高压变电站无线自动测温控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着供电负荷的迅速增加以及供电设备的老化,变电站由于输变线路接头温度过高引起的火灾、爆炸现象时有发生,严重影响到用电安全,给供电、用电双方带来巨大的经济损失,因此对变电站灾害的实时监测、预警成为电力系统研究的热点和难点。传统的变电站接头温度检测方法是人工手持红外温度探测枪进行逐点测温,这种模式常出现漏测、误报现象,而且高电压、强辐射环境给工作人员带来身体伤害。分布式光纤温度测量系统也是处理变电站异常的方案,但存在布线困难、工程复杂、投资大等问题。而变电站无线自动测温系统的开发,充分利用了无线资源,做到了防剪、防破坏,且安装维护简单。
     本文取得了以下成果:
     (1)首次采用双电源管理和单片机工作模式切换实现无线测温节点的超低功耗。
     本文运用智能温度传感器DS18B20、超低功耗单片机MSP430以及智能数传模块CC1020,开发了低功耗、高性能的无线测温节点。考虑到单片机、温度传感器和外围电路工作电流较小,采用MAX1726供电;考虑到CC1020数传模块在数据发送和接收时电流较大,采用MAX8881供电;同时,通过单片机的一个口线接芯片的控制引脚,完全断开不需要其工作的部件电流,实现节点的动态能量管理,进一步降低节点的功耗。
     (2)首次采用点对多点轮询模式实现变电站的无线测温。
     控制室主机采用轮询的方式进行节点测温监控,即把点对多点一主多从方式转换成点到点时分多址无线通信方式(TDMA)。主机按照预定的时间片对每个节点进行询问,然后等待接收被问节点的应答数据并存入数据库。处理完成后继续广播下一个节点编号,如此以至所有节点。测温节点根据设定周期启动测温,如果温度超过设定阈值,则打开收发模块,等待主机的轮询信号以便发送温度数据。之后该节点关闭CPU进入低功耗状态。
     (3)首次分析了无线测温系统在高压变电站中的电磁兼容性。
     一方面研究高压设备对无线测温装置进行无线通讯的影响,进而研究提高无线测温装置的抗干扰能力的方法,如滤波或安装屏蔽装置;另一方面研究无线测温装置的无线通讯对高压变电站内综合自动化管理系统的干扰,将无线通讯的干扰控制在设备承载能力范围内。
Due mainly to electrical overload and equipment aging problems, fire and explosion occur at transmission circuitry joints in high-voltage transformer substations by high temperatures accumulated at these spots. This is frequently accompanied by huge financial loss to power suppliers and customers. Hence real-time temperature detecting and prewarning in substations becomes hot and difficult object in electrical system. At present, the traditional methods to monitor the temperatures in transformer substations is that staff members hold infrared temperature rifles to examine the temperature point by point. This kind of work pattern has a lot of drawbacks, such as missing and misdeclaration. What’s more, the high-voltage and intense radiation will damage the body of the workmen. Distributed optical cable temperature detecting system is another method to monitor the abnormal situation of the substations. However, the existing problems can’t be ignored either. For example, the wiring is complicated, the circuit aging problem is serious, the circuit dismantle is difficult and it is expensive. While wireless thermometric working way is possible to prevent from cut, destroy. It needs not wiring and the project is simple, easy to management and maintain.
     The main research contents of this thesis are listed here:
     1) For the first time, double power management technique and work pattern switching of chips are applied to realize ultra-low power consumption of the wireless temperature detecting spots.
     In this paper, intelligent temperature sensor DS18B20, ultra-low power consumption chip MSP430 and intelligent digital transforming module CC1020 are applied to exploit low power consumption, quality performance wireless temperature detecting spots. In view of the working circuit of the chip, sensor and peripheral units are small, they are current supplied by MAX1726; in view of the data sending and receiving circuits of CC1020 are large, it is supplied by MAX8881. At the same time, the dead zone units of the spots are power cut through binding a port the the chip with the control pins of the slugs to reduce the power consumption of the spots.
