新型荧光化学传感器的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
各种离子在生物学、医学和环境中具有重要作用。如重金属离子(尤是汞、铅、铬等离子)因其对生命物质及整个水系的生态平衡具有不可逆的破坏(即使痕量存在)而尤为引人关注;另外,随着生物学、医药科学、催化化学以及环境科学的发展,阴离子在这些领域扮演的角色越来越重要,因此对离子进行适时检测就具有重要意义。荧光传感器在灵敏度、选择性和实时原位检测等方面优势突出,实时检测被分析物的水平已引起包括化学家、生物学家、临床生物化学家和环境学家的极大兴趣。
     罗丹明因为其分子具有刚性共平面结构,结构稳定性强,在激发光作用下,于500~700nm处可长生强烈荧光,待测物背景干扰少等优点,其内酰胺类化合物是良好的“OFF-ON”型荧光传感器母体,因此受到国内外科学加的青睐。
     以香豆素类为基础的荧光传感器是今年来一个新兴的研究热点。香豆素类荧光团为苯并吡喃酮结构,其光化学性质稳定,具有较高的量子产率,Stock位移大,光物理和光化学性质可调,并且香豆素具有很好的细胞兼容性,其结构单元可以穿过细胞膜,是荧光传感器分子设计中的优秀候选荧光团。
     本文设计合成了一系列离子受体,通过荧光光谱研究了它们对不同离子选择性识别性能及光化学传感性能。
     1.离子识别和荧光传感
     本章综述了基于罗丹明及香豆素荧光团的离子传感器的研究进展。
     2.基于罗丹明、香豆素荧光传感器的合成及其性能的研究
     本章合成了一系列新型的基于罗丹明、香豆素荧光团的金属离子荧光传感器。经过核磁共振氢谱、碳谱和元素分析等检测方法证实了它的结构。UV-vis及荧光光谱法研究了受体与不同阳离子(Cu2+, Ba2+, Hg2+, Zn2+, Mg2+, Ce3+, Cd2+, Fe3+, Ag+, Co2+, Ni2+, Ca2+)的相互作用性质。结果表明:受体对其中一种或者两种金属离子具有高选择性。
     3.基于1,8-蒽二胺阴离子传感器的合成及其性能的研究
     本章合成了一种新型的含有蒽荧光基团和磺酰胺的阴离子受体3-1,核磁共振氢谱、碳谱、元素分析等检测方法证实了它的结构,运用荧光光谱、核磁滴定研究了该受体与各种阴离子之间的相互作用性质。研究结果表明受体对F-具有很好的选择性识别作用,与F-形成了1:1的络合物。
Various ions are playing an important role in biology, medicine and the environment, such as, heavy metals (in particular mercury, lead, chromium, plasma), because of their irreversible damage to the physical life and the ecological balance of the entire water system (even if the trace exists), was particularly concerned. In addition, with the development of the biological, pharmaceutical science, chemistry and environmental science, anions is playing more and more important roles in these areas, therefore, it has significant meaning to detect the ions timely. Great advantage has been found to the fluorescence sensor in the aspects of sensitiveness, selectivity and real time original place detecting etc., the level of real time detecting has aroused great interest of the chemist, the biologist, clinical biochemist, and the environmentalist.
     Rhodamine is favored by the scientists from home and abroad for its rigid coplanar structure, strong structure stability, when acting on exciting light, before 500 ~ 700 nm places but intense fluorescence of longevity, the disturbance stops waiting for merit after measuring thing background , that it's lactam is similar to a compound is the fine "OFF-ON" type fluorescence sensor mother's body , so favored by domestic and foreign scientific added.
     With coumarin-based fluorescent sensor is this year a new research hotspot. The Coumarin usually is similar to the fluorescence regiment for benzo pyrane ketone structure, whose actinochemistry character stabilize, quantum productivity, Stock displacement of a large , optical physics and the actinochemistry character are adjustable, the incense bean usually has and very good cell compatibility, are that the fluorescence sensor molecule designs that wait for the selections fluorescence regiment excellence in whose structure element can pass through cytomembrane .
