Sertoli细胞促进神经前体细胞分化信号转导相关分子作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
很多研究将Sertoli细胞在神经前体细胞分化中的作用归结为Sertoli细胞分泌的细胞因子和营养因子等分泌物上,而从Notch信号转导系统角度,通过Notch受体与配体的相互作用,来探讨细胞与细胞间的相互接触在神经前体细胞分化中的意义,国内外尚未见报道。因而我们从Notch信号转导相关分子方面,对Sertoli细胞在神经前体细胞分化作用机理进行了深入研究。现将四部分内容分述如下:
     第一部分:大鼠大脑皮质神经前体细胞的分离培养及其增殖分化特性鉴定
     目的:神经前体细胞是一类具有多向分化潜能和自我复制能力,在特定条件下,能够向特定类型神经元或神经胶质细胞分化的细胞。本实验通过体外分离和培养大鼠大脑皮质神经前体细胞,对神经前体细胞增殖和分化特性进行鉴定。
     方法:分离2周龄大鼠大脑皮质神经前体细胞,在含EGF、bFGF和GDNF的NSC培养基中进行体外培养,使用免疫细胞荧光染色技术对细胞的分化特性进行鉴定。
     结果:诱导神经前体细胞增殖的有丝裂原包括碱性成纤维细胞生长因子和表皮生长因子等。我们的实验结果表明EGF、bFGF和GDNF可促进神经前体细胞的增殖及神经球的克隆形成,并获得了Nestin阳性的神经前体细胞,其可分化为分别表达β-III tubulin、GFAP和GalC的阳性细胞。
     结论:神经前体细胞在体外大量扩增后,植入脑组织内或通过基因重组后再植入脑内,可用来治疗神经系统疾病,如帕金森病或阿尔茨海默病。中枢神经系统中神经前体细胞的增殖与分化是一个复杂的进程,存在细胞自身基因调控和外来信号调控两种机制。因而,目前需要积极寻找可靠的方法来有效地分离和扩增神经前体细胞,并精确地了解其增殖与分化特性。本研究第一部分利用大鼠的大脑皮质分离培养神经前体细胞,观察了bFGF、EGF和GDNF三种生长因子对神经前体细胞在体外培养增殖和分化的影响,体外分离和培养的大脑皮质神经前体细胞,在含EGF、bFGF和GDNF的NSC培养基中培养,具有不断增殖和多向分化的能力,符合神经前体细胞的特点,为神经前体细胞的定向分化研究奠定了基础。
     第二部分:Sertoli细胞对大鼠大脑皮质神经前体细胞的诱导分化作用研究
     目的:同一来源的神经前体细胞移植到不同部位后,其分化结果也不相同,但往往与接受移植部位的细胞相似,提示外来信号调控作用的重要性。而且,在不同因素影响下,神经干细胞还具有横向分化潜能。本部分主要研究Sertoli细胞对体外培养大鼠大脑皮质神经前体细胞生长分化的作用特点,及向多巴胺能神经元分化的诱导作用。
     方法:将大鼠Sertoli细胞与14d大鼠皮质神经前体细胞体外共培养,免疫组化检测神经干细胞标记物Nestin ,神经元、星形胶质细胞和小胶质细胞标记物β-Ⅲtubulin、GFAP和GalC,及多巴胺能神经元标记物酪氨酸羟化酶(TH)的表达情况。
     结果:随着共培养时间的延长,神经干细胞中GFAP阳性细胞数量逐渐减少,而β-Ⅲtubulin阳性细胞数增多,并出现TH阳性的神经元。
     结论:把胎鼠或成年鼠前脑神经干细胞移植给经亚致死量照射破坏了造血系统的同种宿主的骨髓,发现后者出现了供者源性的骨髓样细胞、淋巴细胞和早期的造血干细胞;把从人胚胎和成年小鼠快速分离的神经干细胞与成肌细胞共培养,结果神经前体细胞分化为骨骼肌细胞。证实了神经干细胞有着更大的分化潜能。Clarke等发现,成年鼠脑的干细胞能在鸡胚环境中被诱导形成所有的胚层。这些研究结果显示,环境的指导性信号对神经干细胞分化的重要作用。我们的实验结果表明:Sertoli细胞抑制体外培养的大鼠皮质神经前体细胞的生长,但具有显著的促神经元分化的作用,并能够诱导与其共培养的大鼠大脑皮质神经前体细胞分化为多巴胺能神经元。
     第三部分:Sertoli细胞共培养大鼠大脑皮质神经前体细胞分化中Notch信号相关基因表达分析
     目的:对那些在发育期调控细胞决定和细胞分化的基因进行了深入研究,发现Notch信号转导通路是具备这些功能的重要家族之一。它在大量的组织和器官的发育中发挥重要作用,调控着组织类型及形态的发生。本部分研究主要检测与Srtoli细胞共培养条件下大鼠大脑皮质神经前体细胞分化过程中Notch信号相关分子的表达变化,分析Notch信号途径在神经前体细胞分化过程中的可能作用。
     方法:本实验通过神经前体细胞与Srtoli细胞共培养,用Real-time PCR相对定量法,以β-actin为内对照,分别检测Notch受体Notch1、Notch2、Notch3、Notch4,及其配体Delta1、Delta3、Jagged1、Jagged2,以及Hes1、Ngn1基因的表达变化。
     结果:养细胞汇片后第5d, sertoli细胞Notch1~4基本表达维持不变;其配体Jagged2表达较高,但不表达Delta1;同时也不表达Hes1、Ngn1。神经前体细胞Notch表达水平较高,尤以Notch1为高;而其配体以Jagged1、Jagged2表达较高,前神经因子Hes1相对有较高的表达,而Ngn1表达较低。细胞共培养条件下,Notch受体、配体以及Hes1与神经前体细胞组相比都有明显的下调,而Ngn1却相对有所提高。
     结论:在干细胞发育过程中,细胞膜表面分子Notch通过结合其配体Delta或Jagged而在干细胞和周围细胞间传递信号,这种细胞间的相互作用可以调控干细胞的分化。在哺乳动物,Notch信号通过CBF1激活E(spl)的同源物Hes[Hairy and E(spl)]1/5,并影响Ngn(Neurogenins)等前神经因子的表达,从而调节神经干细胞的分化。Notch在细胞间传导相互作用的信号,并通过这种邻近细胞间的信号传递来精确调控各谱系细胞分化。Notch信号通路在哺乳动物CNS发育中参与神经发生过程,决定着CNS祖细胞是选择继续增殖还是向神经元分化。一般而言,Notch信号转导通路的激活维持神经干细胞的稳定状态,抑制定向分化;但另一方面,也有证据表明激活Notch信号转导通路又可以加速并不可逆地促进神经干细胞向成胶质细胞分化。本研究第三部分应用实时荧光定量PCR法,检测了与sertoli细胞共培养神经前体细胞分化过程中Notch相关基因Notch1~4、Delta1、Delta3、Jagged1、Jagged2、hes1和ngn1的表达变化,实验表明在与sertoli细胞共培养条件下,神经前体细胞的分化特点与Notch信号相关分子的表达变化相关。Sertoli细胞可通过Notch配体的作用,调节神经前体细胞Notch信号分子的表达。在共培养条件下,Sertoli细胞对神经前体细胞Hes1表达有抑制作用,但对Ngn1有正向调节作用,从而影响神经前体细胞的分化。
     第四部分:Hes1基因真核表达载体的构建及瞬时表达在大脑皮质神经前体细胞分化中的作用
     目的:随着神经前体细胞分离、提纯及体外培养等研究的深入,对内在和外在因子控制神经前体细胞增殖和分化的研究也取得了显著进步。目前研究证明,发生在不同组织内的同一机制调控着该关键步骤,而其中涉及最多者为bHLH基因家族。bHLH是一组转录因子,通过一个碱性区域和一个HLH域的异二聚化与DNA形成特定的接触。Notch信号的下游基因E(spl)/Hes就是其中之一。本实验通过克隆大鼠Hes1基因并构建真核表达载体pCDNA3.1-Hes1,将重组质粒转染大鼠大脑皮质神经前体细胞,获得高表达Hes1基因的神经前体细胞克隆。以探讨Hes1基因高表达对神经前体细胞分化的影响。
     方法:从大鼠脑组织中提取总RNA,用RT-PCR方法获得Hes1基因的全长cDNA,插入pGEM-T-Easy克隆载体中进行序列测定,测序正确后将其亚克隆至表达载体pCDNA3.1,利用脂质体将重组质粒转染原代培养的神经前体细胞,经G418筛选获得抗性细胞克隆,采用RT-PCR方法鉴定Hes1基因在神经前体细胞基因组中的存在,实时荧光定量PCR检测Hes1基因的过表达情况。
     结果:经限制性内切酶酶切图谱分析和DNA序列测定证实目的基因已插入重组质粒,RT-PCR证明经G418筛选得到的转基因神经前体细胞克隆的基因组DNA中存在Hes1基因,实时荧光定量PCR进一步证明转基因神经前体细胞Hes1基因的mRNA呈高表达。
     结论:不同的bHLH因子具有不同的决定和分化的功能,经常作为一个相关蛋白质家族而存在,按时空顺序短暂表达于细胞系分化的不同阶段。早期表达因子参与祖细胞的决定,而晚期表达因子则参与分裂细胞的终期分化,早期表达蛋白质激活晚期蛋白质表达。研究显示,Notch和它的下游效应器Hes基因,以及同源基因Emx2具有维持脑内多潜能干细胞状态的功能,而Ngn1/2和Mash1和Pax6是神经前体细胞向神经元分化的必要条件。Kabos等发现阻断Hes1表达促进中枢神经干细胞分化为γ-氨基丁酸神经元。神经元形成后,Hes因子的激活促进星形胶质细胞的分化,而前神经bHLH因子Ngn抑制星形胶质细胞的分化。本实验通过克隆大鼠Hes1基因,构建真核表达载体pCDNA3.1-Hes1,并将重组质粒转染大鼠大脑皮质神经前体细胞,研究观察了Hes1基因过表达对神经前体细胞Ngn1表达的影响,以及这些变化在神经前体细胞分化的作用。实验成功构建了大鼠Hes1基因的真核表达载体,获得了稳定表达Hes1基因的神经前体细胞克隆,细胞培养实验表明:Hes1基因高表达可抑制神经前提细胞Ngn1的表达,并促进神经前提细胞向神经胶质细胞的分化。