     2) For the first time, point to multi-point polling mode is applied to realize wireless temperature detecting in substations.
     The host computer in control room utilizes polling mode to monitor the temperatures of the spots, i.e. turning point to multi-point mode into time-division multiple address (TDMA) wireless communication mode. The host enquires each spot according to predefined time slice, then it wait to receive data from the enquired spot and memorize them to data base. When this work finishes, another spot serial number is broadcasted, and so on. The spot initiates to detect temperature according to predefined periodic time. If the temperature measured is higher than the stated threshold, the spot opens receiving module to wait for the enquiring message from host so as to send temperature data. Subsequently, this spot closes CPU into low power consumption state. As for the spots which temperatures approach the stated threshold, the time interval of detecting temperatures is shortened so as to find accidents in time.
     (3)For the first time, the electromagnetic compatibility(EMC) of wireless thermoscope in high-voltage is studied.
     On the one hand, the influences of wireless thermoscope to high-voltage equipments are studied to enhance the anti-jamming ability of wireless thermoscope such as installing filter or shield equipment. On the other hand, disturbs of wireless temperaturing detecting system to integrate automatic manage system in substations are studied so as to dominate the disturbs of wireless communication into the range of electric equipments.
引文
[1]查新报告
    [2]程玉兰,红外诊断现场实用技术,北京:机械工业出版社,2002
    [3]赵振兵等,机遇黑白CCD传感器的近红外热像在线监测方法,电力系统自动化,2005,29(8):83-86
    [4]赵振兵等,红外测温在变电站远程图像监控系统中的实现,电力系统通信,2005,26(150):27-32
    [5]杨国平,支元彦,戴银禄,分布式光纤测温系统在变电站温度监控中的应用,电气开关,2006,5:39-41
    [6]艾谦,光纤光栅在电力系统测温中的应用研究,硕士学位论文,武汉理工大学,2006
    [7] K.Bohnert et al. Optical fiber sensors for the electric power industry, Optics and Lasers in Engineering, 2005, 43:511-526
    [8] Jiangdong Deng et al. Optical fiber sensor-based detection of partial discharges in power transformers, Optics& Laser Technology, 2001, 33:305-311
    [9] Pottie G J, Kaiser W J. Embedding the Internet: Wireless integrated network sensors. Communications of the ACM, 2000,43(5):51-58
    [10] Sinha A, Chandrakasan A. Dynamic power management in wireless sensor network. IEEE Design and Test of Computer, 2001, 18(2):62-74
    [11] Im C, Kim H, Ha S. Dynamic voltage scheduling technique for low-power multimedia application using buffers. Proc 2001 Int’l Symp on Low Power Electronics and Design. California, CA: ACM Portal Press,2001
    [12] Akyildiz I F, Su W, Sankarasubramaniam Y, Cayirci E. A survey on sensor networks. IEEE Communications Magazine, 2002, 40(8):102-114
    [13] Hae-Moon Seo et al. A low power fully CMOS integrated RF transceiver IC for wireless sensor networks, IEEE Transactions on very large scale intergration(VLSI) system,2007,15(2):227-231