     This paper designed and synthesized a series of ion receptors, by their fluorescence spectra of different ion-selective recognition properties and photochemical sensing performance.
     1. Ion recognition and fluorescence sensing
     This chapter summarizes and coumarin fluorophore rhodamine-based ion sensor research.
     2. Based on rhodamine, coumarin fluorescence sensor synthesis and properties of the sensor research
     A series of new chapter based on rhodamine, coumarin fluorophore metal ion fluorescence sensor. After 1H NMR, 13C NMR and elemental analysis confirmed the detection of its structure. UV-vis and fluorescence spectroscopy of the receptor with various cations (Cu2+, Ba2+, Hg2+, Zn2+, Mg2+, Ce3+, Cd2+, Fe3+, Ag+, Co2+, Ni2+, Ca2+) the nature of the interaction. The results showed that: receptors on one or two metal ions with high selectivity.
     3. Based on 1,8-anthraquinone diamine fluorescence sensor synthesis and properties of the sensor research
     This chapter contains a synthesis of a novel anthracene fluorophore and sulfonamide anion receptors 3-1, inspection methods such as 1H NMR, 13C NMR, elemental analysis prove its structure, the use of fluorescence spectroscopy, 1H NMR titration of the receptor and the nature of the interaction of various anions. The results show that the receptor have has good selective recognition function to F-, and form 1:1 complexes with F-.
引文
[1] Renzoni A, Zino F, Franchi E. Mercury levels along the food chain and risk for exposed populations [J]. Environmental Research. 1998, 77(2):68-72.
    [2] Boening D. W. Ecological effects, transport, and fate of mercury: a general review [J]. Chemosphere. 2000, 40 (12): 1335-1351.
    [3] Richardson S. D., Temes T. A., Water Analysis: Emerging Contaminants and Current Issues[J]. Analytical Chemistry. 2005, 77 (12): 3807-3838.
    [4] Berg J. M. Zinc Finger Domains: From Predictions to Design. Acc. Chem. Res. 1995, 28(1): 14~19.
    [5] Holloway J. M., Dahlgren R. A., Hansen B., Casey W. H. Contribution of bedrock nitrogen to high nitrate concentrations in stream water. Nature. 1998, 395: 785~788.
    [6] J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives; A Personal Account, VCH, Weinhein, 1995.
    [7] Comprehensive Supramolecular Chemistry. New York, 1996, Vol. 1-10.
    [8] Czarnik A W (Ed.). Fluorescent chemosensor for ion and molecule recognition. Washington, D.C. : ACS Symposium Series. 1993, 538.
    [9] Wolf beis O S . Fiber optical f luorosensors in analytical and clinical chemistry, in : Molecular luminescence spectroscopy. methods and applications : Part 2 (Schulman S G, ed.). New York : John Wiley & Sons. 1998, 129-281.
    [10] Wolfbeis O S (Ed.). Fiber optic chemical sensor and biosensors. Florida: CRC Press, Boca Raton. 1991, Vols. 1 and 2
    [11] D. J. Cram. The design of molecular host, guest and their complex. Angew. Chem. Int. Ed. Engl. 1988, 27(8): 1009~1020.
    [12]陈强,谭民裕,刘伟生,超分子化学中分子间弱作用力的研究方法.化学通报, 2001, 4, 236-239.
    [13]夏琳,邱桂学,化学科学的研究新领域——超分子化学.化学推进剂与高分子材料, 2007, 5 (1): 33-37.
    [14] Hanghland R. P. Handbook of fluorescent probes and research chemicals, 60th ed. molecular probes: Eugene.1996.
    [15] Schulman S G. Fluorescence and phosphorescence spectroscopy, physicochemical principles and practice. NewYork: oxford. 1997.
    [16]武汉大学化学系.仪器分析高等教育出版社
    [17]童林荟,申宝剑.超分子化学研究中的物理方法科学教育出版社
    [18] De Silva A P, David B F, Allen J M H et a1. Combining luminescence coordination andelectron transfer for signalling purposes[J]. Coordination Chemistry Reviews. 2000, 205: 41-57.