Many studies on the functions of Sertoli cells in the differentiation of precursor cells have credit it to the cytokines and nutrient factors that Sertoli cells secreted. But there are no reports about the studies on its functions from the respects of Notch-related genes and Notch receptors and ligands through which the cells contact one another. So we studied the expression of Notch-related genes in the differentiation of precursor cells co-cultured with Sertoli cells, and we hope furthermore to understand the mechanism of neural precursor cells that Sertoli cells exerted. Now the four parts are summarized as follows now:
     PartⅠ:Isolation and differentiation of neural precursor cells from cerebral cortex of Wistar rats
     Objective: Neural precursor cell is a type of cells that has a capability of multiple differentiation potential and self-renewal, it can differentiate to a particular type of neurons or glial cells under a particular condition. Our research is to isolate and culture neural precursor cells(NPCs) from brain cortex of rats in vitro and to identify the differentiations of the cells.
     Methods: NPCs in cortex of twe weeks born rats were isolated and cultured with the NSC medium which contains EGF、bFGF and GDNF in vitro. Immuno-fluorescence staining was used to study the differentiation characters of the cells.
     Results: The EGF、bFGF and GDNF could enhance the proliferations of the NPCs and cloning formations of neural spheres,The Nestin positive NPCs were obtained at the same time and it could becomeβ- III tubulin, GFAP and GalC positive cells (neurons, astrocytes and oligodendrocytes).
     Conclusion: The mitogens can induce proliferation of neural precursors, which include basic fibroblast growth factor(bFGF) and epidermal growth factor(EGF) etc. The neural precursor cells propagated in great quantities in vitro or through gene transformation, then transplanted into brains. It can be used to cure the nervous system disease, such as Parkinson’s diseases or Alzheimer’s diseases. But the proliferation and differentiation of the neural precursor cells in central nervous system is a complicated progress. And there are two kinds of mechanisms to adjust and control the proliferation and differentiation of the neural precursor cells, the one is signals outside the cells, the other is genes inside the cells. Therefore, we need to look for the dependable methods to separate and propagate the neural precursor cells availably and find out by the square the characteristics of its proliferation and differentiation. NPCs isolated from brain cortex and cultured in the NSC medium contained EGF、bFGF and GDNF in vitro have the ability of proliferation and differentiation. So they may be used as graft for the cell transplantation therapy in neuronal handicap and injury. In the light of the purpose above mentioned, The research of the part one made use of the cerebral cortex of rat to separate and develop neural precursor cells, and observed the influences of three kinds of growth factors bFGF, EGF and glial fibrillary acid protein (GDNF) on the proliferation and differentiation of the neural precursors cells in vitro. The research was laying a foundation on the studies for oriented differentiation of neural precursor cells.
     PartⅡ:The study on Sertoli cells inducing the differentiation of neural progenitor cells from cerebral cortex of rat
     Objective:Once neural precursor cells com from one part transplanted to different part, the result of its differentiation is also different. It is usually similar to the cells of the part accepted transplantation. It hints that the signals outside cells have an important functions in regulating cell differentiation. Moreover, with the influence of different factors, the neural stem cells have potential ability of horizontal differentiation. In this part we want to investigate the effect of Sertoli cell on proliferation and differentiation of cultured neural prigenitor cells(NPCs) from cerebral cortex of the rat.
