不锈钢/低合金钢焊接接头微观组织及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用焊条电弧焊方法,分别采用THA302奥氏体焊条和NiCrFe-1镍基合金焊条作为填充材料,焊接16Mn钢和316L不锈钢。通过对焊缝的微观组织分析及力学性能测试,重点研究母材与填充材料的焊接冶金特性。
     研究结果表明,分别采用两种焊条不同电流下焊接时,焊缝微观组织均由由柱状树枝晶组成。只有当采用THA302焊条电流为180A时,在焊缝中央产生结晶裂纹。
     采用THA302奥氏体焊条焊接时,16Mn低合金钢一侧熔合区为一层厚度为10~20μm,呈“针状”的类马氏体组织。而采用NiCrFe-1镍基合金焊条焊接时,16Mn低合金钢一侧熔合区比采用THA302焊条焊接时窄,且没有发现“针状”的类马氏体组织。16Mn钢热影响区主要是由铁素体和珠光体组成,且大部分铁素体以魏氏组织的形态存在,并随着电流的增大,16Mn低合金钢热影响区中的魏氏组织增加。
     采用THA302奥氏体焊条和NiCrFe-1镍基合金焊条焊接316L不锈钢和16Mn低合金钢,接头的最高强度均达到520MPa,并且都随着焊接电流的增大,抗拉强度降低。
16Mn steel and 316L stainless steel are welded with two different electrodes, THA302 and NiCrFe-1. By microstructure observing and mechanical tests, the emphasis is put on welding metallurgy of base materials and filling materials Results show that the microstructure of the weld is coarse columnar dendritic grains and lots of disperse second-phase particles in the grain boundary. There is no crack found in the weld except when using THA302 as a filler metal at 180A. The microstructure of heat affected zone of 16Mn steel is proeutectoid ferrite and perlitic structure. And the microstructure of heat affected zone of 316L stainless steel is coarse equaxed austenite. When using THA302 austenite electrode as filler metal, the fusion zone is a needle-like thin film (10~20μm) martensite structure adjacent to the heat affected zone of 16Mn low alloy steel. While using NiCrFe-1 electrode as a filler metal, the needle-like thin film was not found.
     The tensile strength of joints with THA302 and NiCrFe-1 electrodes can reach 520MPa, and all decrease with the increasing of welding current.
引文
1潘正军. 20#碳钢与316L不锈钢异种钢的焊接.广东造船. 2005, (3): 26-29
    2岳增武,胡新芳,马翠花等. TP304H与钢102异种钢接头失效分析.山东电力技术. 2004, 6: 68-70
    3 http://www.oerlikon.com.tr/pls/oerlikon/!TEC_PKG.stainless_steel_process?lng=eng&selected_menu=21&selected_submenu=4
    4田中治.不锈钢与碳钢的焊接及接头性能.锅炉技术. 1987, (6): 15-21
    5邱毅强,杨云,陈孙艺.耐热钢P5与不锈钢304H的焊接.压力容器. 2004,21(10): 29-31
    6 C. D. Lundin.异种钢焊接文献资料的综述.锅炉技术. 1983, (10): 20-21
    7 Z. Sun. Feasibility of producing ferritic/austenitic dissimilar metal joints byhigh energy density laser beam process. Int. J. Pres. Ves. & Piping. 1996, 68: 153-157
    8 J.F. King, M.D. Sullivan, G.M. Slaughter, Weld. J. 1977, 56 (11): 354s
    9 P. Bala Srinivasan, V. Muthupandi, W. Dietzel, V. Sivan. An assessment ofimpact strength and corrosion behaviour of shielded metal arc welded dissimilar weldments between UNS 31803 and IS 2062 steels. Materials andDesign. 2006, 27: 186-191
    10 G. F. Li, J. Congleton. Stress corrosion cracking of a low alloy steel to stainless steel transition weld in PWR primary waters at 292℃. Corrosion Science. 2000, 42: 1005-1021
    11丛欣滋.奥氏体不锈钢与珠光体耐热钢焊接接头高温失效问题.机械工程材料. 1984, (5): 71
    12 A. K. Bhaduri, I. Gowrisankar, V. Seetharaman et al. Mater. Sci. Technol.1988, 4(11): 1020
    13 A.K. Bhaduri, S. Venkadesan, P. Rodriguez. Intl. J. Pres. Ves. Pip. 1994, 58: 251
    14 M. Sireesha, V. Shankar, Shaju K. Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800. Materials Science and Engineering A. 2000, 292: 74-82
    15 M. Sireesha, Shaju K. Albert, V. Shankar, S. Sundaresan. A comparativeevaluation of welding consumables for dissimilar welds between 316LN austenitic stainless steel and Alloy 800. Journal of Nuclear Materials. 2000, 279: 65-69, 75-76
    16 C. C. Li“Behavior of Nickel-base Dissimilar Metal Welds in Fossil-Fired Steam Generators”in Proceedings of the American Welding Society Conference of Joining Dissimilar Metal August 24-25, 1982, Pittsburgh Pennsyivania
