. J Hered 86:289-296
    Drewry A (1982) G-banded chromosomes in Pinus resinosa. J Hered 73:305-306
    Duhamel Du Monceau HL (1755) Traité des Arbres et Aebustes qui se cultivent en France en pleine terre. Tome 2. Paris: Guerin & Delatour.
    Durnam DM, Gelinas R, Myerson D (1985) Detection of species specific chromosomes in somatic cell hybrids. Somatic Cell Mol Genet 11:571-577
    Echt CS, May-Marquardt P (1997) Survey of microsatellite DNA in pine. Genome 40:9-17
    Elsik CG, Williams CG (2000) Retroelements contribute to the excess low-copy-number DNA in pine. Mol Gen Genet 264:47-55
    Engelmann G (1880) Revision of the genus Pinus, and description of Pinus elliottii. Transactions of the Saint louis Academy of Science 4:161-189
    Fabijanski S, Fedak G, Armstrong K, Altosaar I (1990.) A repeated sequence probe for the Cgenome in Avena (Oats). Theor Appl Genet 97:1-7
    Florijn RJ, Bonden LAJ, Vrolijk H, Wiegant J, Vaandrager JW, Baas F, van Dunner JT, Tanke HJ,van Ommen GJB, Raap AK (1995) High-resolution DNA fiber-FISH for genomicDNA mapping and color-bar-coding of large genes. Hum Mol Genet 4:831-836
    Florin R (1963) The distribution of conifer and taxad genera in time and space. Acta HortBerg 20:121-312
    Forsbach A, Schubert D, Lechtenberg B, Gils M, Schmidt R (2003) A comprehensivecharacterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome.Plant Mol Biol 52:161-176.
    Fransz P, de Jong JH, Lysak M, Castiglione MR, Schubert I (2002) Interphase chromosomesin Arabidopsis are organized as defined chromocenters from which euchromatin loopsemanate. Proc Natl Acad Sci 99:14584-14589
    Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJM, Zabel P, de Jong JH (1996)High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence insitu hybridization to extended DNA fibres. Plant J 9:421-430
    Friesen N, Brandes A, Heslop-Harrison JSP (2001) Diversity, origin, and distribution ofretrotransposons (gypsy and copia) in conifers. Mol Biol Evol 18:1176-1188
    Fuchs J, Brandes A, Schubert I (1995) Telomere sequence localization and karyotypeevolution in higher plants. Pl Syst Evol 196:227-241
    Fuchs J, Houben A, Brandes A, Schubert I (1996) Chromosome 'painting' in plants-a feasibletechnique? Chromosoma 104:315-320
    Fukui K, Ohmido N, Khush GS (1994) Variability in rDNA loci in the genus Oryza detectedthrough fluorescence in situ hybridization. Theoretical and Applied Genetics 87:893-899
    Fukui K, Shishido R, Kinoshita T (1997) Identification of the rice D-genome chromosomesby genomic in situ hybridization. Genome 95:1239-1245
    Galasso I, Schmidt T, Pignone D, Heslop-Harrison JS (1995) The molecular cytogenetics ofVigna unguiculata (L.) Walp: the physical organization and characterization of18S-5.8S-25S rRNA genes, 5S rRNA genes telomere-like sequences, and a family ofcentromeric repetitive DNA sequences. Theor Appl Genet 91:928-935.
    Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules incytological preparations. Proc Natl Acad Sci U S A 63:378-383
    Gernandt DS, Liston A (1999) Internal transcribed spacer region evolution in Larix andPseudotsuga (Pinaceae). Am J Bot 86:711-723
    Gernandt DS, Liston A, Pinero D (2001) Variation in the nrDNA ITS of Pinus SubsectionCembroides: implications for molecular systematic studies of pine species Complexes.Mol Phylogenet Evol 21:449-467.
