ZnO薄膜的常压MOCVD生长及掺杂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是一种重要的化合物半导体光电材料,它具有良好的物理特性:直接带隙能带结构、室温禁带宽度3.37eV、激子束缚能60meV,是制备紫外发光二极管、特别是制备室温紫外半导体激光器的优选材料。可是性能良好的p型ZnO材料的制备问题一直以来成为实现ZnO基发光器件突破的瓶颈。近几年来,尽管国际上p型ZnO薄膜的制备取得了重要进展,但是可实用的ZnO发光器件仍没有制备成功。特别是在用金属有机化学气相沉积(MOCVD)法生长ZnO薄膜及其p型掺杂方面,还需要更多的研究,否则ZnO基发光器件将难以产业化。在这样的背景下,本论文开展ZnO薄膜的MOCVD生长及其掺杂性质研究。
     本论文主要是采用自制常压MOCVD系统,以去离子水(H_2O)和二乙基锌(DEZn)为源材料,在蓝宝石(0001)衬底上进行ZnO薄膜的制备、掺杂等相关内容研究。在课题研究过程中,本文主要获得了以下一些有意义和有创新性的研究结果:
     1、首次提出了在外延层生长过程中引入少量腐蚀性气体来提高ZnO薄膜的晶体质量。研究实验结果表明,在外延层生长过程中引入少量的H_2和NH_3都有利于提高ZnO的晶体质量,但是引入H_2将会影响ZnO薄膜的表面形貌和电学性能,而引入少量的NH_3后,ZnO薄膜的表面形貌、晶体质量、室温电子迁移率、低温10K下的激子发光及其声子伴线均变好,其(0002)和几何倾斜对称(10-12)面的双晶X射线衍射(DCXRD)Omega(ω)摇摆曲线半峰宽(FWHM)分别为132弧秒(")和235弧秒(")。金相显微镜结果显示ZnO薄膜中的平均晶粒尺寸直径大小20μm,为当前文献中MOCVD法生长ZnO薄膜的最大值,本文的这一实验结果也正好体现了用常压MOCVD方法生长ZnO薄膜能获得大的晶粒尺寸特点。
     2、研究了高温缓冲层厚度、外延层的生长速率以及富Zn环境对ZnO薄膜生长的影响,优化了生长工艺参数。在保持较高的晶体质量前提下,得到了生长速率为4.2μm/h的ZnO单晶薄膜。据我们所知,这一生长速率是目前文献用MOCVD生长ZnO薄膜的最大报道值,较快生长速率和较高结晶质量对今后ZnO薄膜的规模化生产是十分有利的。
     3、采用常压MOCVD方法在蓝宝石(0001)衬底上成功地制备出高质量的、高可见光透过率的、低电阻率的Al掺杂型ZnO透明导电薄膜(AZO),其(0002)和(10-12)面DCXRD的ω摇摆曲线FWHM分别为289"和406"。据我们所知,这是首次报道AZO薄膜有几何倾斜对称(10-12)面DCXRD的ω摇摆曲线结果。本文制备出的AZO透明导电薄膜的可见光透过率超过90%,电阻率在9.72×10~(-4)Ω.cm范围内。这些参数与目前文献报道所制备的AZO薄膜最好的结果相当。
     4、利用常压MOCVD技术以氨气(NH_3)作为掺杂源进行ZnO薄膜的p型掺杂研究,对NH_3掺杂温度、NH_3掺杂方式以及NH_3掺杂流量等重要影响参数进行了探讨。在优化的条件下,通过NH_3掺杂最终获得了p型ZnO薄膜。金相显微镜和DCXRD测试结果表明,该p型ZnO薄膜具有平整的薄膜表面和好的结晶性能,其(0002)和(10-12)面的的ω摇摆曲线FWHM分别为246"和368"。光致发光(PL:Photoluminescence)测试结果表明,该p型ZnO薄膜的10K低温和室温PL中都能观察到非常强的与N替代O受主相关的发光峰。室温霍尔测量结果表明:p型ZnO薄膜的空穴浓度约为10~(16)~10~(17)cm~(-3),迁移率为3~10cm~2/V.S。该p型ZnO薄膜为研制ZnO同质p-n结奠定了良好的基础。
     5、采用常压MOCVD方法在蓝宝石衬底上用Al和N做掺杂剂生长了具有p-n结构的ZnO同质结外延材料。采用Ti/Au和Ni/Au合金分别做n型和p型ZnO薄膜的欧姆接触,制备出ZnO同质p-n结芯片。在室温下,该ZnO同质p-n结具有典型的二极管整流Ⅰ-Ⅴ特性,开启电压约为5 V(正向电流10μA时),反向电压高达20V(反向电流10μA时)。这一结果要明显优于文献报道的结果。据我们所知,20V的反向电压是目前报道ZnO同质p-n结的最大值。对本文所制备的ZnO同质p-n结的稳定性测试实验结果表明:本文用NH_3做掺杂源获得的p型ZnO的性能稳定。
     本文以上研究结果从材料生长手段常压MOCVD系统的角度来说,均属国际首次。本文相关研究结果已在《Journal of Crystal Growth》、《Journal of Luminescence》以及《Materials Science and Engineering B》等国际杂志上公开发表。其中在《Materials Science and Engineering B》杂志上发表的论文按被国际读者下载次数排序,成为该杂志2006年第一季度最热门的25篇论文之一,列第15位。
     本论文得到下列课题的支持:国家863纳米专项课题(合同号:No.2003AA302160)和信息产业部电子发展基金(2004-125号)。
Zinc Oxide (ZnO) is one kind of important compound semiconductor photoelectric materials. It has a bandgap of 3.37 eV at room temperature (RT) and a large exciton binding energy of 60 meV, which provides an attractive prospect to highly efficient UV light emitters, light emitting diodes (LEDs) and low-threshold excitonic laser diodes (LDs). The greatest obstacle to harvest these advantages in real devices is posed by the realization of low resistant and reliable p-type ZnO. Although massive progress in growth of p type ZnO films has been made in recent years, the applicable ZnO light emitting devices have not been fabricated yet. Especially, it needs more research in the growth of ZnO and p-ZnO films by metal organic chemistry vapor deposition (MOCVD), otherwise it will be difficult to realize the bulk production of ZnO. Under such background, the first object of the dissertation is to grow device-quality ZnO films and the doping of ZnO so that pave the way for high performance ZnO light emitting devices.