    [19] Fan J L, Wu Y K, Peng X J. A naphthalimide fluorescent sensor for Zn2+based on photoinduced electron transfer [J]. Chemi stry Letters. 2004, 33(10): 1392-1393.
    [20] Gunnlaugsson T, All H D P, Glynn M, et a1. Fluorescent photoinduced electron transfer (PET)sensors for anions: From design to potential appl ication[J]. Journal of Fluorescence. 2005, 15(3): 287-299.
    [21] Thiagarajan V, Ramamurthy P, Thirumalai D et a1. A novel colorimetric and fluorescent chemosensor for anions involving PET and ICT pathways [J]. Org. Lett. 2005, 7(4): 657-660.
    [22] Trautwein, A. X. Wiley-VCH, Weinheim, Bioorganic chemistry. 1997.
    [23] Speiser, S. Photophysics and mechanisms of intramolecular electron energy transfer in bichromophoric molecular systems:solution and supersonic jet studies. Chem. Rev. 1996, 96: 1953-1976.
    [24] De Silva, A. P., Gunatatne. H. Q. N., Gunnlauggson, T. et a1., Signaling Recognition events with fluorescent sensors and switches. Chem. Rev. l997, 97(5): l5l5-l566.
    [25] Grabowski Z R, Rotki ewiez K, Rettig W. Structural changes accompanying intramolecular electron transfer:focus on twisted intramolecular charge-transfer states and structures. Chem. Rev. 2003, 103: 3899-4031.
    [26] Valeur B. Molecular fluorescence principles and applications, edition. Wiley-VCH, 2001.
    [27] Martinez-Manez R, Sancenon F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chemical Reviews. 2003, 103(11): 4419-4476. [ 28 ] Lochbrunner S , Wurzer A J , Riedle E. Microscopic mechanism of ultrasfast excited-state intramolecular proton transfer : a 30-fs study of 2-(2'-hydroxyphenyl)benzothiazole. J . Phys. Chem. A. 2003, 107: 10580-10590. [ 29 ] Vivie Riedle R de , Waele V D , Kurtz L, Riedle E. Ultrasfast excited-state proton transfer of 2-(2'-hydroxyphenyl)benzothiazole : theoretical analysis of the skeletal deformations and the active vibrational modes. J. Phys. Chem. A. 2003, 107: 10591-10599. [ 30 ] Chang S M , Hsueh K L , Huang B K, Wu J. H., Liao C. C., Lin K. C. Solvent effect of excited state intermolecular proton transfer in 2-(2'-hydroxyphenyl)benzothiazole upon luminescent properties. Surface & Coatings Technology. 2006, 200: 32783-282.
    [31] Martinez-Mafiez R., Sanenon F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 2003, l03: 4419~4476.
    [32] Jianbing wang, Xuhong Qian, A series of polyamide receptor based PET fluorescent sensor molecules: positively cooperative Hg2+ ion binding with high sensitivity. Org.Lett. 2006, 8 (17): 3721-3724.
    [33] Sook Kyung Kim, N. Jiten Singh, Soo Jeong Kim, K. M. K. Swamy, Seung Hee Kim, Keun-Hyeung Lee, Kwang S. Kim, Juyoung Yoon, Anthrance derivatives bearing two urea groups as fluorescent receptors for anions S. K. Kim et al. Tetrahedron. 2005, 61: 4545 -4550.
    [34] Hideo Takakusa, Kazuya Kikuchi, Yasuteru Urano, Hirotatsu Kojima, Tetsuo Nagano, A novel design method of ratiometric fluorescent probes based on fluorescence resonance energy transfer switching by spectral overlap integral. Chem. Eur. J. 2003, 9, 1479-1485
    [35] Hiroyuki U, Makoto T, Shigeori T. A novel potassium sensing in aqueous media with a synthetic oligonecleotide derivative. Fluorescence resonance energy transfer associated with guanine quartet-potassium ion complex formation. J. Am.Chem.Soc. 2002, 124 (48): 14286 -14287.
    [36] Jin T. A new Na+ sensor based on intramolecular fluorescence energy transfer derived from calix [4] arene. Chem. Commun. 1999, 24(1) :2491-2492.