    Gregory TR (2005) The C-value enigma in plant and animals: a review of parallels and anappeal for pantnership. Annals of Botany 95:133-146
    Hall SE, Dvorak WS, Johnston JS, Price HJ, Williams CG (2000) Flow cytometric analysis ofDNA content for tropical and temperate new world pines. Annals of Botany86:1081-1086
    Han FP, Fedak G, Benabdelmouna A, Armstrong K, Ouellet T. (2003) Characterization of sixwheat × Thinopyrum intermedium derivatives by GISH, RFLP, and multicolor GISH.Genome 46:490-495
    Heng HHQ, Squire J, Tsui L-C (1992) High resolution mapping of mammalian genes by insitu hybridization to free chromatin. Proc Natl Acad Sci 89:9509-9513
    Heng HHQ,Spyropoulos B,Moens PB (1997) FISH technology in chromosome and genomeresearch. BioEssay 19:75-84
    Hillis DM, Moritz C, Porter CA, Baker RJ (1991) Evidence for biased gene conversion inconcerted evolution of ribosomal DNA. Science 251:308-310
    Hizume M, Ohgiku A, Tanaka A. (1983) Chromosome banding in the genus Pinus. I.Identification of chromosomes in P. nigra by fluorescent banding method. Bot Mag96:273-276
    Hizume M (1988) Karyomorphological studies in the family Pinaceae. Mem Fas Educ Ehimeuniv Nat Sci 8:1-108.
    Hizume M, Ohgiku A, Tanaka A (1989) Chromosome banding in the genus Pinus. II.Interspecific variation of fluorescent banding patterns in P. densiflora and P. thunbergii.Bot Mag 102:25-36
    Hizume M, Akiyama M, Tanaka A (1990) Chromosome banding in the genus Pinus. III.Fluorescent banding pattern of P. luchuensis and its relationships among the Japanesediploxylon pines. Bot Mag 103:103-111
    Hizume M, Shibata F, Kondo K, Hoshi Y, Kondo T, Ge S, Yang Q-E, Hong D-Y (1999)Identification of chromosomes in two Chinese spruce species by multicolor fluorescencein situ hybridizaition. Chromosome Science 3:37-41
    Hizume M, Shibata F, Maruyama Y, Kondo T (2001) Cloning of DNA sequences localized onproximal fluorescent chromosome bands by microdissection in Pinus densiflora Sieb.&Zucc. Chromosoma 110:345-351
    Hizume M, Shibata F, Matsumoto A, Maruyama Y, Hayashi E, Kondo T, Kondo K, Zhang S,Hong D-Y (2002a) Tandem repeat DNA localizing on the proximal DAPI bands ofchromosomes in Larix, Pinaceae. Genome 45:777-783
    Hizume M, Shibata F, Matsusaki Y, Garajova Z (2002b) Chromosome identification andcomparative karyotypic analyses of four Pinus species. Theor Appl Genet 105:491-497
    Huang PI, Hahlbrock K, Somssich IE (1988) Detection of a single copy gene on plantchromosome by in situ hybridization. Mol Gen Genet 211:143-147
    Islam-Faridi MN, Childs KL, Klein PE, Hodnett G, Menz MA, Klein RR, Rooney WL, Mullet JE,Stelly DM, Price HJ (2002) A molecular cytogenetic map of sorghum chromosomefluorescence in situ hybridization analysis with mapped bacterial artificial chromosomes.Genetics 161:345-353
    Jackson SA, Wang ML, Goodman HM, Jiang JM (1998) Application of fibre-FISH inphysical mapping of Arabidopsis thaliana. Genome 41:566-572
    Jacobs MD, Gardner RC, Murray BG (2000) Cytological characterization of heterochromatinand rDNA in Pinus radiata and P. taeda. Pl Syst Evol 223:71-79
    Jiang JM, Gill BS (1994) Nonisotype in situ hybridization and plant genome mapping: thefirst 10 years. Genome 37:717-725
    Jiang JM, Gill BS, Wang G, Ronald PC, Ward DC (1995) Metaphase and interphasefluorescence in situ hybridization mapping of the rice genome with bacterial artificialchromosomes. Proc Natl Acad Sci U S A 92:4487-4491