     Methods:Sertoli cells from the testis and the neural precursors cells(NPCs) from the cerebral cortex of Wistar rat were co-cultured. The detections ofβ- III tubulin, GFAP, GalC and tyrosine hydroxylase (TH) were made by immunocytochemistry in vitro.
     Results:The numbers of NPs with nestin-positive was decreasing along the time of the co-culture, so were the GFAP and GalC. While theβ- III tubulin-positive cells increased, and TH-positive cells appeared in the co-culture.
     Conclusion:if the neural stem cell from forebrain of adulthood or embryonic rat transplanted to the marrow of the same race host its blood system had broken down through second death-dosage of irradiation, we will find there were marrow-like cells, lymphoid cells and earlier periods blood stem cells that derived from the cells of provider source in the host marrow. One experiment testified that if the neural stem cells separated quickly from person's embryo and adulthood mice co-cultured with myoblast cells, as a result, the neural stem cells will differentiated into the skeleton muscle cell. Clarke and his colleague detected that adult stem cell from rat brain can be induced to become all layers of embryonic strata in the chicken embryonic environment. These researches show that the leading signals of the environment have an important effect on the differentiation of neural precursor cells, meanwhile it can confirm that neural stem cells have more potential differentiation. Fanigaki discovered that Notch play an important part in the neural precursor cells differentiating into glial cells. Through up-regulation of the bHLH protein Hes1 and Hes5, the signal of Notch can adjust and control proliferation and differentiation of neural precursor cells. Notch signaling regulates the differentiation of different cells through a kind of by-pass repression. When a group of same cells is stimulated by a certain and special signal at the same time, only a small parts of cells is induced by the signal and appear the differentiation toward particular direction. But the Adjacent cells that express more proteins of Notches can't differentiate toward particular direction, and behave a repression of differentiation. The function of by-pass repression depended on dosages of Notch proteins have already got the confirmation in the Drosophila and mice. Through the direct contact between cells, the expression of different Notch ligands together with the limited activation of proteins of Notch can induce cells differentiating toward dissimilarity directions. According to the research above, this experiment of the part two using the precursors cells from cerebral cortex of rat co-cultured with Sertoli cells, investigate the functions of interactions of two kinds of cells as well, and explore the characteristics of Sertoli cells inducing the neural precursors cells proliferation and differentiation to definite direction. Sertoli cells exert the negative effect on proliferation of the NPCs,but have distinctly the positive effect on the NPCs for its differentiation into neurons in vitro, The neural precursors from the cortex of rat can be directly induced to differentiation into the dopaminergic progenitors by co-cultured with the Sertoli cells.
     PartⅢ:Expression of Notch-related Genes in the Differentiation of the neural precursor cells(NPCs) from brain cortex of rats co-cultured with sertoli cells
     Objective: If a stable precursor cells pool needs to be maintained then the balance between asymmetrical and symmetrical division must be tightly regulated. Carried on the thorough research for those genes that determine the cell decision and differentiation, it has been discovered that the signal of Notch turns to be one of the important families that has the functions. Notch may be important molecules in specifying cell fate, and play an important role in the growth of much tissues and organs, and regulate the occurrence and morphogenetic processes of the special tissue types. This research of part three applies the fluorescence quantitative real time RT-PCR method examining the expressing variety of the Notch related gene Notch1~4, Delta1, Delta3, Jagged1, Jagged2, Hes1 and Ngn1,and investigates the expression of Notch-related genes in the neural precursor cells(NPCs) from brain cortex of rats in vitro and analyze the possible function of Notch pathway in the differentiation of neural precursor cells co-cultured with sertoli cells.
     Methods: NPCs in cortex of twe weeks born rats were isolated and cultured with the NPC medium contained EGF、bFGF and GDNF in vitro. At the same time to isolate its sertoli cells, and co-culture the neural precursor cells with sertoli cells. The expressions of notch-related genes were identified in cells of different groups. Total RNA was isolated at 5 day after confluence of cells. Fluorescent quantitative real-time RT-PCR(FQ-PCR) was used to detect the expression of both Notch(Notch1,Notch2,Notch3 and Notch4) and its ligand (Delta1,Delta3,Jagged1 and Jagged2); expression of ngn1and hes1 genes was also examined at the control ofβ-actin.
     Results: Under the NPC medium contained EGF、bFGF and GDNF culture condition, the expression of the four notches in the sertoli cells group were no different, and the level of Jagged2 showed slightly high, but not express Delta1. In the neural precursor cells group the four notch genes especially the Notch1 had high expressions, So Its Jagged1 and Jagged2. Its Hes1 gene was high level, but the expression of its Ngn1 gene was lower respectively. Interestingly, the expression of four notch genes and its four ligands plus Hes1 exhibited down-regulation in the co-cultured cells group than the neural precursor cells group, but its Ngn1 gene showed up-regulation.
     Conclusion: The Notch conducts the signals of cell-to-cell interaction between the cells, and precisely regulates the differentiation of each group of cells through adjusting the signals between adjacent cells. The Notch signaling participate in the neural occurrence process in the CNS development, and give the progenitor cell of CNS a choice to continue to propagation or to differentiate into neurons. Generally speaking, the activation of Notch signaling maintain the stable state of neural stem cell, and repress the definite oriented differentiation; But on the other hand, there are evidences prove that activation of the signal of Notch can accelerate and against the ground promote neural precursors cells become glial cells. Some studies manifest that in the process of neural precursors cells development, The Notch on the surface of cell membrane can combine its ligand Delta or Jaggeds and deliver the signals between stem cells and surroundings cells. The cell-to-cell interaction of this kind can adjust and control differentiation of stem cells. For mammals, the signal of Notch activates Hes1/5 homologic to the E(spl) through a CBF1 together, and affect the expression of the pre-neural factor Ngn( Neurogenins), and regulate differentiation of the neural stem cell. The experiment indicate that the specific properties of neural precursors cells have relationship with the varieties of Notch signaling related genes expression under the condition of co-cultured with Sertoli cells.Notch pathway is involved in the differentiation of the neural precursor cells, Sertoli cells can suppress the expression of the Hes1 gene, meanwhile enhance the expression of the Ngn1 gene in the neural precursor cells co-cultured with it. The Sertoli cells may have a positive effect on neural precursor cells differentiation through affecting Notch signaling.
     PartⅣ:Construction of eukaryotic expression vector containing rat Hes1 genes and expression in neural precursor cells for the study of its differentiation functions
     Objective: Along with the development of Separation, purification and culture for the neural precursor cells in vitro, the study of research for the neural precursor cells controlling its proliferation and differentiation under the influence of cell intrinsic mechanisms or extrinsic signals also obtained great progress. The current studies demonstrate the same mechanism occurred in different tissues which control the key step, and among them involved the most is genes of bHLH families of proteins. The experiment of part four is to clone hes1 gene, and set up eukaryotic expressing victor pCDNA3.1- Hes1, then transfected it to the neural precursors cells from cerebral cortex of rat , we construct its eukaryotic expression vector and obtain positive neural precursor cell clones expressing Hes1 genes stably through transfectation,then to study their effects to the differentiation of neural precursor cells.