    [37] Amel B O, Jeong W L, Wu J S, Kim J S, Abidi R, Thuéry P, Srtrub J M, Dorsselaer A V, Vicens J. Calix[4]arene, based, Hg2+-induced intramolecular fluorescence resonance energy transfer chemosensor. J. Org. Chem. 2007, 72(20): 7634-7640.
    [38]Young-Keun Yang, Keun-Jeong Yook, Jinsung Tea. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J. Am. Chem. Soc. 2005, 27: 16760-16761.
    [39] Hong Zheng, Zhen-Hua, Lei Xu , Fang-Fang Yuan, Li-Dan Lan, Jin-Guo Xu.Switching the recogni t ion preference of rhodamineB spirolactam by replacing one atom:design of rhodamine B thiohydrazide for recognition of Hg(II) in aqueous solution. Org. lett. 2006, 8 (5): 859-861.
    [40] Wu D, Huang W, Duan C, et a1.Highly sensitive fluorescent probe for selective detection of Hg2+ in DMF aqueous media. Inorg. Chem. 2007, 46 (5):1538-1540.
    [41] Min Hee Lee, Jia-Sheng Wu, Jeong Won Lee, Jong Hwa Jung, Jong Seung kim. Highly sensitive and selective chemosensor for Hg2+ based on the rhodamine fluorophore. Org. Lett. 2007, 9: 2501-2504.
    [42] Hong Yang, Zhiguo Zhou, Kewei Huang, Mengxiao Yu, Fuyou Li, Tao Yi, Chunhui Huang. Multisignaling optical-electrochemical sensor for Hg based on rhodamine derivative with a ferrocene unit. Org. Lett. 2007, 9: 4729-4732.
    [43]Jung Hyun Soh, K. M. K. Swamy, Sook Kyung Kim, Suki Kim, Sang-Hyeup Lee, Juyoung Yoon. Rhodamine urea derivatives as fluorescent chemosensors for Hg2+. Tetra. Lett. 2007, 48: 5966-5969.
    [44] Jia-Sheng Wu, In-Chul Hwang, Kwang S. Kim, Jong Seung Kim. Rhodamine-basedHg2+-selective chemodosimeter in aqueous solution fluorescent OFF-ON. Org. Lett. 2007, 9, 907-910.
    [45]Myung Gil Choi, De Hun Ryu, Hye Lim Jeon, Sunyoung Cha, Janggeun Cho, Hyun Hye Joo, Kwan Soo Hong, Chulhyun Lee, Sangdoo Ahn, Suk-Kyu Chang, Chemodosimetric Hg2+-selective signaling by mercuration of dichlorofluorescein derivatives. Org. Lett. 2008, 10: 3717-3720.
    [46] Dayu Wu, Wei Huang, Zhihua Lin, Chunying Duan, Cheng He, Shuo Wu, Dehui Wang. Inorg. Chem. 2008, 47(16), 7190-7201.
    [47]Mingjian Yuan, Weidong Zhou, Xiaofeng Liu, Mei Zhu, Junbo Li, Xiaodong Yin, Haiyan Zheng, Zicheng Zuo, Canbin Ouyang, Huibiao Liu, Yuliang Li, Daoben Zhu. A multianalyte chemosensor on a single molecule: promising structure for an integrated logic gate. J. Org. Chem. 2008, 73 (13): 5008–5014.
    [48]Yasuhiro Shiraishi, Shigehiro Sumiya, Yoshiko Kohno Takayuki Hirai. A rhodamine cyclen conjugate as a highly sensitive and selective fluorescent chemosensor for Hg(II). J. Org. Chem. 2008, 73 (21): 8571–8574.
    [49]Wei Huang, Chunxia Song, Cheng He, Guojun Lv, Xiaoyue Hu, Xiang Zhu, Chunying Duan. Recognition perference of rhodamine-thiospirolactams for mercury(II) in aqueous solution. Inorg. Chem. 2009, 48 (12): 5061-5072.