    Jiang JM, Hulbert SH, Gill BS, Ward DC (1996) Interphase fluorescence in situ hybridization:a physical map strategy for plant species with large complex genomes. Mol Gen Genet252:497-502
    Joyner KL, Wang X-R, Johnston JS, Price HJ, Williams CG (2001) DNA content for Asianpines parallels New World relatives. Can. J. Bot. 79:192-196
    Kamm A, Doudrick RL, Heslop-Harrison JS, Schmidt T (1996) The genomic and physicalorganization of Ty1-copia-like sequences as a component of large genomes in Pinuselliottii var. elliottii and other gymnosperms. Proc Natl Acad Sci U S A 93:2708-2713
    Karvonen P, Karjalainen M, Savolainen O (1993a) Ribosomal RNA genes in Scots pine(Pinus sylvestris L.): chromosomal organization and structure. Genetica 88:59-68
    Karvonen P, Savolainen O (1993b) Variation and Inheritance of ribosomal DNA in Pinussylvestris L. (Scots Pine). Heredity 71:614-622
    Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequenceas probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA101:13554-13559
    Kato A, Vega JM, Han F, Lamb JC, Birchler JA (2005) Advances in plant chromosomeidentification and cytogenetic techniques. Current Opinion in Plant Biology 8:148-154
    Kellogg EA, Appels R (1995) Intraspecific and interspecific variation in 5S RNA genes aredecoupled in diploid wheat relatives. Genetics 140:325-343
    Kessler C, Holtke HJ, Seibl R, Burg J, Muhlegger K (1990) Non-radioactive labeling anddetection of nucleic acids: Ι. A novel DNA labeling and detection system based ondigoxigenin: anti-digoxigenin ELISA principle(digoxigenin system). Bio ChemHoppe-Seyler 371:917-918
    Kinlaw CS, Neale DB (1997) Complex gene families in pine genomes. Trends Plant Sci2:356-359
    Koch JE, Steen K, Petersen KB et al. (1989) Olionucleotide-priming methods for thechromosome-specific labelling of alpha satellite DNA in situ. Chromosoma 98:259-265
    Koehne E (1893) Deutsche Dendrologie. Stuttgart: Ferdinand Enke.Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Christou P (2003) Transgeneintegration, organization and interaction in plants. Plant Mol Biol 52:247-258.
    Kolchinsky A, Kanazin V, Yakovleva E, Gazumyan A, Kole C, Ananiev E (1990) 5S-RNAgenes of barley are located on the second chromosome. Theor Appl Genet 80:333-336
    Kossack DS, Kinlaw CS (1999) IFG, a gypsy-like retrotransposon in Pinus (Pinaceae), has anextensive history in pines. Plant Molecular Biology 39:417-426
    Lagudah ES, Clarke BC, Appels R (1989) Phylogenetic relationship of Triticum tauschii, theD genome donor to hexaploid wheat. 4. Variation and chromosome location of 5S DNA.Genome 32:1017-1025
    Landegent JE, in de Wal NJ, Dirks RW, Baas F, van der Ploeg M (1987) Use of whole cosmidcloned genomic sequences for chromosomal localization by non-radioactive in situhybridization. Hum Genet 77:366-370
    Langer-safer PR, Waldrop AA, Ward DC (1981) Enzymatic synthesis of biotin-labeledpolynucleotides: Novel nucleic acid affinity probes. Proc Natl Acad Sci U S A78:6633-6637
    Lapitan NLV, Brown SE, Kennard W, Stephens JL, Knudson DL (1997) FISH physicalmapping with barley BAC clones. Plant J 11:149-56
    Laurie DA, Pratchett N, Devos KM, Leitch IJ, Gale MD (1993) The distribution of RFLPmarkers on chromosome 2(2H) of barley in relation to the physical and genetic locationof 5S rDNA. TAG Theor Appl Genet 87:177-183
    Lawrence JB, Singer RH, McNeil JA (1990) Interphase and metaphase resolution of differentdistance within the human dystrophin gene. Science 249: 928-932.