     Methods: The total RNA was extracted from 14 day Wistar rat brain. The full-length cDNA encoding Hes1 genes were obtained using RT-PCR method and inserted into pGEM T Easy cloning vector. After the sequencing was confirmed, the gene was subcloned to pCDNA3.1 to construct recombinant eukaryotic expression vectors of pCDNA3.1-Hes1. The recombinant plasmid was transfected into neural precursor cells from cerebral cortex of 14 day Wistar rat by lipofectamine method and positive cell clones were screened with G418. The existence of Hes1 genes in the transfected cells genomic DNA ,and the over-expression of their mRNA in the transfected cells were confirmed with Fluorescent quantitative real-time RT-PCR(FQ-PCR).
     Results: Enzyme digestion analysis and sequencing showed that the target genes were cloned into recombinant vector. The Existence and over-expression of Hes1 genes in the transfected neural precursor cells was identified with FQ-PCR and it display that Hes1 mRNA had high expressed in the transfected neural precursor cells.
     Conclusion: bHLH is the exact subset of transcription factors, containing an alkaline district and a HLH domain. The homologues of many of these transcription factors often act in cascades to control the successive steps in neuronal determination and differentiation as well as neuronal-subtype identity. These transcription factors often construct heterodimers each other, which can band to particular sequences of DNA, and act at particular stage of stem cell development. The downstream gene E(spl)/ Hes of the Notch signaling pathways is one of them, the different factors of bHLH have different function that decide cell fate decision or differentiation. As a related family of proteins, they usually transiently express in a proper time and space order and at the different stage of cell development. The factors that early expressed participated in the cell decision, but the later expressed participated in the cell differentiation eventually, the proteins that expressed in early stages activated the expression of proteins in later stages. Many study manifest that Notch and its downstream target Hes gene have important functions on the potentials maintenance of stem cell in brain. Ngn1/2 and Mash1 are essential for the neural precursor cells differentaition into neurons. Kabos discovered that the repression of Hes1 promote the neural stem cells in central nervous system differentiation intoγ-GABA neurons. Moreover, after the formation of neurons, the activity of the Hes factor often promotes the glial differentiation, the bHLH factors Ngn inhibits a glial fate. The eukaryotic expression plasmid containing Hes1 genes were successfully constructed. The positive neural precursor cell clones expressing Hes1 genes stably were obtained, which may be a promising cell model for studying the biological function of Hes1 genes and the role of Hes1 genes in the differentiation of neural precursor cells. The experiment manifested that the high expression of Hes1 can restrain the expression of Ngn1 gene,and enhance the neural precursor cells differentiation to glial cells. From the research we observed how the high expression of Hes1 gene influence on the differentiation of neural precursors cells.
引文
1 Davis AA , Temple S. A self-renewing multipotential stem cell in embryonic rat cerebral cortex [J]. Nature , 1994 , 372 (6503) :263~266
    2 Eriksson PS , Perfilieva E , Bjork-Eriksson T. Neurogenesis in the adult human hippocampus [J]. Nat Med ,1998 ,4 (11) :1313~1317
    3 Doetsch F , Gaille L , Lim DA. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain [J]. Cell ,1999 ,97(6) :703~716
    4 Ciccolini F ,Svendsen CN. Fibroblast growth factor-2 (FGF-2) promotes acquisition of epidermal growth factor (EGF) responsiveness in mouse striatal precursor cells : identification of neural precursors responding to both EGF and FGF-2 [J]. Neuroscience , 1998 ,18(19) :7869~7880
    5 Gage FH , Ray J , Fisher IJ . Isolation , characterilzation and use of stem cells from the CNS [J]. Annu Rev Neurosci ,1995 , 18 :159~192
    6 Ourednik V , Ourednik J , Park KI. Neural stem cell a versatile tool for cell replacement and gene therapy in the central nervous system [J]. Clin Genet ,1999 ,56 (4) :267~278
    7 Suhonen JO , Peerson J R , Gage FH. Differentiation of adult hippocampus progenitors into olfactory neurons in vivo[J]. Nature ,1996,383 (6601) :624~627
    8 Ana Villa , Evan Y , Snyder , Angelo I , Vescovi , et al. Establishment and properties of a growth factor-dependent , perpetual neural stem cell line from the human CNS [J]. Exp Neurol ,2000 ,161(1) :67~84
    9 Svendsen CN , Caldwell MA , Shen J . Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease [J]. Exp Neurol , 1997 ,148(1) :135~146
    10 Peterson DA. Stem cell therapy for neurological disease and injury[J]. Panminerva Med , 2004 ,46(1) :75~80
    11 Kim H T , Kim IS , Lim SE. Gene and cell replacement via neural stem cells [J]. Yonsei Med J , 2004 ,45(Suppl) :32~40
    12 Sugaya K. Neuroreplacement therapy and stem cell biology under diseaseconditions [J]. Cell Mol L if e Sci , 2003 ,60 (9) : 1891~1902
    13 Dickinson-Anson H , Aubert I , Gage FH. Hippocampal grafts of acetylcholine producing cells are sufficient to improve behavioural performance following a unilateral fimbriafornix lesion [J]. N ature,1995 ,375(6531) :484~487
    14 Fallon J , Reid S , Kinyamu R. In vivo induction of massive proliferation , directed migration , and differentiation of neural cells in t he adult mammalian brain [J]. Proc N atl Acad Sci USA ,2000 ,97(26) :14686~14691
    15 Bjorklund A , Lindvall O. Cell replacement therapies for central nervous system disorders [J]. N at Neurosci , 2000 ,3 (6) :537~544
    16 Sinden JD , Stroemer P , Grigoryan G. Functional repair with neural stem cells[J]. Neuroscience ,1998 ,84(3) :771~781
    17 Apano LA , Sheen VL , Leavitt BR. Differentiation of transplanted neural precursors varies regionally in adult striatum [J]. Neuro Report , 1999 ,10 (18) : 3971~3977
    18 Ciccolini F Identification of tow distinct types of mulitipotent neural precursors that appear sequentially during CNS development [J].Mol Cell Neurosci,2001,17(5):895~907
    19 Kallos MS, Sen A, Behie LA. Large-scale expansion of mammalian neural stem cells [J].Med Biol Eeg Comput.2003,20(3):1085~1095
    20 Yuehua J, Dori H, Mark B. Neuroectodermal differentiation from mouse multipotent adult progentor cells [J].PNAS,2003,100 (1):11854~11860
    1 Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development [J]. Science, 1999, 284(5415):770~776
    2 MartinezArias A, Zecchini V,Brennan K. CSL-independent Notch signalling: a checkpoint in cell fate decisions during development ? [J]. Curr Opin Genet Dev,2002,12(5):524~533
    3 Baron M,Aslam H, Flasza M, et al. Multiple levels of Notch signal regulation [J]. Mol Membr Biol,2002,19(1):27~38
    4 Spana EP,Doe CQ. Numb antagonizes Notch signaling to specify sibling neuroncell fates [J].Neuron,1996,17(1):21~26
    5 Okabe M,ImaiT,Kurusu M,et al. Translational repression determines a neuronal potential in Drosophila asymmetric cell division [J]. Nature, 2001,411(6833):94~98
    6 Gaiano H, Fishell G. The role of Notch in promoting glial and neuralstem cell fates [J]. Annu. Rev. Neurosci. 2002, 25: 471~490
    7 Ge W,Martinowich K,Wu X,etal.Notch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation[J]. J Neurosci Res, 2002, 69(6):848~860
    8 Othberg Al , Willing AE , Cameron DF. Trophic effect of porcine Sertoli cells on rat and human ventral mesencephalic cells and hNT neurons in vitro[J] . Cell Transplant ,1998 ,7 (2) :157~164