     In this thesis, a home-built vertical atmospheric pressure-MOCVD(AP-MOCVD) system was used for the growth of the undoped ZnO, Al doped ZnO and NH_3 doped ZnO films using 6N-purity diethylZinc (DEZn) as Zn precursor, deionized water (H_2O) as O-precursors, 7N-purity nitrogen as the carrier gas, and two inch c-plane sapphire(c-Al_2O_3) as the substrate. Finally, the realization of ZnO thin film with p-type conductivity makes it successfully to fabricate of ZnO p-n homojunction. New results are as follows:
     1. A method was proposed to enhance the crystal quality of ZnO films by adding a small corrosive gas into the growth ambient of AP-MOCVD system. The effects of adding small H_2 and NH_3 gas into the growth ambient on the film properties have been studied. Experimental results showed that compared to the effect of small H_2, it was more effective on the improvements of the surface morphology, crystalline structure, and optical quality of ZnO epilayers by adding small NH_3 gas into the growth ambient. The full widths at half maximum (FWHMs) of the (0002) and (10-12) double crystal X-ray diffraction (DCXRD)ω-rocking curves of the ZnO film grown by adding NH_3 gas into the growth ambient were 152 arcsec and 253 arcsec, respectively, indicating the small mosaicity and low dislocation density of the film. It was very effective on the improvement of surface morphology of ZnO films by adding NH_3 gas into the growth ambient, which eventually leaded to a smooth surface with larger hexagonal grains (20μm). To the best of our knowledge, this is largest grain size report of ZnO film grown on c-Al_2O_3 by MOCVD, which was also just to manifest the characteristic of obtaining the big crystal grain size by APMOCVD.
     2. The effects of the thickness of high temperature buffer layer, the growth rate of epitaxial layer and the rich Zn environment on the properties of ZnO films grown by AP-MOCVD were investigated. By the optimized condition, the high growth rate of 4.2μm/h has been obtained, which is the highest value for ZnO films grown by MOCVD compared to literatures. It will be extremely advantageous to the next scale production of ZnO films due to the quick growth speed as well as the high crystallization quality.
     3. The high quality, the high transmittance of visible light and low resistance of Al doped ZnO(AZO) films was successfully prepared by AP-MOCVD on Al_2O_3(0001) substrate. The FWHM of AZO (0002) plane DCXRD omega rocking curve is 289", and (10-12) plane is 406". This is the first report of AZO film having the skew symmetry (10-12) plane DCXRD rocking curve result. The transmittance of visible light of the AZO film surpasses 90%, and the resistivity was about 9.72×10~(-4)Ω.cm. These parameters were equal to the best results of the AZO reported by the present literatures.
     4. The effects of the doped temperature, the doped mode and the doped flux of NH_3 on the properties of ZnO films grown by AP-MOCVD were investigated, which were considered to the important parameters. By the optimized condition, the p type ZnO has been obtained under the suitable doped temperature and flux. The experimental results of the metal-phase interference microscope and the DCXRD indicated that the p-ZnO film was the crystallization performance, as well as smooth surface. The FWHMs of the (0002) and (10-12) DCXRDω-rocking curves of p-ZnO were 246" and 368", respectively. The extremely strong DAP peak of the p-ZnO film could be observed in both the 10K PL and room temperature PL. The room temperature Hall measurement result indicated that the hole carrier concentration of p-ZnO film was 10~(16)~10~(17)cm~(-3), and the mobility of hole was 3~10cm~2/V.S.
     5. With the use of Ti/Au and the Ni/Au alloy as n and p type ZnO thin film ohm contact, respectively, ZnO homojunction has been fabricated by AP-MOCVD on the sapphire substrate by using the Al and N as the doping of the n and p type ZnO thin film, respectively. A typical ZnO homojunction shows rectifying behavior with a turn-on voltage of about 5 V, and the reverse voltage reaches as high as 20V, which obviously preceded the result reported by Japanese and the American researchers. To the best of our knowledge, this is best report of ZnO homojunction of the 20V reverse voltage according to literature. By the stabile test experiment of ZnO homojunction, it indicated that the p type ZnO doped with N was reliable.
     From the material growth method angle of AP-MOCVD system, the above results are the first reported.
     This work was supported by the 863 project (contract No. 2003AA302160) and China foundation for development of electronic information technology (contract No. 2004-125).
引文
[1] Yu P, Tang Z K, Wong G K L, Kawasaki, A.Ohtomo, H.Koinuma and Y.Segawa. 23nd Int Conf on the Physics of Semiconductors, World Scientific, Singapore. 1996:1453-1456.
    [2] Robert F. Will UV lasers beat the blues? [J]. Science, 1997, 276:895-895.
    [3] M. K. Puchert, A. Hartmann, R. N. Lamb, and J. W. Martin, Highly Resistive Sputtered ZnO Films Implanted with Copper. J. Mater. Res., 1996,11:2463-2469.
    [4] A. Vasiliev, D. Yu. Godovski, A. I. Buturlin, T. A. GabuzyanA. Semiconductor sensors for determination of fluorine-containing gas mixtures. Sensors and Actuators B,1993, 3-14:705-707.
    [5] Hidehito Nanto, Hideki Sokooshi, Takaaki Kawai. Aluminum-doped ZnO thin film gas sensor capable of detecting freshness of sea foods. Sensors and Actuators B, 1993, 13-14: 715-717.