    Le HT, Armstrong KC, Miki B (1989) Detection of rye DNA in wheat-rye hybrids and wheattranslocation stocks using total genomic DNA as a probe. Plant Mol Biol Rep 7:150-158
    Lee SH, Seo BB (1997) Chromosomal localization of 5S and 18S-26S rRNA genes usingfluorescence in situ hybridization in Allium wakegi. Korean Journal of Genetics 19:19-26
    Leitch IJ, Heslop-Harrison JS (1992) Physical mapping of the 18S-5.8S-26S rRNA genes inbarley by in situ hybridization. Genome 35:1013-1018
    Leitch IJ, Heslop-Harrison JS (1993) Physical Mapping of 4 Sites of 5S rDNA Sequences andOne Site of the alpha-Amylase-2 Gene in Barley (Hordeum vulgare). Genome36:517-523
    Leitch IJ, Leitch AR, Heslop-Harrison JS (1991) Physical mapping of plant DNA sequencesby simultaneous in situ hybridization of two differently labeled fluorescent probes.Genome 34:329-333
    Lemmon JG (1895) Handbook of West-American cone bearers, edn. 3. Oakland, California:Pacific Press
    Li CB, Zhang DM, Ge S, Lu BR, Hong DY (2001) Differentiation and inter-genomicrelationships among C, E and D genomes in the Oryza officinalis complex (Poaceae) asrevealed by multicolor genomic in situ hybridization. Theor Appl Genet 103:197-203
    Lichter P, Tang CJ, Call K, Hermanson G, Evans GA, Housman D, Ward DC (1990)High-resolution mapping of human chromosome 11 by in situ hybridization with cosmidclones. Science 247:64-69
    Lim K-B, Wennekes J, de Jong JH, Jacobsen E, van Tuyl JM (2001) Karyotype analysis ofLilium longiflorum and Lilium rubellum by chromosome banding and fluorescence insitu hybridization. Genome 44:911-918
    Linares CG, Gonzalez J, Ferrer E, Fominaya A. (1996) The use of double fluorescence in situhybridization to physically map the positions of 5S rDNA genes in relation to thechromosomal location of 18S-5.8S-26S rDNA and a C genome specific DNA sequencein the genus Avena. Genome 39:535-542
    Liston A, Robinson WA, Pinero D, Alvarezbuylla ER (1999) Phylogenetics of Pinus(Pinaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences.Molecular Phylogenetics and Evolution 11:95-109
    Little EL, Critchfield WB (1969) Subdivisions of the genus Pinus. USDA Forest ServiceMiscellaneous Publication. Washington DC.
    Liu B, Zhang SG, Zhang Y, Lan TY, Qi LW, Song WQ (2006) Molecular cytogenetic analysisof four Larix species by bicolor fluorescence in situ hybridization and DAPI banding.
    Liu ZL, Zhang D, Hong D-Y, Wang X-R (2003a) Chromosomal localization of 5S and18S-5.8S-25S ribosomal DNA sites in five Asian Pinus species using fluorescence in situhybridization. Theor Appl Genet 106:198-204
    Liu ZL, Zhang DM, Wang XQ, Ma XF, Wang XR (2003b) Intragenomic and interspecific 5SrDNA sequence variation in five Asian pines. American Journal of Botany 90:17-24
    Lubaretz O, Fuchs J, Ahne R, Meister A, Schubert I (1996) Karyotyping of three Pinaceaespecies via fluorescent in situ hybridization and computer-aided chromosome analysis.Theor Appl Genet 92:411-416
    Lysak MA, Fransz PF, Ali HBM, Schubert I (2001) Chromosome painting in Arabidopsisthaliana. Plant J 28:689-697
    MacPherson P, Filion WG (1981) Karyotype analysis and the distribution of constitutiveheterochromatin in five species of Pinus. J Hered 72:193-198
    Maggini F, Frediani M, Gelati MT (2000) Nucleotide sequence of the internal transcribedspacers of ribosomal DNA in Picea abies Karst. DNA Seq 11:87-89
    Maggini F, Marrocco R, Gelati MT, De Dominicis RI (1998) Lengths and nucleotidesequences of the internal spacers of nuclear ribosomal DNA in gymnosperms andpteridophytes. Pl Syst Evol 213:199-205
    Maluszynska J, Heslop-Harrison JS (1993) Physical mapping of rDNA in Brassica species.Geonme 36:774-781
    Matoba H, Uchiyama H, Koyama T (2001) Physical mapping of 5S and 18S rDNA in lettuce,Lactuca sativa L. (Asteraceae). Chromosome Science 5:73-77
    Mclntyre CL, Pereira S, Moran LB, Appels R (1990) New Secale cereale (rye) DNAderivatives for the detection of rye chromosome segment in wheat. Genome 33:635-640
    Menke M, Fuchs J, Schubert I (1998) A comparison of sequence resolution on plantchromosomes: PRINS versus FISH. Theor Appl Genet 97:1314-1320
    Miller CN (1977) Mesozoic conifers. Bot. Rev. 43:217-280
    Miller P (1754) The Gardeners Dictionary, 4th abridged edn. London: Rivington.