    9 Shangguan FF , Shi XL . Function and application of Sertoli cell [J] . Acta Anatomica Sinica ,2002 ,33 (4) :446~448.
    10 Vescovi AL ,Snyder EY. Establishment and properties of neural stem cell clones :plasticity in vitro and in vivo [J] . Brain Pathyol ,1999 ,9(3) : 569~598
    11 Anderson DJ . Stem cells and pattern formation in the nervous system:the possible versus the actual [J] . Neuron , 2001 , 30 (1) : 19~35
    12 Parks AL , Klueg KM , Stout JR , et al . Ligand endocytosis drives receptor dissociation and activation in the Notch pathway [J].Development , 2000 , 127 (7) : 1373~1385
    13 Dirami G,Ravindranath N,Achi MV,et al. Expression of Notch pathway components in spermatogonia and Sertoli cells of neonatal mice [J]. Journal of Andrology, 2001, 22(6): 944~952
    14 Borlongan CV , Cameron DF , Saporta S. Intracerebral transplantion of testis derived Sertoli cell promotes functional recover in female rats with 6-Hydroxydopamine-induced hemiparkinsonism [J]. Exp Neurol , 1997 , 148(1) : 386~392
    15 Willing AE , Ot hberg AI , Saporta S , et al . Sertoli cells enhance the survival of co-transplanted dopamine neurons [J]. Brain Res , 1999 , 822 (122): 246~250
    16 Othberg AI , Willing AE , Cameron DF. Trophic effect of porcine Sertoli cells on rat and human ventral mesencephalic cells and hNT neurons in vitro [J] . Cell Transplant , 1998 , 7(2) : 157~164
    17 Potte ED , Ling ZD , Carvey PM , et al . Cytokine induced conversion of mesencephalic derived progenitor cells into dopamine neurons [J]. Cell Tissue Res , 1999 , 296(2): 235~246
    18 Daadi MM , Weiss S. Generation of tyrosine hydroxylase-producing neurons from precursors of the embryonic and adult forebrain [J] . JNeuro ,1999 ,19 (11) :4484~4497
    19 Ahmed S , Reynolds BA , Weiss S. BDNF is differentiation but not the survival of CNS stem cell precursors[J] . J Neurosci ,1995 ,15(8):576~581
    20 Temple S. The development of neural stem cells [J] . Nature , 2001 ,414 (6859) : 112~117
    21 Anthony TE,Klein C,Fishell G, et al.Radial glia serve as neuronal progenitors in all regions of the central nervous system [J].Neuron 2004,41:881~890
    22 Hitoshi S , Alexson T , Tropepe V , et al. Notch pathway molecules are essential for the maintenance , but not the generation of mammalian neural stem cells [J] . Gene Dev , 2002 , 16 (7) : 846~858
    23 Dambly-ChaudiereC,Vervoort M.The bHLH genes in neural development [J]. Int J Dev Biol,1998,42(3):269~273
    24 Bertrand N,Castro DS,Guillemot F. Proneural genes and the specification of neural cell types [J].Nat Rev Neurosci,2002,3(7):517~530
    1 M umm JS, Kopan R. Notch signaling: from the outside in [J]. Dev B iol, 2000, 228(2) ∶ 151~165
    2 Lai EC. Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins [J]. EMBO Rep, 2002, 3 (9) ∶ 840~845
    3 Yamamoto S, Nagao M, Sugimori M, et al. Transcription factor expression and Notch-dependent regulation of neural progenitors in the adult rat spinal cord [J].Neurosci,2001,21: 9814~9823
    4 Baron M , A slam H, Flasza M , et al. Multiple levels of Notch signal regulation (review) [J]. Mol Membr B iol, 2002, 19(1) ∶22~38
    5 Bray S, Furriols M. Notch pathway: making sense of suppressor of hairless [J]. Curr B iol, 2001, 11(6) : 217~221
    6 Hitoshi S , Alexson T , Tropepe V , et al. Notch pathway molecules are essential for the maintenance , but not the generation of mammalian neural stem cells [J] . Gene Dev , 2002 , 16 (7) : 846~858
    7 Morrison SJ,Perez SE,Qiao Z,et al.Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells [J].Cell,2000,101:499~510
    8 Kageyama R,Ohtsuka T,Tomita K,etal.The bHLH gene Hes1 regulates differentiation of multiple cell types [J].Mol Cells,2000,29(1):127
    9 Clegg RM. Fluorescence resonance energy transfer [J]. Curr Opin Biotechnol,1995,6(1):103~110
    10 Jones C D , Yeung C , Zehnder J L , et al. Comprehensive validation of a real-time quantitative PCR assay for clinical laboratory use[J]. J Clin Pathol , 2003 , 120(1) : 42~48
    11 Wolfgang K , Jonathan N , Karas S ,et al. Fluorogenic primers for real-time PCR[J].American Biotechnology Laboratory ,2003 ,(7) :52~56
    12 Wittwer CT, Reed GH, Gundry CN, et al. High-resolution genotyping by amplicon melting analysis using LC Green [J]. Clin Chem,2003,49(1):853~860
    13 Ge W, Martinowich K, Wu X, etal. Notch signaling promotes astroglio genesis via direct CSL-mediated glial gene activation[J]. J Neurosci Res, 2002, 69(6): 848~860
    14 Nieto M,Schuurmans C,Britz O,etal.Neura lbHLH genes control the neuronal versus glial fate decision in cortical progenitors[J]. Neuron, 2001, 29(3):401~413.