    [50] Wei huang, Peng Zhou, Wenbo Yan, Cheng He, J.-G. Xu. Rhodamine thiospirolactone. Highly selective and sensitive reversible sensing of Hg (ii) electronic supplementary information (ESI) available:1H, 13NMR and ESI-MS spectra of 1, absorption and fluorescence responses and fluorescence responses of 1 at different pH, job plots of the complexation. Chem. Commun., 2008, (16):1859-1861.
    [51]Virginie Dujols, Francis Ford, Anthony W. Czarnik. A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. J. Am. Chem. Soc. 1997, 119: 7386-7387.
    [52] Yu Xiang, Aijun Tong, Peiyuan Jin, Yong Ju, New fluorescent rhodamine hydrazone chemosensor for Cu(II)with high selectivity and sensitivity. Org. Lett. 2006, 8: 2863-2866.
    [53]Xuan Zhang, Yasuhiro Shirashi, Takayuki Hirai. Cu(II)-selective green fluorescence of a rhodamine-diacetic acid conjugate. Org. Lett. 2007, 9: 5039-5042.
    [54] Yu Xiang, Zifan Li, Xiaotong Chen, Aijun Tong. Highly sensitive and selective optical chemosensor for determination of Cu2+ in aqueous solution. Talanta . 2008, 74: 1148-1153.
    [55] Xiaoqiang Chen, Min Jung Jou, Hanyoung Lee, Songzi Kou, Jeesun Lim, Seong-Won Nam, Sungsu Park, Kwan-Mook Kim, Juyoung Yoon. New fluorescent and colorimetric chemosensors bearing rhodamine and binaphthyl groups for the detection of Cu2+. Sensors and Actuators B. 2009, 137: 597-602.
    [56] Fang-Jun Huo, Jing Su, Yuan-Qiang Sun, Cai-Xia Yin, Hong-Bo Tong, Zong-Xiu Nie. A rhodamine-based dual chemoosensor for the visual detection of copper and the ratiometric fluorescent detection of vanadium. Dyes and Pigments. 2010, 86: 50-55.
    [57] Yu Xiang, Aijun Tong, A new rhodamine-based chemosensor exhibiting selective FeIII-amplified fluorescence. Org. Lett. 2006, 8: 1549-1552.
    [58] Meng Zhang, Yanhong Gao, Manyu Li, Mengxiao Yu, Fuyou Li, Lei Li, Minwei Zhu, Jianping Zhang, Tao Yi, Chunhui Huang. A selective turn-on fluorescent sensor for FeIII and application to bioimaging. Tetra. Lett. 2007, 48: 3709-3712.
    [59] S. Bae, J. Tae. Rhodamine-hydroxyamate-based fluorescent chemosensor for FeIII. Tetra. Lett. 2007, 48: 5389-5392.
    [60] Jie Mao, Lina Wang, Wei Dou, Xiaoliang Tang, Yong Yan and Weisheng Liu. Tuning the selectivity of two chemosensors to Fe (III) and Cr (II). Org. Lett. 2007, 9 (22): 4567-4570.
    [61] Lizhu Zhang, Jiangli Fan, Xiaojun Peng, X-ray crystallographic and photophysical properties of rhodamine-based chemosenore for Fe3+. Spectrochimica Acta Part A. 2009, 73: 398-402.
    [62] Lei Dong, Chong Wu, Xi Zeng, Lan Mu, Sai-Feng Xue, Zhu Tao, Jian-Xin Zhang. The synthesis of a rhodamine B schiff-base chemosensor and recognition properties for Fe3+ in neutral aqueous solution. Sensors and Actuators B. 2010, 145: 433-437.
    [63] Bo Tang, Yanlong Xing, Ping Li, Ning Zhang, Fabiao Yu, Guiwei Yang. A rhodamine-based fluorescent probe containing a Se-N bond for detecting thiols and its application in living cells. J. Am. Chem. Soc. 2007, 129: 11666-11667.
    [64] Bo Tang, Lingling Yin, Xu Wang, Zhenzhen Chen, Lili Tong, Kehua Xu. A fast-response, highly sensitive and specific organoselenium fluorescent probe for thiols and its application in bioimaging. Chem.Commum. 2009, 5293-5295.