    Moran GF, Smith D, Bell JC, Appels R (1992) The 5S RNA genes in Pinus radiata and thespacer region as a probe for relationship between Pinus species. Pl Syst Evol183:209-221
    Moscone EA, Klein F, Lambrou M, Fuchs J, Schweizer D (1999) Quantitative karyotypingand dual-color FISH mapping of 5S and 18S-25S rDNA probes in the cultivatedPhaseolus species (Leguminosae). Genome 42:1224-33.
    Mukai Y, Endo TR, Gill BS (1990) Physical mapping of the 5S rRNA multigene family incommon wheat. J. Hered. 81:290-295
    Mukai Y, Endo TR, Gill BS (1991) Physical mapping of the l8S, 26S rRNA multigene familyin common wheat: identification of a new locus. Chromosoma 100:71-78
    Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomein hexaploid wheat by multicolor fluroscence in situ hybridization using total genomicand highly repeated DNA probes. Genome 36:489-494
    Murray BG (1998) Nuclear DNA amount in gymnosperms. Annals of Botany 82 (SupplementA):3-15
    Murray BG, Davies BJ (1996) An improved methods for preparing the chromosomes of Pinesand other gymnosperms. Biotech Histochem 3:1043-1052
    Nagylaki T (1984) Evolution of multigene families under interchromosomal gene conversion.Proc Natl Acad Sci U S A 81:3769-3800
    Nagylaki T, Petes TD (1982) Intrachromosomal gene conversion and the maintenance ofsequence homogeneity among repeated genes. Genetics 100:315-337
    Nath J, Johnson KL (1998) Fluorescence in situ hybridization (FISH): DNA probe productionand hybridization criteria. Biotech Histochem 73:6-22
    Nederlof PM, van der Flier S., Wiegant J., Raap AK, Tanke HJ, Ploem JS, van der Ploeg M(1990). Multiple fluorescence in situ hybridization. Cytometry 11:126-131
    Nkongolo KK, Kim NS, Michae P (2004) Detection and physical mapping of the18S-5.8S-26S rDNA and the pKFJ660 probe with microsatellite sequences derived fromthe rice blast fungus (Magnaporthe grisea) in conifer species. Hereditas 140:70-78
    Ohmido N, Kijima K, Akiyama Y, de Jong JH, Fukui K (2000) Quantification of totalgenomic DNA and selected repetitive sequences reveals concurrent changes in differentDNA families in indica and japonica rice. Mol Gen Genet 263:388-94
    Ohri D, Khoshoo TN (1986) Genome Size in Gymnosperm. Plant Syst Evol 153:119-132
    Orgaard M, Heslop-Harrison JS (1994) Investigations of Genome Relationships BetweenLeymus, Psathyrostachys and Hordeum Inferred by Genomic DNA:DNA in situHybridization. Ann Bot 73:195-203
    Parra I, Windle B (1993) High resolution visual mapping of strenched DNA by fluorescencehybridization. Nat Genet 5:17-21
    Pederick LA (1970) Chromosome relationships between Pine species. Silvae Genet 19:169-210Pedersen C, Linde-Laursen I (1994) Chromosomal locations of four minor rDNA loci and amarker microsatellite sequence in barley. Chromosome Res 2:67-71
    Pilger R (1926) Coniferae. In: Eengler & Prantle (eds): Specimens. Taxon 28:375-379
    Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J, Gray J (1988) Fluorescencein situ hybridization with human chromosome-specific libraries: Detection of trisomy 21and translocations of chromosome 4. Proc Natl Acad Sci U S A 85:9138-9142
    Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative,high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934-2938
    Price RA, Liston A, Strauss SH (1998) Phylogeny and systematics of Pinus. In: Ecology andBiogeography of Pinus. Cambridge Univ Press, London.49-68
    Prokopowich CD, Gregory TR, Crease TJ (2003) The correlation between rDNA copynumber and genome size in eukaryotes. Genome 46:48-50
    Quijada A, Liston A, Delgado P, Vazquez-Lobo A, Alvarez-Buylla ER (1998) Variation in thenuclear ribosomal DNA internal transcribed spacer (ITS) region of Pinus rzedowskiirevealed by PCR-RFLP. Theor Appl Genet 96:539-544