    15 Grandbarbe L,Bouissac J,Rand M,et al.Delta-Notch signaling controls the generation of neuron/glia from neural stem cells in stepwise process [J].Development,2003,130:1391~1402
    16 Iso T, Kedes L, Hamamori Y. HES and HERP families: Multiple effectors of the Notch signaling pathway [J]. Cell Physiol,2003,194(3):237~255
    17 Furukawa T, Mukherjee S, Bao ZZ, Hes1, and notch1 promote theformation of Muller glia by postnatal retinal progenitor cells [J]. Neuron 2000, 26: 383~394
    18 Ohtsuka T, Sakamoto M, Guilemot F, et al. Roles of the bHLH genes Hesl and expansion of neural stem cells of the developing brain [J]. J Biol Chem, 2001,276:30467~30474
    19 SommerL,MaQ,AndersonDJ.Neurogenins,anovel family of atonal related bHLH transcription factors,are putative mammalian neuronal determination genes that reveal progenitor cell hetero geneity in the developing CNS and PNS [J].MolCellNeurosci,1996,8(4):221~241
    20 Kim MH, Gunnersen J, Augustine C, et al. Region-specific expression of the helix-loop-helix gene in developing and adult brains [J]. Mech Dev, 2002, 114: 125~128
    21 Sun Y, Nadal Vicens M, Misono S, et al. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms [J]. Cell, 2001,104:365~376
    22 Gaiano N,Nye JS,Fishell G.Radial glial identity is promoted by Notch1 signaling in murine forebrain.neuron [J].2000,26:399~404
    23 MartinezArias A,Zecchini V,Brennan K. CSL-independent Notch signalling: a checkpoint in cell fate decisions during development ? [J] Curr Opin Genet Dev,2002,12(5):524~533
    24 Wakamatsu Y,Maynard TM,Weston JA.Fate determination of neural crest cells by Notch-mediated lateral inhibition and asymmetrical cell division during gangliogenesis [J]. Development,2000,127:2811~2821
    25 Baron M. An overview of the Notch signaling pathway [J]. Cell Dev Biol,2003,14(2):113~119
    26 Hatakeyama J, Bessho Y, Katoh K,et al. Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation [J]. Development 2004, 131:5539~5550.
    27 Parks A L , Klueg K M , Stout J R , et al . Ligand endocytosis drives receptor dissociation and activation in the Notch pathway.Development [J] . 2000 , 127 (7) : 1373~1385
    1 Fode C,Ma Q,Casarosa S,etal.A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons [J].GenesDev,2000,14(1):67~80
    2 Farah MH,Olson JM,Sucic HB.Generation of neurons by transient expression of neural bHLH proteins in mammalian cells [J].Development,2000,127(4):693~702
    3 Ge W, Martinowich K, Wu X, etal. Notch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation [J]. JNeurosci Res,2002,69(6):848~860
    4 Ledent V, Paquet O, Vervoort M. Phylogenetic analysis of the human basic helix-loop-helix proteins [J]. GenomeBiol, 2002,3(6):1218
    5 Bertrand N, CastroDS, Guillemot F. Proneural genes and the specification of neural cell types [J]. NatRev Neurosci,2002,3(7):517~530
    6 Dambly-Chaudiere C,Vervoor tM.The bHLH genes in neural development [J].IntJDevBiol,1998,42(3):2693~273
    7 Sriuranpong V,Borges MW,Strock CL.Notch signaling induces rapid degradation of achaete-scute homobylog1[J].MolCellBiol,2002,22(9):3129~3139
    8 Lai EC .Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins [J] . EMBO reports, 2002,3(9):840~845
    9 Bray SJ.Expression and function of Enhancer of split bHLH proteins during Drosophila neurogenesis [J].Perspect DevNeurobiol, 1997, 4(4): 313~323
    10 Kageyama R, Ohtsuka T, Tomita K,etal.The bHLH gene Hes1 regulates differentiation of multiple cell types [J].MolCells,2000,29(1):127
    11 Moore KB,Schneider ML,Vetter ML.Post translational mechanisms control the timing of bHLH function and regulate retinal cell fate [J].Neuron,2002,34(2):183~195
    12 Lo L,Dormand E,Greenwood A,etal.Comparison of the generic neuronal differentiation and neuron subtype specification functions of mammalian achaete-scute and atonal homologs in cultured neural progenitor cells [J].Development,2002,129(7):1553~1567
    13 Wu Y, Liu Y, Levine EM. Hes1 but not Hes5 regulates an astrocyte versus oligodendrocyte fate choice in glial restricted precursors [J].DevDyn,2003,226(4):675~689
    14 Kageyama R, Ishibashi M, Takebayashi K, et al. bHLH transcription factors and mammalian neuronal differentiation[J].Int J Biochem Cell Biol,1997,29(12):1389~1399
    15 Nieto M,Schuurman sC,Britz O.Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors [J].Neuron,2001,29(3):401~413
    16 Iso T , Kedes L , Hamamori Y. HES and HERP families : Multiple effectors of the Notch signaling pathway. J Cell Physiol , 2003 ,194 (3) : 237~255
    17 Sun Y, Nadal2Vicens M, Misono S, et al. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms [J ] . Cell , 2001 , 104 (3) : 365~376
    18 Fisher A,Caudy M.The function of hairy-related bHLH repressor proteins in cell fate decisions [J].Bioessays,1998,20(4):298~306
    19 Cepko CL.The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates [J].Curr Opin Neurobiol,1999,9(1):37~46
    20 Kageyama R, Ishibashi M, Takebayashi K, etal.bHLH transcription factors and mammalian neuronal differentiation [J]. Int J Biochem Cell Biol,1997,29(12):1389~1399
    21 Parras CM,Schuurmans C,Scardigli R.Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity [J].GenesDev,2002,16(3):324~338
    22 Wang S, Barres BA. Up a Notch: instructing gliogenesis [J]. Neuron,2000, 27;197~200
    23 Sommer L, Ma Q, Anderson DJ. Neurogenins,a novel family of atonal-related bHLH transcriptionfactors,are putative mammalian neuronal determination genes that reveal progenitor cell hetero-geneity in the developing CNS and PNS[J].MolCellNeurosci,1996,8(4):221~241
    24 Zhou Q,Anderson DJ.The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification cell [J].Neuron,2002,109(1):61~73
    25 Guillemot F.Vertebrate bHLH genes and the determination of neuronal fates [J].ExpCellRes,1999,253(2):357~364
    26 Chapouton P,Schuurmans C,Guillemot F,etal.The transcription factorneurogenin2 restricts cell migration from the cortex to the striatum [J].Development,2001,128(24):5149~5159
    
    1 Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development [J].Science, 1999, 284(5415): 770~776
    2 Nam Y, Weng AP, Aster JC, et al. Structural requirements for assembly of the CSL intracellular Notch1 Mastermind-like-transcriptional activation complex [J]. J Bio Chem, 2003, 278(23):21232~21239
    3 Iso T, Kedes L, Hamamori Y. HES and HERP families: Multiple effectors of the Notch signaling pathway [J]. Cell Physiol,2003,194(3):237~255
    4 Lai EC. Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins [J] . EMBO reports,2002,3(9):840~845
    5 Wu L, Sun T, Kobayashi K, et al. Identification of a family of mastermind-like transcriptional co-activators for mammalian notch receptors[J]. Mol Cell Biol,2002,22(21):7688~7700
    6 Baron M. An overview of the Notch signaling pathway [J]. Cell Dev Biol,2003,14(2):113~119
    7 PiresdaSilva A , Sommer RJ . The evolution of signalling pathways in animal development. Nat Rev Genet ,2003 ,4:9~49
    8 Artavanis-sakonas S , Rand MD , Lake RJ . Notch signaling : ell fate control and signal integration in development. Science ,1999 ,284:70~776
    9 Shimizu K, Chiba S , Saito T ,et al. Integrity of intracellular domain of Notch ligand is indispensable for cleavage required for release of the Notch2 intracellular domain. EMBO J ,2002 ,21:294~302
    10 MartinezArias A, Zecchini V, Brennan K. CSL-independent Notch signalling: a checkpoint in cell fate decisions during development ? [J] Curr Opin Genet Dev,2002,12(5):524~533