    [65]Young-Keun Yang, Hyungseoph Jason Cho, Jihyun Lee, Injae Shin, Jinsung Tea. A rhodamine-hydroxamic acid-based fluorescent probe for hypochlorous acid and its applications to biological imagings. Org. Lett. 2009, 11: 859-861.
    [66] Honglin Li, Jiangli Fan, Jianjun Du, Kexin Guo, Shiguo Sun, Xiaojian Liu, Xiaojun Peng. A fluorescent and colorimetric probe specific for palladium detection. Chem.Commun. 2010, 46:1079-1081.
    [67] Min JungJou, Xiaoqiang Chen, K. M. K. Swamy, Ha Na Kim, Hae-Jp Kim, Sang-gi Lee, Juyoung Toon. Highly selective fluorescent probe for Au3+ based on cyclization of propargylamide. Chem.Commun. 2009, 7218-7220.
    [68]Jian Zhu, Jian-Jun Li, Jun-Wu Zhao. Spectral characters of rhodamine B as a multi-information fluorescence probe for bovine serum slbumins. Sensors and Actuators B. 2009, 138: 9-13.
    [69] Nathaniel C. Lim, Lili Yao, Hedley C. Freake, Christian Brückner, Synthesis of a fluorescent chemosensor suitable for the imaging of zinc(II) in live cells. Bioorganic&Medicinal Chemistry Letters. 2003, 13: 2251-2254.
    [70] Chandrika P. Kulatilleke, Saliya A. De Silva, Yair Eliav. A coumarin based fluorescent photoinduced electron transfer cation sensor. Polyhedron. 2006, 25:2593-2596.
    [71] Jia-Sheng Wu, Wei-Min Liu, Xiao-Qing Zhuang, Fang Wang, Peng-Fei Wang,S-Lu Tao, Xiao-Hong Zhang, Shi-Kang Wu, Shuit-Tong Lee. Derivatives by metal cations: a new signaling mechanism based on C=N isomerization. Org.Lett. 2007, 9: 33-36.
    [72]Yun Jung Jang, Byung-Sik Moon, Min Sun Park, Bong-Gu Kang, Ji Young Kwon, Jay Sung Joong Hong, Yeo Joon Yoon, Kap Duk Lee, Juyoung Yoon. New cavitand derivatives bearing four coumarin groups as fluorescent chemosensors for Cu2+ and recognition of dicarboxylates utilizing Cu2+ complex. Tetra. Lett. 2006, 47: 2707-2710.
    [73] Ruilong Sheng, Pengfei Wang, Yunhua Gao, Yan Wu, Weimin Liu, Jingjin Ma, Huaping Li, Shikang Wu. Colorimetric test kit for Cu2+ detection. Org. Lett. 2008, 10: 5015-5018.
    [74] Hyo Sung Jung, Pil Seung Kwon, Jeong Won Lee, Jae Kim, Cheng Seop Hong, Jong Wan Kim, Shihai Yan, Jin Yong Lee, Jung Hwa Lee, Taiha Joo, Jong Seung Kim. Coumarin-Derived Cu2+-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J. Am. Chem. Soc. 2009, 131: 2008-2012.
    [75] Vadapalli Chandrasekhar, Prasenjit Bag, Mrituanjay D. Pandey. Phosphorus-supported multidentate coumarine-containing fluorescence sensors for Cu2+. Tetrahedron. 2009, 65: 9876-9883.
    [76] Debdas Ray, P. K. Bharadwaj. A coumarin-derived fluorescence probe selective for magnesium. Inorg. Chem. 2008, 47: 2252-2254.
    [77] Junna Yao, Wei Dou, Wenwu Qin, Weisheng Liu. A new coumarin-based chemosensor for Fe3+ in water. Chem. Commun. 2009, 12: 116-118.
    [78] Ruilong Sheng, Pengfei Wang, Weimin Liu, Xiaohua Wu, Shikang Wu. A new colorimetric chemosensor for Hg2+ based on coumarin azine derivative. Sensors and Actuators B. 2008, 128: 507-511.