    Rayburn AL, Gill BS (1985) Use of biotin-labeled probes to map specific repeated DNAsequences on wheat chromosomes. J. Hered. 76:78-81
    Rayburn AL, Gill BS (1986a) Isolation of a D-genome specific repeated DNA sequence fromAegilops sequarrosa. Plant Mol Biol Rep 4:102-109
    Rayburn AL, Gill BS (1986b) Molecular identification of the D-genome chromosome ofwheat. J. Hered. 77:253-255
    Reddy P, Appels R (1989) A second locus for the 5S multigene family in Secale L.: sequencedivergence in two lineages of the family. Genome 32:456-467
    Richards ER, Goodman HM, Ausubel FM (1991) The centromere region of Arabdopsisthaliana chromosome 1 contains telomere-similar sequence. Nucleic Acids Res19:3351-3357
    Rogers SO, Bendich AJ (1987) Ribosomal RNA genes in plants: variablility in copy numberand in the intergenic spacer. Plant Mol Biol 9:509-520
    Sadder MT, Weber G (2001) Karyotype of maize (Zea mays L.) mitotic metaphasechromosomes as revealed by fluorescence in situ hybridization (FISH) with cytogeneticDNA markers. Plant Mol Biol Rep 19:117-123.
    Salvo-Garrido H, Travella S, Bilham LJ, Harwood WA, Snape JW (2004) The distribution oftransgene insertion sites in barley determined by physical and genetic mapping. Genetics167:1371-1379.
    Sang YJ, Liang GH (2000) Comparative physical mapping of the 18S-5.8S-26S rDNA inthree sorghum species. Genome 43:918-22
    Sastri DC, Hilt K, Appels R, Lagudah ES, Playford J, Baum BR (1992) An overview ofevolution in plant 5S DNA. Pl Syst Evol 183:169-181
    Saylor LC (1972) Karyotype analysis of the genus Pinus-Subgenus Pinus. Silvae Genetica21:155-163
    Saylor LC (1983) Karyotype analysis of the genus Pinus-Subgenus Strobus. Silvae Genetica32:119-124
    Schmidt A, Doudrick RL, Heslop-Harrison JS, Schmidt T (2000) The contribution of shortrepeats of low sequence complexity to large conifer genomes. Theor Appl Genet101:7-14
    Schneeberger RG, Creissen GP, Cullis CA (1989) Chromosomal and molecular analysis of 5SRNA gene organization in the flax, Linum usitatissimum. Gene 83:75-84
    Schrock E, du Manior S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA, Ning Y,Ledbetter DA, Baram I, Soenksen D, Garini Y, Ried T (1996) Multicolor spectralkaryotyping of human chromosomes. Science 273:494-497
    Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization ofparental genomes in a wide hybrid. Ann Botany 64:315-324
    Scoles GJ, Gill BS, Xin Z-Y, Clarke BC, McIntyre CL, Chapman C, Appels R (1988)Frequent duplication and deletion event in the 5S RNA genes and the associated spacerregions of the Triticeae. Plant Syst Evol 160:105-122
    Shan F, Yan G, Plummer JA (2003) Cyto-evolution of Boronia genomes revealed byfluorescent in situ hybridization with rDNA probes. Genome 46:507-513
    Shaw GR (1914) The genus Pinus. The Riverside press, Cambridge, MassShen DL, Wang ZF, Wu M. (1987) Gene mapping on maize pachytene chromosomes by in situhybridization. Chromosoma 95:311-314
    Shibata F, Matsusaki Y, Hizume M (2005) AT-rich sequences containing Arabidopsis-typetelomere sequence and their chromosomal distribution in Pinus densiflora. Theor ApplGenet 110:1253-1258
    Siljak-Yakovlev S, Cerbah M, Coulaud J, Stoian V, Brown SC, Zoldos V, Jelenic S, Papes D(2002) Nuclear DNA content, base composition, heterochromatin and rDNA in Piceaomorika and Picea abies. Theor Appl Genet 104:505-512
    Simpson PR, Newman MA, Davies DR (1988) Detection of Legumin gene DNA sequencesin pea by in situ hybridization. Chromosoma 196:454-458
    Smith GP (1976) Evolution of repeated DNA sequences by unequal crossover. Science191:528-535
    Song YC, Gustafson JP (1993) Physical mapping of the 5S RNA gene in rice (Oryza sativaL.). Genome 36: 658-661.