    11 Bray S , Furriols M. Notch pathway : making sense of suppressor of hairless. Curr Biol ,2001 ,11:17~21.
    12 Iso T , Kedes L , Hamamori Y. HES and HERP families : Multipleeffectors of the Notch signaling pathway. J Cell Physiol , 2003 ,194 (3) : 237~255
    13 Baron M,Aslam H, Flasza M, et al. Multiple levels of Notch signal regulation [J]. Mol Membr Biol,2002,19(1):27~38
    14 Sakamoto M, Hirata H, Ohtsuka T,et al. The basic helix– loop– helix genes Hesr1/Hey1 and Hesr2/Hey2 regulate maintenance of neural precursor cells in the brain[J]. J. Biol. Chem. 2003, 278:44808~44815
    15 Lai E C. Keeping a good pathway down : transcriptional repression of Notch pathway target genes by CSL proteins[J]. EMBO reports ,2002 , 3 (9) : 840~845
    16 Bray SJ.Expression and function of Enhancer of split bHLH proteins during Drosophila neurogenesis [J].Perspect Dev Neurobiol,1997,4(4):313~323
    17 Fisher A,Caudy M.The function of hairy-related bHLH repressor proteins in cell fate decisions[J].Bio essays,1998,20(4):298~306
    18 Wang S,Sdrulla A,Johnson JE.A role for the helix-loop-helix protein Id2 in the control of oligodendrocyte development[J].Neuron,2001,29(3):603~614
    19 Nieto M,Schuurmans C,Britz O.Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors [J].Neuron,2001,29(3):401~413
    20 Guillemot F.Vertebrate bHLH genes and the determination of neuronal fates [J].Exp Cell Res, 1999,253(2):357~364
    21 Ana Villa , Evan Y , Snyder , Angelo I , Vescovi , et al. Establishment and properties of a growth factor-dependent , perpetual neural stem cell line from the human CNS [J]. Exp Neurol ,2000 ,161(1) :67~84
    22 Cepko CL.The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates [J].Curr Opin Neuro biol,1999,9(1):37~46
    23 Crews ST. Control of cell lineage-specific development and transcription by bHLH proteins [J].Curr Opin Genet Dev,1999,9(5):580~587
    24 Kageyama R,Ishibashi M,Takebayashi K,et al. bHLH transcription factors and mammalian neuronal differentiation[J]. Int J Biochem Cell Biol,1997,29(12):1389~1399
    25 Sommer L,Ma Q,Anderson DJ,et al. neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS [J].Mol Cell Neurosci,1996,8(4):221~241
    26 Bertrand N,Castro DS,Guillemot F. Proneural genes and the specification of neural cell types [J].Nat Rev Neurosci,2002,3(7):517~530
    27 FodeC,MaQ,CasarosaS,et al. A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons[J]. Genes Dev, 2000,14(1):67~80
    28 Chojnacki A , Shimazaki T , Gregg C , et al. Glycoprotein 130 signalingregulates Notch1 expression and activation in the self-renewal of mammalian forebrain neural stem cells [J] . J Neurosci , 2003 , 23 (5) :1730 - 1741
    29 ChapoutonP,Schuurmans C, Guillemot F, etal. The transcription factor neurogenin restricts cell migration from the cortex to the striatum[J]. Development, 2001,128(24):5149~5159
    30 Parras CM,Schuurmans C,Scardigli R.Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity[J]. GenesDev, 2002,16(3):324~338
    31 Inoue T, Hojo M, Bessho Y,et al. Math3 and NeuroD regulate a macrine cell fate specification in the retina[J]. Development 2002,129: 831~842
    32 MooreKB, SchneiderML, VetterML. Post translational mechanisms control the timing of bHLH function and regulate retinal cell fate [J]. Neuron, 2002, 34(2):183~195
    33 Lo L,Dormand E,Greenwood A,etal.Comparison of the generic neuronal differentiation and neuron subtype specification functions of mammalian achaete-scute and atonal homologs in cultured neural progenitor cells[J]. Development, 2002,129(7):1553~1567
    34 Farah MH, Olson JM, Sucic HB.Generation of neurons by transient expression of neural bHLH proteins in mammalian cells[J]. Development, 2000, 127(4):693~702
    35 Dambly-Chaudiere C,Vervoort M.The bHLH genes in neural development [J]. Int J Dev Biol,1998,42(3):269~273
    36 Kageyama R,Ohtsuka T,Tomita K,et al. The bHLH gene Hes1 regulates differentiation of multiple cell types [J].MolCells,2000,29(1):127
    37 Wu Y,Liu Y,Levine EM.Hes1 but not Hes5 regulates an astrocyte versus oligodendrocyte fate choice in glial restricted precursors[J]. DevDyn, 2003, 226(4): 675~689
    38 Nieto M, Schuurmans S, Britz O,et al. Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors[J].Neuron 2001,29: 401~413
    39 Bae S, Bessho Y, Hojo M,et al. The bHLH gene Hes6, an inhibitor of Hes1, promotes neuronal differentiation[J]. Development 2000, 127: 2933~2943
    40 Eriksson PS , Perfilieva E , Bjork-Eriksson T. Neurogenesis in the adult human hippocampus [J]. Nat Med ,1998 ,4 (11) :1313~1317
    41 Dambly-ChaudiereC,Vervoort M.The bHLH genes in neural development [J]. Int J Dev Biol,1998,42(3):269~273
    42 Cepko CL.The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates[J].Curr Opin Neuro biol,1999,9(1):37~46
    43 Nakashima K, Yanagisawa M , Arakawa H , et al. Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300 [J] . Science , 1999 , 284 (5413) : 479~482
    44 Sun Y, Nadal-Vicens M , Misono S , et al. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms [J] . Cell , 2001 , 104 (3) : 365~376
    45 KageyamaR,IshibashiM,TakebayashiK,etal.bHLHtranscription factors and mammalian neuronal differentiation[J].Int J Biochem Cell Biol, 1997, 29(12): 1389~1399
    46 Cau E , Casarosa S , Guillemot F. Mash1 and Ngn1 control distinct steps of determination and differentiation in the olfactory sensory neuron lineage [J] . Development , 2002 , 129 (8) : 1871~1880
    47 Hitoshi S, Seaberg RM, Koscik C, et al.Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling, Genes Dev. 2004, 18: 1806~1811
    48 Wu Y,Liu Y,Levine EM.Hes1 but not Hes5 regulates an astrocyte versus oligodendrocyte fate choice in glial restricted precursors[J]. DevDyn, 2003, 226(4): 675~689