    [6] Tsukazaki, A. Ohtomo,T.Onuma,M.Ohtani,T.Makino, M. Sumiya, K.Ohtani,S.Chichibu,S.Fuke, Segawa, H.Ohno, H. Koinuma, M.Kawasaki. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Materials, 2005, 4: 42-46.
    [7] Yungryel Ryua, Tae-Seok Lee, Jorge A. Lubguban, Henry W. White, Bong-Jin Kim, Yoon-Soo Park, and Chang-Joo Youn, Next generation of oxide photonic devices ZnO-based ultraviolet light emitting diodes. Appl. Phys. Lett. 2006, 88: 241108-241110.
    [8] E. Jaffe, A. C. Hess. Hartree-Fock study of phase changes in ZnO at high pressure. Phys. Rev. B, 1993,48:7903-7909.
    [9] A. B. M. A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, Y. W. Ok, T. Y. Seong. Zinc-blende ZnO films on GaAs(001) substrates with ZnS buffer layers. Appl. Phys. Lett., 2002, 76:550-552.
    [10] S. K. Kim, S. Y. Jeong, C. R. Cho. Structural reconstruction of hexagonal to cubic ZnO films on Pt/Ti/SiO_2/Si substrate by annealing. Appl. Phys. Lett., 2003, 82:562-564.
    [11] F. Decremps, J. Pellicer-Porres, F. Datchi, J. P. Itie, A. Polian, F. Baudelet, J. Z. Jiang. Trapping of cubic ZnO nanocrystallites at ambient conditions. Appl. Phys. Lett.,2002,81: 4820-4822.
    [12] S. Desgreniers. High-Density Phases of ZnO: Structural and Compressive Parameters. Phys. Rev. B, 1998, 58:14102-14106.
    [13] D. G. Thomas. The exciton spectrum of zinc oxide, J. Phys. Chem. Solids, 1960, 15:86-96.
    [14] J. J. Hopfield. Fine structure in the optical absorption edge of anisotropic crystals. J. Phys. Chem. Solids ,1960, 15:97-107.
    [15] Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Reynolds. Exciton Spectrum of ZnO. Phys. Rev. 1966,143: 512-519.
    [16] D. C. Reynolds, D. C. Look, B. Jogai, C. Litton, G. Cantwell, W. Harsch. Valence-band ordering in ZnO. Phys. Rev. B, 1999, 60:2340-2344.
    [17] S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason. C. W. Litton. Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal. Journal of Applied Physics, 2003, 93:756-758.
    [18] W. Y. Liang, A. D. Yoffe. Transmission Spectra of ZnO Single Crystals. Phys. Rev. Lett, 1968,20: 59-62.
    [19] Jiangnan Dai, Hechu Liu, Wenqing Fang, Li Wang, Yong Pu, Yufeng Chen, Fengyi Jiang, Atmospheric pressure MOCVD growth of high-quality ZnO films on GaN/Al2O3 templates. J. Crystal Growth, 2005, 283:93-97
    [20] P. H. Kasai. Electron Spin Resonance Studies of Donors and Acceptors in ZnO. Phys. Rev., 1963, 130:989-995.
    [21] F. A. Kroger, H. J. Vink. The Origin of the Fluorescence in Self-Activated ZnS, CdS, and ZnO. J. Chem. Phys., 1954, 22: 250-252.
    [22] X. L. Wu ,G. G Siu, C. L. Fu, H. C. Ong. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Appl. Phys. Lett. , 2001, 78: 2285-2287.
    [23] K. Vanheusden, C. H. Seager; W. L. Warren, D. R. Tallant, J. A. Voigt. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett., 1996,68:403-405.
    [24] J. S. Kang, H. S. Kang, S. S. Pang, E. S. Shim, S. Y. Lee. Investigation on the origin of green luminescence from laser-ablated ZnO thin film. Thin Solid Films, 2003, 443:5-8.
    [25] X. L. Wu, G. G. Siu, C. L. Fu, H. C. Ong. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Appl. Phys. Lett., 2001, 86:2285-2287.
    [26] E. G. Bylander. Surface effects on the low-energy cathodoluminescence of zinc oxide. J. Appl. Phys.,1978,49:1188-1195.
    [27] B. X. Lin, Z. X. Fu, Y. B. Jia. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett., 2001, 79: 943-945.
    [28] D. Hahn, R. Nink. Deep-level emissions influenced by O and Zn implantations in ZnO. Phys. Cond. Mater., 1965, 3:311-313.
    [29] M. Liu, A. H. Kitai, P. Mascher. Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese. J. Lumin., 1992, 54:35-42.
    [30] S. Bethke, H. Pan, B. W. Wessels. Luminescence of heteroepitaxial zinc oxide. Appl. Phys. Lett., 1988.52:138-140.
    [31] 刘益春,张喜田,张吉英,吕有明,孔详贵,申德振,范希武.氧化锌可见区发光机制.发光学报,2002,23:563-569.
    [32] T. Makino, T. Yasuda, Y. Segawa, A. Ohtomo, K. Tamura, M. Kawasaki, H. Koinuma. Strain effects on exciton resonance energies of ZnO epitaxial layers. Appl. Phys. Lett., 2001, 79:1282-1284.
    [33] D. C. Look. Recent advances in ZnO materials and devices. Mater. Sci. Eng. B, 2001, 80:383-387.
    [34] E. M. Kaidashev, M. Lorenz, H. von Wenckstem, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann. High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Appl. Phys. Lett.. 2003.82:3901-3903.
    [35] 周鹏,王立,方文卿,蒲勇,戴江南,江风益.常压MOCD生长的ZnO薄膜的电学性能.半导体学报,2005,26(3):502-507.
    [36] K. Iwata, P. Fons, S. Niki, A. Yamada, K. Matsubara, K. Nakahara, and H. Takasu.Improved Electrical Properties in ZnO Semiconductor Films Grown by Radical Source MBE. Phys. Stat. Sol. (a), 2000, 180:287-290.