    [14] Taeksang Song, Hyoung-Seok Oh, Songcheol Hong, Euisik Yoon, A 2.4GHz Sub-mW CMOS Receiver Front-End for Wireless Sensors Network, IEEE Microwave and Wireless Components Letters, 2006,16(4):206-208
    [15]张大踪,杨涛,魏东梅,一种低功耗无线传感器网络节点的设计,仪表技术与传感器,2006,10:54-57
    [16]段静迪,田丰,孙恩岩,一种基于CC1010芯片的无线传感器网络节点设计,沈阳航空工业学院学报,2006,23(4):71-73
    [17] V.C. Gungor, F.C.Lambert, A survey on communication networks for electric system automation, Computer Networks, 2006,50:877-897
    [18]孙利民,无线传感器网络,北京,清华大学出版社:2005
    [19] Joongseok Park, Sartaj Sahni, An Online Heuristic for Maximum Lifetime Routing in Wireless Sensor Networks. IEEE Transactions on Computers,2006,55(8):1048-1056
    [20] Thomas Hou et al. Maximizing the Lifetime of Wireless Sensor Networks through Optimal Single-Session Flow Routing, IEEE Transactions on Mobile Computing, 2006,5(9):1255-1266
    [21] Yang Yu et al. Energy Minimization for Real-Time Data Gathering in Wireless Sensor Networks. IEEE Transactions on Wireless Communications, 2006,5(11):3087-3096
    [22] Xiaolei Shi, Guido Stromberg, SyncWUF: An Ultra Low-Power MAC Protocol for Wireless Sensor Networks, IEEE Transactions on Mobile Computing, 2007,6(1):115-125
    [23]张大踪,杨涛,魏东梅,无线传感器网络低功耗设计综述,传感器与微系统,2006,25(5):10-14
    [24] Ribarich T J, Ribarich J J. A new procedure for high-frequency electronic ballast design. IEEE transactions on Industry Applications. 2001,37(1):262-267
    [25] Kazimierczukmk, Szarzniecw. Electronic ballast for fluorescent lamps. IEEE transactions on Power Electronics. 1993,8(4):386-395
    [26]赵梦恋,吴晓波,严晓浪,一种智能化电源管理集成电路的研究,浙江大学学报(工学版),2005,39(7):921-925
    [27]何乐年,王云峰,严晓浪,系统芯片电源管理模块的设计,电路与系统学报,2003,8(3):19-22
    [28]洪毅峰,鲍鹏飞,徐向东,采用轮询存储法实现点对多点的无线数据传输,光学仪器,2005,27(1):32-36
    [29]邓永德,点对多点的无线测控系统,河北工业大学硕士论文,2006
    [30]聂光义,点对多点的多人物无线通信,单片机与嵌入式系统应用,2003,03:24-26
    [31]文武,贾俊,阮江军,电力系统电磁兼容问题综述,长少电力学院学报(自然科学版),2003,18(3):42-46
    [32]孙少伟,戴义保,章高琴,基于DS18B20组网测温的研究,自动化仪表,2006,10:42-45
    [33]李钢,赵彦峰,1-Wire总线数字温度传感器DS18B20原理及应用,现代电子技术,2005,21:77-79
    [34]郭晓玉等,MSP430低功耗运行模式原理及应用,单片机与嵌入式系统应用,2005,12:63-65
    [35]沈建华,杨艳琴,翟骁曙,MSP430系列16位超低功耗单片机实践与系统设计,北京,清华大学出版社,2005
    [36]魏小龙,MSP430系列单片机接口技术及系统设计实例,北京,北京航空航天大学出版社,2002
    [37]文俊峰等,基于CC1020的无线通信模块设计,电子设计应用,2007,01:117-119
    [38] www.rfgz.com
    [39] www.maxim-ic.com.cn
    [40]蒋安平,循环冗余校验码(CRC)的硬件并行实现,微电子学与计算机,2007,24(2):107-109
    [41]王建华等,MFC Visual C++ 6编程技术内幕,北京,机械工业出版社,1999
    [42]赵国瑞等,计算机软件技术基础,天津,天津大学出版社,2002
    [43]赵依军等,单片微机接口技术,北京,人民邮电出版社,1989
    [44]王昌长,李福祺,高胜友,电力设备的在线监测与故障诊断,北京,清华大学出版社,2006
    [45]王庆斌等,电磁干扰与电磁兼容技术,北京,机械工业出版社,1999
    [46]全国无线电干扰标准化技术委员会、全国电磁兼容标准化联合工作组、中国实验室国家认可委员会,电磁兼容标准实施指南,北京,中国标准出版社,1999
    [47] W.H Siew, S.D.Howat, D.Chalmers, Radiated Interference from a High Voltage Impulse Generator, IEEE Transactions on Electromagnetic Compatibility, 1996,38(4):600-604
    [48] C.M. Wiggins, Transient electromagnetic interference in substations, IEEE Trans. Power Delivery, 1994,9(4):1869-1884

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700