    17 Changheui Jang, Jounghoon Lee, Jong Sung Kim et al. Mechanical property variation within Inconel 82/182 dissimilar metal weld between low alloy steel and 316 stainless steel. International Journal of Pressure Vessels and Piping
    18 P. Jonathan. Creep and Fracture Behaviour of English Electric Mark III Transition Welds (a) New Weldments. International Journal of Pressure Vessels and Piping. 1998, 75: 83-84
    19 C. Dawes. Laser welding: A Practical Guide, Woodhead, UK. 1992, 47-47
    20 Zhang Li, G. Fontana. Autogenous laser welding of stainless steel to free-cutting steel for the manufacture of hydraulic valves. Journal of Materials Processing Technology. 1998, 74: 174-182
    21 M. Cantello, L. Bonello, G. Fontana et al. High-Performance Hydraulic Valves Welded by Laser. Annals of the CIRP. 1997, 46(1): 123-126
    22 J.Tusek, Z.Kampus, M.Suban. Welding of tailored blanks of different materials. Journal of Materials Processing Technology. 2001, 119: 180-184
    23 P. Marashi, M. Pouranvari, S. Amirabdollahian et al. Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels. Materials Science and Engineering A. 2007
    24 Ahmet Hasanbasoglu, Ramazan Kacar. Resistance spot weldability of dissimilar materials(AISI 316L–DIN EN 10130-99 steels). Materials and Design. 2007, 28: 1794-1800
    25 N. Arivazhagan, Surendra Singh, Satya Prakash et al. High temperature corrosion studies on friction-welded dissimilar metals. Materials Science and Engineering B. 2006, 132: 222-227
    26 S. M. Shushan, E. A. Charles, J. Congleton. The Environment Assisted Cracking of Diffusion Bonded Stainless to Carbon Steel Joints in an Aqueous Chloride Solution. Corrosion Science. 1996, 38(5): 673-686
    27 X. Gomez, J. Echeberr?a. Microstructure and mechanical properties of low alloysteel T11–austenitic stainless steel 347H bimetallic tubes. Materials Science and Technology. 2000, 16: 187-193
    28 S.M. Shushan, E.A. Charles, J. Congleton. Corros. Sci. 1996, 38(5): 673
    29 G. Eliaz, R.M. Shemesh, Latanision. Eng. Fail. Anal. 2002, 9: 31–43
    30 Z. Sun, R. Karppi. The application of electron beam welding for the joining of dissimilar metals: an overview. Journal of Materials Processing Technology. 1996, 59: 257-267
    31 Hyeong-Yeon Lee, Se-Hwan Lee, Jong-Bum Kim et al. Creep–fatigue damage for a structure with dissimilar metal welds of modified 9Cr–1Mo steel and 316L stainless steel. International Journal of Fatigue. 2007, 29: 1868-1879
    32 A. Joseph, Sanjai K. Rai, T. Jayakumar et al. Evaluation of residual stresses in dissimilar weld joints. International Journal of Pressure Vessels and Piping. 2005, 82: 700-705
    33 A. Celik, A. Alsaran. Mechanical and Structural Properties of Similar and Dissimilar Steel Joints. Materials Characterization. 1999, 43: 311-318
    34李刚,周文强. 0Cr13Ni5Mo+Q345异种钢焊接工艺.焊接. 2003, (4): 32-34
    35许立平, 12Cr1MoV与321异种钢管的焊接.焊接技术. 2003, 32(6): 27-28
    36漆卫国. Q345 - B钢与0Cr13Ni5Mo钢的焊接.水利电力机械. 2002, 24(1): 58-61
    37 J. C. Lippold, W. F. Savage. Solidification of austenitic stainless steel weldments: Part 1-a proposed mechanism. Journal Welding. 1979, 58: 362-374
    38 C. Pan, Z. Zhang. Characteristic of the weld interface in dissimilar austenitic-pearlitic steel welds. Materials Characterization. 1994, 33(2): 87-92
    39周振丰.金属熔焊原理及工艺(下册).北京:机械工业出版社,1981
    40陈伯蠡.焊接冶金原理.北京:清华大学出版社,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700