    [37] Y. F. Chen, H. J. Ko, S. K. Hong, T. Yao. Layer-by-layer growth of ZnO epilayer on Al_2O_3(0001) by using a MgO buffer layer. Appl. Phys. Lett, 2000, 76:559-561.
    [38] M. Joseph, H. Tabata, H. Saeki, K. Ueda, T. Kawai. Fabrication of the low-resistive p-type ZnO by codoping method. Physica B, 2001, 302-303:140-148.
    [39] Hongxia Qi, Qingshan Li, Caifeng Wang, Lichun Zhang, and Lei Lv. Effects of oxygen pressure on n-ZnO/p-Si heterojunctions fabricated using pulsed laser deposition. Vacuum, 2007,81:943-946.
    [40] K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, S. J. Park. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant. Appl. Phys. Lett., 2003,83: 63-65.
    [41] J. Y. Huang, Z. Z. Ye, H. H. Chen, B. H. Zhao, L. Wang, Growth of N-doped p-type ZnO films using ammonia as dopant source gas, J. Mater. Sci. Lett., 2003, 22: 249-251.
    [42] S. Tuzemen, S. Dogan, A. Ates, M. Yildirim, G Xiong, J. Wilkinson. Convertibility of conductivity type in reactively sputtered ZnO thin films. Phys. Stat. Sol (a), 2003, 195:165-170.
    [43] W. I. Park, S. J. An, G C. Yi, H. M. Jiang. Metal-organic vapor phase epitaxial growth of high-quality ZnO films on Al_zO_3. J. Mater. Res., 2001,16:1358-1361.
    [44] W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett., 2002,80:4232-4234.
    [45] W. I. Park, Y. H. Jun, S. W. Jung, G C. Yi. Excitonic emissions observed in ZnO single crystal nanorods. Appl. Phys. Lett., 2003, 82:964-966.
    [46] B. Joseph, K. G Gopchandran, P. V Thomas, P. Koshy, V. K. Vaidyan. A study on the chemical spray deposition of zinc oxide thin films and their structural and electrical properties. Mater. Chem. Phys, 1999, 58:71-77.
    [47] D. Bao, H. Gu, A. Kuang. Sol-gel-derived c-axis oriented ZnO thin films. Thin Solid Film, 1998, 312:37-39.
    [48] Y. Natsume, H. Sakata. Zinc oxide films prepared by sol-gelspin-coating Thin Solid Film, 2000, 372:30-36.
    [49] Y. R. Ryu, T. S. Lee, J. H. Leem, H. W. White. ZnO p-n junctions and ohmic contacts to arsenic-doped p-type ZnO. Appl. Phys. Lett, 83, (2003) 4032-4034.
    [50] B. Sang, M. Konagai, Growth of transparent conductive oxide ZnO films by atomic layer deposition. Jpn. J. Appl. Phys., 1996, 35: L602-L605.
    [51] S. Bethke, H. Pan, B. W. Wessels. Luminescence of heteroepitaxial zinc oxide. Appl. Phys. Lett., 1988, 52:138-140.
    [52] Y. Kashiwaba, F. Katahira, K. Haga, T. Sekiguchi, H. Watanabe. Hetero-epitaxial growth of ZnO thin films by atmospheric pressure CVD method. J. Cryst. Growth, 2000, 221:431-434.
    [53] 熊传兵,方文卿,蒲勇,戴江南,王立,莫春兰,江风益.衬底温度对常压MOCVD生长的ZnO单晶膜的性能影响.半导体学报,2004,25(12):1628-1633.
    [54] Li Wang, Yong Pu, Wenqing Fang, Jiangnan Dai, Yufeng Chen, Chunlan Mo, Fengyi Jiang. High-quality ZnO films grown by atmospheric pressure metal-organic chemical vapor deposition. J. Crystal Growth. 2005, 283:87-91.
    [55] Jiangnan Dai, Hechu Liu, Wenqing Fang, Li Wang, Yong Pu, Yufeng Chen, Fengyi Jiang. Comparisons of structural and optical properties of ZnO films grown on (0001) sapphire and GaN/(0001) sapphire template by atmospheric- pressure MOCVD. Materials Science and Engineering B, 2006, 127:280-284.
    [56] A. Hausmann and B. Schallenberger. Interstitial oxygen in zinc oxide single crystals. Zeitschrift für Physik B Condensed Matter, 1978, 31:269-273.
    [57] A. Poppl and G. Volkel. ESR and photo-ESR investigations of the Vo~+ centre in ZnO raw material and Li-doped ZnO ceramic powder. Phys. Status Solidi A, 1990,121:195-204.
    [58] V. A. Nikitenko. Luminescence and EPR of Zinc Oxide, Zh. Prikl. Spektrosk.,1992, 57:367-385..
    [59] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys., 1996,79:7983-7990.
    [60] J. Zhong, A. H. Kitai, P. Mascher, and W. Puff. The Influence of Processing Conditions on Point Defects and Luminescence Centers in ZnO. J. Electrochem. Soc., 1993, 140: 3644-3649.
    [61] N. Ohashi, T. Nakata, T. Sekiguchi, H. Hosono, M. Mizuguchi, T. Tsurumi, J. Tanaka, and H. Haneda. Yellow emission from zinc oxide giving an electron spin resonance signal at g = 1.96. Jpn. J. Appl. Phys. Part 2, 1999, 38:113-118.
    [62] J. C. Simpson and J.F. Cordaro. Characterization of deep levels in zinc oxide. J. Appl. Phys., 1988, 63:1781-1783.
    [63] R. A. Winston and J. F. Cordaro. Grain-boundary interface electron traps in commercial zinc oxide varistors. J. Appl. Phys., 1990, 68:6495-6500.
    [64] R. Krause-Rehberg, H. S. Leipner, T. Abgajan, and A. Polity. Review of defect investigations by means of positron annihilation in Ⅱ-Ⅵ compound semiconductors. Appl. Phys. A: Mater. Sci Process., 1998, 66:599-614.