    [79] Chaos-Tsen Chen, Wan-Pei Huang. A highly selective fluorescent chemosensor for lead ions. J. Am. Chem. Soc. 2002, 124: 6246-6247.
    [80] Klein. G., Kaufmann. D., Schiirch. S., A fluorescent metal sensor based on macrocyclic chelation. Chem.Commun. 2001, 561-562.
    [81] Berg J. M., Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc [J]. Science 1998, 282 (5396):2018-2022.
    [82] Chin H. Chen, John L. Fox, Joseph L. Lippert. Synthesis of phosphacoumarins andphosphonocoumarins. J. Heterocyclic Chem. 1987, 24: 931-932.
    [83] Zeng Xi, Wu Chong, Dong Lei, Mu Lan, Xue Saifeng, Tao Zhu. A new tripodal rhodamineB derivative as a highly selective and sensitive fluorescence chemosensor for copper (II). Sci. China Ser B-Chem. 2009, 52 (4) 523-528.
    [84] K. L. Kirk. Biochemistry of the Halogens and Inorganic Halides; Plenum Press: New York, 1991.
    [85] B. L. Riggs. Treatment of osteoporosis with sodium fluoride: an appraisal. Bone Miner Res. 1984, 366-393.
    [86] P. A. Gale. Structural and molecular recognition studies with acyclic anion receptors. Acc.Chem. Res. 2006, 39: 465-475.
    [87] J. L. Sessler, P. A. Gale, W-. S. Cho. Anion receptor chemistry. Royal Society of the Chemistry, U.K. 2006.
    [88] P. A. Gale, S. E. Garcia-Garrido, J. Garric. Anion receptors based on organic frameworks: highlights from 2005-2006. J. Chem. Soc. Rev. 2008, 37: 151-190.
    [89] S. Matuso, K.-I. Kiyomiya, M. Kurebe. Mass intoxication from accidental overfluoridation of drinking water. Arch. Toxicol. 1998, 72: 798-806.
    [90] C.-I. Lin, S. Selvi, J.-M. Fang, P.-T. Chou, C.-H. Lai, Y.-M. Cheng. Pyreno[2,1-b]pyrrole and bis(pyreno[2,1-b]pyrrole) as selective chemosensors of fluoride ion: a mechanistic study. J. Org. Chem. 2007, 72: 3537-3542.
    [91] Y. K. Wu, X. J. Peng, J. L. Fan, S. Gao, M. Z. Tian, J. Z. Zhao, S. G. Sun. Fluorescence sensing of anions based on inbibition of excied-state intramolecular proton transfer. J. Org. Chem. 2007, 72: 62-70.
    [92] E. B. Veale, T. Gunnlaugsson. Bidirectional photoinduced electron-transfer quenching is observed in 4-amino-1,8-naphthalimide-based fluorescent anion sensors. J. Org. Chem. 2008, 73: 8073-8076.
    [93] A. Dahan, T. Ashkkenazi, V. Kuznetsov, S. Makievski, E. drug, L. Fadeev, M. Bramson, S. Schokoroy, E. Rozenshine-Kemelmakher, M. Gozin. Synthesis and evaluation of a pseudocyclic tristhiourea-based anion host. J. Org. Chem. 2007, 72: 2289-2296.
    [94] S. Kumar, W. Luxami, A. Kumar. Chromofluorescent probes for selective detection of fluoride and acetate ions. Org. Lett. 2008, 10: 5549-5542.
    [95] S. H. Lee, H. J. Kim, Y. O. Lee. J. Vicens, J. S. Kim. Fluoride sensing with a PCT based calyx [4] arene. Tetra. Lett. 2006, 47: 4373-4376.
    [96] D. Saravanakumar, N. Sengottuvelan, M. Kandaswamy, P. G. Aravindan, D. Velmurugan. Amide-nitrophenyl based colorimetric receptors for selective sensing of fluoride ions. Tetra. Lett. 2005, 46: 7255-7258.
    [97] C. F. Chen, Q. Y. Chen. A tetra-sulfonamide derivative bearing two dansyl groups designed as a new fluoride selective fluorescent chemosensor. Tetra. Lett. 2004, 45: 3957-3960.