    49 Kageyama R,Ohtsuka T,Tomita K,etal.The bHLH gene Hes1 regulates differentiation of multiple cell types[J].Mol Cells,2000,29(1):127
    50 Ohtsuka T, Sakamoto M, Guillemot F, et al Roles of the basic helix– loop–helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain, J. Biol. Chem. 2001, 276:30467~30474
    51 Ross S.E, Greenberg ME, Stiles CD. Basic helix– loop–helix factors in cortical development, Neuron 2003, 39:13~25
    52 Miyoshi G, Bessho Y, Yamada S,et al. Identification of a novel basic helix– loop–helix gene, Hes like, and its role in GABAergic neurogenesis, J. Neurosci. 2004, 24: 3672~3682
    53 Hatakeyama J, Bessho Y, Katoh K,et al. Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation[J]. Development , 2004, 131: 5539~5550
    54 Zhou Q,Anderson DJ.The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification cell[J]. Neuron, 2002, 109(1):61~73
    55 Mizuguchi R , Sugimori M , Takebayashi H , et al. Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of pan-neuronal and subtype specific properties of motoneurons [J] . Neuron , 2001 , 31(5) : 757~771
    56 Parks A L , Klueg K M , Stout J R , et al . Ligand endocytosis drives receptor dissociation and activation in the Notch pathway.Development , 2000 , 127 (7) : 1373~1385
    57 Jarriault S, Brou C, Logeat F, et al.Signalling downstream of activated mammalian Notch, Nature 1995, 377: 355~358
    58 Sriuranpong V,Borges MW,Strock CL.Notch signaling induces rapid degradation of achaete-scute homobylog1[J].Mol Cell Biol,2002,22(9):3129~3139
    59 Correia T,PapayannopoulosV,PaninV, et al. Molecular genetic analysis of the glycosyltransferase Fringe in Drosophila[J]. Proc Natl Acad Sci USA , 2003 , 100 (11) : 6404~6409
    60 Gupta-RossiN,LeBail O, Gonen H,etal.Functional interaction between SEL-10 , an F-box protein , and the nuclear form of activated Notch1receptor[J]. J Biol Chem , 2001 , 276 (37) : 34371~34378
    61 Lamar E,Deblandre G,Wettstein D,et al. Nrarp is a novel intracellular component of the Notch signaling pathway [J]. Genes Dev, 2001, 15(15): 1885~1899
    62 Lamar E , Deblandre G, Wettstein D , et al . Nrarp is a novel intracellular component of the Notch signaling pathway[J]. GenesDev , 2001 , 15 (15) : 1885~1899
    63 Lai E C , Deblandre G A , Kintner C , et al . Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta[J]. Dev Cell , 2001 , 1 (6) : 783~794
    64 Li Y, Fetchko M , Lai Z C , et al . scabrous and Gp150 are endosomal proteins that regulate Notch activity[J]. Development ,2003 , 130 (13) : 2819~2827
    65 Yamamoto N , Yamamoto S , Inagaki F , et al. Role of Deltex-1 as a transcriptional regulator downstream of the Notch receptor [J] . J Biol Chem , 2001 , 276 (48) : 45031~45040
    66 Cayouette M,Raff M. Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals[J].Nat Neurosci, 2002, 5(12):1265~1269
    67 Wang S,Younger-Shepherd S,Jan LY, et al. Only a subset of the binary cell fate decisions mediated by Numb/Notch signaling in Drosophila sensory organ lineage requires Suppressor of Hairless[J].Development,1997,124(22):4435~4446
    68 McGill M A,McGlade C J. Mammalian numb proteins promote notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain [J]. J Biol Chem,2003,278(25):23196~23203
    69 McGill M A , McGlade C J . Mammalian numb proteins promote otch1 receptor ubiquitination and degradation of the Notch1 ntracellular domain[J]. J Biol Chem , 2003 , 278 ( 25) : 23196 ~23203
    70 Megason S.G, McMahon A.P.A mitogen gradient of dorsal midline Wnts organizes growth in the CNS[J]. Development 2002, 129: 2087~2098
    71 McMahon AP, Bradley A, The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain[J]. Cell 1990, 62:1073~1085
    72 Sestan N , Artavanis-Tsakonas S , Rakic P. Contact-dependent inhibition of cortical neurite growth mediated by Notch signaling[J]. Science ,1999 ,286:741~746
    73 LaiE C. Protein degradation : four E3s for the Notch pathway[J].Curr Biol , 2002 , 12 (2) : 74~78
    74 Itoh M , Kim C H , Palardy G, et al . Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta[J]. Dev Cell , 2003 , 4 (1) : 67~82
    75 Ohtsuka T, Ishibashi M, Gradwohl G,et al. Hes1 and Hes5 as Notch effectors in mammalian neuronal differentiation[J]. EMBO J. 1999, 18:2196~2207
    76 Lo L, Dormand E, Greenwood A, et al.Comparison of the generic neuronal differentiation and neuron subtype specification functions of mammalian achaete–scute and atonal homologs in cultured neural progenitor cells[J]. Development 2002, 129:1553~1567
    77 Tomita K, Moriyoshi K, Nakanishi S,et al. Mammalian achaete– scute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system[J] EMBO J. 2000, 19: 5460~5472
    78 Pourquie O. The segmentation clock: converting embryonic time into spatial pattern [J].Science,2003,301(5631):328~330
    79 Lardelli M , Williams R , Mitsiadis T , et al. Expression of the Notch 3 intracellar domain in mouse central nervous system progenitor cells is lethal and leads to disturbed neural tube development [J] . Mech Dev ,1996 , 59 (2) : 177~190
    80 Gaiano , Fishell G. The role of Notch in promoting glial and neural stem cell fates[J]. Annu. Rev. Neurosci. 2002, 25: 471~490
    81 Weijzen S , Rizzo P , Braid M , et al . Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells[J].Nat Med , 2002 , 8 (9) : 979~986
    82 Hitoshi S , Alexson T , Tropepe V , et al. Notch pathway molecules are essential for the maintenance , but not the generation of mammalian neural stem cells [J] . Gene Dev , 2002 , 16 (7) : 846~858
    83 Ge W, Martinowich K, Wu X, et al. Notch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation[J].J Neurosci Res, 2002, 69(6):848~860
    84 Nam Y, Aster J C , Blacklow S C. Notch signaling as a therapeutic target [J]. Current Opinion in Chemical Biology , 2002 , 6 (4) : 501~509

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700