    [65] R. M. de la Cruz, R. Pareja, R. Gonzalez, L. A. Boatner, and Y. Chen. Effect of thermochemical reduction on the electrical, optical-absorption, and positron-annihilation Characteristics of ZnO crystals. Phys. Rev. B, 1992, 45:6581-6586.
    [66] T. K. Gupta, W. D. Straub, M. S. Ramanachalam, J. P. Schaffer, and A. Rohatgi. Grain-boundary characterization of ZnO varistors by positron annihilation spectroscopy. J. Appl. Phys., 1989, 66: 6132-6137.
    [67]H. Wolf, S. Deubler, D. Forkel, H. Foettinger, M. Iwatschenko-borho, F. Meyer, M. Renn, W. Witthuhn, and R. Helbig. Acceptors and donors in the wide-gap semiconductors ZnO and SnO. Mater. Sci. Forum, 1986,10-12:863-868.
    [68]S. Deubler, J. Meier, R. Schutz, and W. Witthuhn. PAC studies on impurities in ZnO. Nucl. Instrum. Methods. Phys. Res. B, 1992, 63:223-226.
    [69]E.Mollwo. The effect of hydrogen on the conductivity and luminescence of Zinc Oxide crystals. Z. Phys., 1954 138:478-488
    [70]D.G.Thomas, J.J.Lander. Hydrogen as a Donor in Zinc Oxide. J.Chem.Phys.,1956, 25:11361142.
    [71]J.J.Lander. Reactions of Lithium as a donor and an acceptor in ZnO. J.Phys.Chem.Solids., 1960, 15:324-334.
    [72]C. G. Van de Walle. Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett., 2000, 85:1012-1015.
    [73]C. G. Van de Walle. Defect analysis and engineering in ZnO. Physics B, 2001,308-310:899-903.
    [74]C. G. Van de Walle and J. Neugebauer. Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature(London), 2003, 423:626-628.
    [75]Yuri M. Strzhemechny, John Nemergut, Phillip E. Smith, Junjik Bae, David C. Look and Leonard J. Brillson. Remote hydrogen plasma processing of ZnO single crystal surfaces. Journal of Applied Physics, 2003,94(7):4256-4262.
    [76]Yuri M. Strzhemechny, Howard L. Mosbacker, David C. Look, Donald C. Reynolds, Cole W. Litton, Nelson Y. Garces, Nancy C. Giles, Larry E. Halliburton, Shigeru Niki, and Leonard J. Brillson. Remote Hydrogen Plasma Doping of Single Crystal ZnO. Appl. Phys. Lett., 2004, 84:2545-2547.
    [77]D. C. Look, R. L. Jones, J. R. Sizelove, N. Y. Garces, N. C. Giles, and L. E. Halliburton. The path to ZnO devices: donor and acceptor dynamics. Phys. Stat. sol. (a) ,2003, 195:171-178.
    [78]B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. StraBburg, M. Dworzak, U. Haboeck, and A. V. Rodina. Bound excition and donor-acceptor pair recombination ZnO. Phys. Stat. Sol. (b), 2004, 241:231-260.
    [79] K. Thonke, Th. Gruber, N. Teofilov, R. Schonfelder, A. Waag, and R. Sauer. Donor-acceptor Pair Transitions in ZnO Substrate Material. Physica B, 2001,308-310:945-948.
    [80] J. Hu, R. G Gordon. Textured aluminum—doped zinc oxide thin films from atmospheric pressure chemical—vapor deposition. J. Appl. Phys., 1992, 71:880-890.
    [81] S. Oda, H. Tokunaga, N. Kitajima. Highly Oriented ZnO Films Prepared by MOCVD from Diethylzinc and Alcohols. Jpn. J. Appl. Phys., 1985, 24:1607-1610.
    [82] T. Minami, K. Olhashi, S. Takata. Preparations of ZnO:Al Transparent Conducting Films by dc Magnetron Sputtering. Thin Solid Films, 1990, 193:721-729.
    [83]T. Minami, H. Sato, H. Natnto, Group III Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering, Jpn. J. Appl. Phys., 1985, 24:L781-L784.
    [84] Y. Igasaki, H. Saito. The effects of deposition rate on the structural and electrical properties of ZnO: Al films deposited on (110)oriented sapphire substrates. J. Appl. Phys. 1991, 70:3613-3619.
    [85] N. F. Cooray, K. Kushiya, A. Fujimaki, D. Okumura. Optimization of Al-doped ZnO window layers for large-area CulnGaSe-2 based modules by RF/DC/DC multiple magnetron sputtering. Jpn. J. Appl. Phys., 2000, 39: L555-L559.
    [86] A. Sazuki, T. Matsushita, N. Wada. Transparent Conducting Al-Doped ZnO Thin Films Prepared by Pulsed Laser Deposition. Jpn. J. Appl. Phys. Part 2, 1996, 35:L56-L59.
    [87] G. A. Hirata. High Transmittance-Low Resistivity ZnO:Ga Films by Laser Ablation. J. Vac. Sci. Technol., 1996 A14:791-794.
    [88] D. Goyal, P. Solanki, B. Maranthe. Deposition of Aluminum-Doped Zinc Oxide Thin Films by Spray Pyrolysis. Jpn. J. Appl. Phys. Part, 1992, 131:361-364.
    [89] M. L. Addonizio, A. Antonaia, G. Cantele, C. Privato. Transport mechanisms of RF sputtered Al-doped ZnO films by H_2 process gas dilution. Thin Solid Films, 1999, 349:93-99.
    [90] Y. Li, G. S. Tompa, S. Liang, C. Gorla, Y. Lu ,John Doyle. Transparent.and conductive Ga-doped ZnO films grown by low pressure metal organic chemical vapor deposition. J. Vac. Sci. Technol. A, 1997, 15: 1063-1068.
    [91] B. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedov, R. A. Rabadanov. Highly con ductive and transparent Ga-doped epitaxial ZnO films on sapphire by CVD. Thin Solid Films, 1995, 260:19-23.