    Song YC, Gustafson JP (1995)
    The physical location of fourteen RFLP marker in rice(Oryza sativa L.). Theor Appl Genet 90:113-119
    Speicher MR, Ballard SG, Ward DC (1996) Karyotyping human chromosomes bycombinatorial multi-fluor FISH. Nature Genetic 12:368-375
    Swift H (1950) The desoxyribose nucleic acid content of animal nuclei. PhysiologicalZoology 23:169-198
    Thomas CA (1971) The genetic organisation of chromosomes. Annu. Rev. Genet. 5:237-256
    Thomas HM, Harper JA, Meredith MR, Morgan WG, Thomas ID, Timms E, King IP (1996)Comparison of ribosomal DNA sites in Lolium species by fluorescence in situhybridization. Chromosome Research 4:486-490
    Trask BJ, Pinkel D, van den Engh G (1989) The proximity of DNA sequence in interphasecell nuclei is correlated to genomic distance and permits ordering of cosmids spanning250 kilobase pairs. Genomics 5:710-717
    Trontin J-F, Grandemange C, Favre J-M (1999) Two highly divergent 5S rDNA unit sizeclasses occur in composite tandem array in European larch (Larix decidua Mill.) andJapanese larch (Larix kaempferi (Lamb.) Carr.). Genome 42:837-848.
    Valarik M, Bartos J, Kovarova P, Kubalakova MT (2004) High-resolution FISH onsuperstretched flow-sorted plant chromosomes. Plant J 37:940-950
    Vischi M, Jurman I, Bianchi G, Morgante M (2003) Karyotype of Norway sprauce bymulticolor FISH. Theor Appl Genet 107:591-597
    Wakamiya I, Newton RJ, Johnston JS, Price HJ (1993) Genome size and environmentalfactors in the genus Pinus. Amer J Bot 80:1235-1241
    Wang X-R, Tsumura Y, Yoshimaru H, Nagasaka K, Szmidt AE (1999) Phylogeneticrelationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcl,matK,rpl20-rps18 spacer, and trnV intron sequences. Am J Bot 86:1742-1753
    Wang X-Q, Tang DC, Sang T (2000) Phylogeny and divergence times within the pinefamily:evidence from three genomes. Mol Biol Evol 17:773-781
    Weier H-U (2001) DNA fiber mapping techniques for the assembly of high-resolutionphysical maps. J Histochem Cytochem 49:939-948.
    Wendel JF, Schnabel A, Seelanan T (1995) Bi-directional interlocus concerted evolutionfollowing allopolyploid speciationin cotton (Gossypium). Proc Natl Acad Sci U S A92:280-284.
    Wiegant J, Kalle W, Mullenders L, Brookes S, Hoovers JMN, Dauwerse JG, van Ommen GJB,Raap AK (1992) High-resolution in situ hybridization using DNA halo preparations.Hum Mol Genet 1:587-591
    Zhang DM, Sang T (1999) Physical mapping of ribosomal RNA genes in peonies (Paeonia,Paeoniaceae) by fluorescent in situ hybridization: implications for phylogeny andconcerted evolution. Am J Bot 86:735-740
    Zhong XB, Bodent J, Fransz PF (1999) FISH to meiotic pachytene chromosomes of tomatolocates the root-knot nematode resistance gene Mi-1 and the acid phosphatase geneAps-1 near the junction of euchromatin and pericentromeric heterochromatin ofchromosome arms 6S and 6L, respectively. Theor Appl Genet 98:365-370

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700