    [98] K. Ghosh, S. Adhikari. Colorimetric and fluorescence sensing of anions using thiourea based coumarin receptors. Tetra. Lett. 2006, 47: 8165-8169.
    [99] Y. M. Hijji, B. Barare, A. P. Kennedy, R. Butcher. Synthesis and photophysical characterization of a schiff base as anion sensor. Sensors and Actuators B. 2009, 136: 297-302.
    [100] Y. G. Zhao, B. G. Zhang, C. Y. Duan, Z H. Lin, Q. J. Meng. A highly selective fluorescent sensor for fluoride through ESPT signaling transduction. New. J. Chem. 2006, 30:1207-1213.
    [101] G. X. Xu, M. A. Tarr. A novel fluoride sensor based on fluorescence enhancement. Chem. Commun. 2004, 1050-1051.
    [102] S. K. Kim, J. H. Bok, R. A. Bartsch, J. Y. Lee, J. S. Kim. A fluoride-selective PCT Chemosensor based on formation of a static pyrene excimer. Org. Lett. 2005, 7: 4839-4842.
    [103]Per Restorp, Orion B. Berryman, Aaron C. Sather, Dariush Ajami, Julius Rebek, Jr. A synthetic recepror for hydrongen-bonding to fluorines of trifluoroborates. Chem. Commun. 2009, 5692-5694
    [104] Rose M. F. Batista, Elisabete Oliveira. Synthesis and Ion Sensing Properties of New colorimetric and fluorimetric chemosensors based on bithienyl-imidazo- anthraquinone chromophores. Org. Lett. 2007, 3201-3204
    [105]Sung Ok Kang, Victor W. Day, Kristin Bowman-James. Fluoride: solution- and solid-state structural binding probe. J. Org. Chem. 2010, 75: 277-283.
    [106] S. Y. Kim, J. Hong. Chromogenic and fluorescent chemodosimeter for detection of fluoride in aqueous solution. Org. Lett. 2007, 9; 3109-3112.
    [107] J. S. Wu, J. H. Zhou, P. F. Wang, X. H. Zhang, S. K. Wu. New fluorescent chemosensor based on exciplex signaling mechanism. Org. Lett. 2005, 7: 2133-2136.
    [108] Ivan V. Korendovych, Mimi Cho, Olga V. Makhlynets, Phillip L. Butler, Richard J. Staples, Elena V. Rybak-Akimova. Anion and carboxylic acide binding to monotopic and ditopic amidopyridine macrocycles. J. Org. Chem. 2008, 73: 4771-4782.
    [109] H. Y. Lu, D. Q. Zhang, C. F. Chen, D. B. Zhu. A novel multisignaling optical-electrochemical chemosensor for anions based on tetrathiafulvalene. Org. Lett. 2005, 7: 4629-4632.
    [110] Jian jiang, Mark J. MacLachlan. Cationic guest inclusion in widemouthed schiff base macrocycles. Chem. Commun. 2009, 5695-5697.
    [111] S. J. M. Koskela, T. M. Fyles, T. D. James, A ditopic fluorescent sensor for potassium fluoride. Chem. Commun. 2005, 945-947.
    [112] F. M. Pfeffer, M. Seter, N. Lewcenko, N. W. Barnett. Fluorescenet anion sensors based on 4-amino-1,8-naphthalimide that employ the 4-amino N-H. Tetra. Lett. 2006, 47: 5241-5245.
    [113] J. Y. Lee, E. J. Cho, S. Mukamel, K. C. Nam. Efficient fluoride-selective fluorescent host: experiment and theory. J. Org. Chem. 2004, 69:943-950.
    [114] J. Y. Kwon, Y. J. Jang, S. K. Kim, K. H. Lee, J. S. kim, J. Yoon. Unique hydrogen bonds between 9-anthracenyl hydrogen and anions. J. Org. Chem. 2004, 69: 5155-5157.
    [115] H. A. Benesi, J. H. Hildebrand. A spectrometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 1949, 71: 2703-2707.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700