    [92] P. Nunes, A. Malki, B. Femandes. Influence of the doping and annealing atmosphere on zinc oxide thin films deposited by spray pyrolysis. Vacuum, 1999, 52:45-49.
    [93] Van de Walle C. G, Laks D. B, Neumark G. F. First-principles Calculations of Solubilities and Doping Limits: Li, Na, and N in ZnSe. Phys. Rev. B, 1993, 47:9425-9434.
    [94] Yan Y, Zhang S. B, and Pantelides S. T, Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO, Phys. Rev. Lett., 2001,86: 5723-5726.
    [95] 曾昱嘉,叶志镇,吕建国,李丹颖,朱丽萍,赵炳辉.衬底温度对Al+N共掺p—ZnO薄膜性能的影响.无机材料学报,2005,20:750-754.
    [96] Lee E. C, Kim Y. S, Jin Y. G. First-principles study of the compensation mechanism in N-doped ZnO. Physica B, 2001, 308:912-915.
    [97] Sato Y, Sato S. Preparation and some properties of nitrogen-mixed ZnO thin films. Thin Solid Films, 1996, 281-282:445-448.
    [98] Guo X L, Tabata H, Kawai T. Pulsed laser reactive deposition of p-type ZnO film enhanced by an electron. Optical Materials, (2002) ,19 (1):229-233.
    [99] Kamata A, Mitsuhashi H, Fujita H. Origin of the low doping efficiency of nitrogen acceptors in ZnSe grown by metalorganic chemical vapor deposition. Appl. Phys. Lett., 1993, 63 (24):353-355.
    [100] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu. Growth of p-type zinc oxide films by chemical vapor deposition. Jpn. J. Appl. Phys., Part 2, 1997, 36:L1453-L1455.
    [101] 吕建国,叶志镇,陈汉鸿,汪雷,赵炳辉,张银珠.流反应磁控溅射生长p型ZnO薄膜及其特性的研究.真空科学与技术,2003,3(1):5-8.
    [102] 王金忠,杜国同,马艳,赵佰军,杨晓天,张源涛,刘大力,李万程,杨洪军,杨树人,吴爱国,李壮.蓝宝石R面上ZnO薄膜的NH3掺杂研究.发光学报,2003,24:336.
    [103] 刘大力,杜国同,王金忠,张源涛,张景林,马艳,杨晓天,赵佰军,杨洪军,刘博阳,杨树人.ZnO薄膜的掺杂特性.发光学报,(2004,25:135-138.
    [104] C. H. Park, S. B. Zhang, and Su-Huai Wei. Origin of p-type The impurity perspective doping difficulty in ZnO. Phys. Rev. B, 2002,66:073202-073204.
    [105] T. Aoki, Y Hatanaka, and D. C. Look. ZnO diode fabricated by excimer-laser doping. Appl. Phys. Lett., 2000, 76:3257-3258.
    [106] K.K. Kim, H.S. Kim, D.K. Hwang, J. H. Lim, and S. J. Park. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant. Appl. Phys. Lett., 2003, 83:63-62.
    [107] D, C. Look and B. Claflin. P-type doping and devices based on ZnO .Phys. Stat. Sol. (b), (2004,241:624-630.
    [108] Y. R. Ryu, S. Zhu, D. C. Look. J. M Wrobel, H. M. Jeong, and H. W. White. Synthesis of p-type ZnO films. J. Crystal Growth, 2000, 216:330-334.
    [109] Y R. Ryu, W. J. Kim, and H. W. White. Fabrication of homostructural ZnO p-n junctions. J. Crystal Growth, 2000, 219:419-422.
    [110] Y. R. Ryu, T. S. Lee, J. H. Leem, and H. W. White. Fabrication of Homostructural ZnO p-n Junctions and Ohmic Contacts to Arsenic-doped p-type ZnO. Appl. Phys. Lett., 2003,83:4032-4034.
    [111] Y. Heo, K. lp, S. J. Park, S. J. Pearton, and D. P. Norton. Transport properties of phosphorus-doped ZnO thin films. Appl. Phys. Lett., 2003, 83:1128-1130.
    [112] S. Limpijumnong, S. B. Zhang, Su-Huai Wei, and C. H. Park. Doping by Large Size-Mismatched Impurities: The. Microscopic Origin for Arsenic- or Antimony-Doped p-Type Zinc Oxide. Phys. Rev. Lett., 2004, 92:155504.
    [113] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cant-well. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl.Phys. Lett., 2002, 81:1830-1832.
    [114] T. Yamamoto and H. Katayama-Yoshida. Unipolarity of ZnO with a wide-band gap and its solution using codoping method. J. Crystal Growth, 2000, 214-215:552-555.
    [115] S.J. Pearton, D.P. Norton, K. Ip ,Y.W. Heo, T. Steiner. Recent progress in processing and properties. Progress in Materials Science, 2005, 50:293-340.
    [116] P. Fons, A. Yamada, K. Iwata, K. Matsubara, S. Niki, K. Nakahara, and H. Takasu. A XANES study of Cu valency in Cu-doped epitaxial. Nuclear Instruments and Methods in Phys. Research B, 2003199:190-192.
    [117] A. N. Gruzintsev, V. T. Volkov, and E. E. Yakimov. Photoelectric properties of ZnO films doped with Cu and Ag acceptor impurities. Semiconductors, 2003,37(3): 259:262.
    [118] T. Yamamoto and H. K. Yoshida. Solution using a codoping method to unipolarity for the fabrication of p-type ZnO. Jpn. J. Appl. Phys., 1999, 38: L166-L169.
    [119] M. Joseph, H. Tabata, H. Saeki, K. Ueda, and T. Kawai, Fabrication of the low-resistive p-type ZnO by codoping method, Physica B, 2001, 302-303:140-148.
    [120] A. V. Singh, R. M. Mehra, A. Wakahara, and A. Yoshida. p-type conduction in codoped ZnO thin films. J. Appl. Phys. 93,2003:396-399.
    [121] 袁国栋,叶志镇,曾星嘉,吕建国,钱庆,黄靖云,赵炳辉,汪雷.直流反应磁控溅射Al、N共掺方法生长p型ZnO薄膜及其特性研究.半导体学报,2004,25(6):668-673.
    [122] 吕建国,叶志镇,诸葛飞,曾昱嘉,赵炳辉,朱丽萍.N—Al共掺ZnO薄膜的P型传导特性,半导体学报.2005,26:730-734.
    [123] K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. Iwata, K. Matsubara, R. Hunger, and S. Niki. Interactions between gallium and nitrogen dopants in ZnO films grown by radical-source molecular-beam epitaxy. Appl. Phys. Lett., 2001,79:4139-4141.
    [124] M . Komatsu, N. Ohashi, I. Sakaguchi, S. Hishita, and H. Haneda. Ga, N solubility limit in co-implanted ZnO measured by secondary ion mass spectrometry. Appl. Surf. Sci., 2002,189:349-354.
    [125] Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev, D. M. Bagnall. Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl. Phvs. Lett. ,2003, 83:4719-4721.
    [126] Y. I. Alivov, J. E. V. Nostrand, D. C. Look, M. V. Chukichev, B. M. Ataev. Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes. Appl. Phys. Lett., 2003, 83:2943-2945.
    [127] K. Ip, Y. W. Heo, D. P. Norton, S.Pearton R. LaRoche, F. Ren. Zn_(0.9)Mg_(0.1)O/ZnO p-n junctions grown by pulsed-laser deposition. Appl. Phys. Lett. ,2004, 85:1169-1171.
    [128] H. Ohta, M. Orita, M. Hirano, H. Hosono. Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu_2O_2 and n-ZnO. J. Appl. Phys.,2001, 89:5720-5725.
    [129] H.Hosono, H.Ohta, K.Hayashi, M. Orita, M. Hirano. Near-UV emitting diodes based on a transparent p-n junction composed of heteroepitaxially grown p-SrCu_2O_2 and n-ZnO. J.Cryst.Growth, 2002, 237-239:496-502.
    [130] H.Y. XU,Y.C. LIU,Y.X. LIU,C.S. XU,C.L. SHAO, R. MU. Ultraviolet electroluminescence from p-GaN/i-ZnO/n-ZnO heterojunction light-emitting diodes.Appl. Phys. B,2005, 80:871-874.
    [131] T. Aoki, D. C. Look, and Y. Hatanaka. ZnO diode fabricated by excimer-laser doping. Appl. Phys. Lett., 2000, 76:3257-3258.
    [132] F. Zhuge, L. P. Zhu,a_ Z. Z. Ye, D. W. Ma, J. G. Lu, J. Y. Huang, F. Z. Wang, Z. G. Ji and S. B. Zhang. ZnO p-n homojunctions and ohmic contacts to Al-N-co-doped p-type ZnO. Appl.Phys.Lett., 2005, 87:092103-092105.
    [133] S. J. Jiao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. Yao, J. Y. Zhang, B. H. Li, D. X. Zhao, X. W. Fan and Z. K. Tang. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates. Appl. Phys. Lett., 2006, 88:031911-031913.
    [134]W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, S. M. Liu, X. Zhou, R. Zhang,Y. Shi, and Y. D. Zheng, Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique. Appl. Phys. Lett. 2006, 88:092101-092103.
    [135]S. Nakamura, The Blue Laser Diode, Springer-Verlag ,2000.
    [136]D. D. Koleske, A. E. Wickenden, R. L. Henry, M. E. Twigg, J. C. Culbertson. Enhanced GaN decomposition in H_2 near atmospheric pressures. Appl. Phys. Lett., 73, 2018-2020 (1998)
    
    [137]F. A. Ponce, Defects and interfaces in GaN epitaxy. MRS Bulletin, 1997, 22: 51-56.
    [138]S. Einfeldt, T. Bottcher, S. Figge, D. Hommel. Thermally induced stress in GaN layers with regard to film coalescence. J. Crystal. Growth, 2001, 230:357-360.
    [139]S. W. Jung, W. I. Park, H. D. Cheong, Gyu-Chul Yi, and Hyun M. Jang. Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al_2O_3(0001) by metalorganic vapor phase epitaxy. Appl. Phys. Lett., 2002, 80:1924-1926.
    [140]S. Nakamura. In-situ monitoring of GaN growth using interference effects. Japan J. Appl. Phys. 1991,30:1620-1627
    [141]W. Van der Stricht, I. Moerman, P. Demeester, E.J. Thrush, J.A. Crawley. Study of. GaN and InGaN films grown by metaloganic chemical vapor deposition. J. Crystal Growth,1997,170: 344-348.
    [142] M.E. Pemble, D.S. Buhaenko, S.M. Francis, P.A. Goulding, J.T. Allen. Surface Science Studies of Movpe Processes - a Review of Progress J. Crystal Growth ,1991,107:37-46.
    [143]A.Zeuner, H.Alves, D.M.Hofmann. Structural and optical properties of epitaxial and bulk ZnO. Appl. Phys.Lett, 2002,80:2078-2080.
    [144]N. Kawamoto, M. Fujita, T. Tatsumi, and Y. Horikoshi. Growth of ZnO on Si Substrate by Plasma-Assisted Molecular Beam Epitaxy. Jpn. J. Appl. Phys. Part 1, 2003,42:7209-7212.
    [145]Y. F. Chen, F. Y. Jiang, L. Wang, C. D. Zheng, J. N. Dai, Y. Pu, and W. Q. Fang. Structural and luminescent properties of ZnO epitaxial film grown on Si(1 1 1) substrate by atmospheric-pressure MOCVD. J. Cryst. Growth, 2005, 275:486-491.
    [146] A. Nahhas, H. K. Kim, Blachere J. Epitaxial growth of ZnO films on Si substrates using an epitaxial GaN buffer. Appl. Phys. Lett. 2001,78:1511-1513.
    [147]Kyu-Hyun Bang, Deuk-Kyu Hwang, Sang-Wook Lim, and Gae- Min Myoung. Effects of growth temperature on the properties of ZnO/GaAs prepared by metalorganic chemical vapor deposition. J. Crystal Growth, 2003, 250: 437-443.
    [148]A. Ohtomo, K. Tamura, K. S. aikusa, K. Takahashi, T. Makino, Y. Segawa, H. Koinuma, M. Kawasaki. Single crystalline ZnO films grown on lattice-matched ScAlMgO_4(0001) substrates. Appl. Phys. Lett. 1999, 75:2635-2637.
    
    [149]B. M. Ataev, W. V. Lundin, V V. Mamedov. Low-pressure chemical vapour deposition growth of high-quality ZnO films on epi-GaN/a-Al_2O_3. J. Phys.: Condens. Matter, 2001, 13: L211-L214.
    [150] N. Oleynik, A. Dadgar, J. Christen, J. Biasing, M. Adam, T. Riemann, A. Diez, A. Greiling, M. Seip, A. Krost. Growth of ZnO layers by metal organic chemical vapor phase epitaxy. Phys. Stat. Sol. (a), 2002,192:189-194.
    [151] N. Oleynik, M Adam, A. Krtschil, J. Biasing, A.Dadgar,, F. Bertram, D. Forster, A. Diez, A. Greiling, M. Seip, J. Christen, A. Krost. Metalorganic chemical vapor phase deposition of ZnO with different O-precursors. J. Cryst. Growth, 2003, 248:14-19.
    [152] V. Sallet, C. Thiandoume, J. F. Rommeluere, A. Lusson, A. Riviere, J. P. Riviere, O. Gorochov, R. Triboulet, V. Munoz-Sanjose. Some aspects of the MOCVD growth of ZnO on sapphire using tert-butanol. Materials Letters ,2002, 53:126-131.
    [153] L. Wang, Y. Pu, W. Fang, J. Dai, Y. Chen, C. Mo, F. Jiang. High-quality ZnO films grown by atmospheric pressure metal- organic chemical vapor deposition. J. Cryst. Growth, 2005, 283: 87-92.
    [154] W. G Breiland, K. P. Killeen. A virtual interface method for extracting growth rates and high temperature optical constants from thin semiconductor films using in situ normal incidence reflectance. J. Appl. Phys.,1995, 78:6726-6736.
    [155] X. W. Sun and H. S. Kwok. Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. J.Appl.Phys, 1999, 86:408-411.
    [156] 王立,ZnO薄膜的MOCVD生长及GaN/Si绿光LED特性研究,南昌大学优秀博士学位论文,2006年,第四章.
    [157] A. Dadgar, N. Oleynik, D. Forster, S. Deiter, H. Witek, J. Bl.asing, F. Bertram, A. Krtschil, A. Diez, J. Christen, A. Krost. A two-step metal organic vapor phase epitaxy growth method for high-quality ZnO on GaN/Al_2O_3 (0001). J. Crystal Growth, 2004, 267:140-144.
    [158] C. Munueraa, J. Zuniga-Perez, J.F. Rommeluerec, V. Salletc, R. Triboulet, F. Soriaa, V. Munoz-Sanjoseb, C. Ocala. Morphology of ZnO grown by MOCVD on sapphire substrates. Journal of Crystal Growth, 2004, 264:70-78.
    [159] T. Matsumoto, H. Kato, K. Miyamoto, and M. Sano. Correlation between grain size and optical properties in zinc oxide thin films. Appl. Phys. Lett., 2002, 81:1231-1233.
    [160] Yuri M. Strzhemechny, John Nemergut, Phillip E. Smith and Junjik Bae, David C. Look, and Leonard J. Brillson. Remote hydrogen plasma processing of ZnO single crystal surfaces. J. Appl. Phys., 2003, 94:4256-4262.
    [161] B. Heying, X.H. We, S. Keller. Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films. Appl. Phys. Lett. ,1996,68:643-645.
    [162] Michihiro. Sano, Kazuhiro Miyamoto, Hiroyuki Kato, and Takafumi Ya. Role of hydrogen in molecular beam epitaxy of ZnO. J.Appl. Phys., 2004, 95:5527-5531.
    [163] D. C. Look, R. L. Jones, J. R. Sizelove, N. Y. Garces, N. C. Giles, and L. E. Halliburton, The Path to P-Type ZnO: Donor and Acceptor Dynamics. Phys. Stat. sol. (a), 2003,195:171-177.
    [164] D.G Thomas, The exciton spectrum of zinc oxide. J. Phys. Chem. Solids.1960, 15:86-96.
    [165] C. Klingshirn. The luminescence of ZnO under high one- and two-quantum excitation. Phys. Status Solidi B, 1975, 71:547-559.
    [166] Bertrand Theys, Vincent Sallet, Franc,ois Jomard, Alain Lusson,Jean-Franc,Ois Rommeluere, Zephyrin Teukam. Effects of intentionally introduced hydrogen on the electrical properties of ZnO layers grown by metalorganic chemical vapor deposition. J.Appl.Phys., 2002,91:3922-3924.
    [167] A. Y. Polyakov, N. B. Smirnov, and A. V. Govorkov, K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, B. Luo, F. Ren, J. M. Zavada. Hydrogen plasma treatment effects on electrical and optical properties of n-ZnO. J.Appl.Phys., 2003, 94:400-406.
    [168] 韩雪,夏慧,透明导电膜及靶材.电子元件与材料.,1998,27(1):30-35.
    [169] 杨田林,张德恒,李滋然,马洪磊,马瑾.射频磁控溅射制备的柔性衬底ZnO:Al透明导电薄膜的研究.太阳能学,1999,20(2):200-203.
    [170] Ohyama M, Kozuka H. Sol-Gel Preparation of ZnO Films with Extremely Preferred Orientation along (002) Plane from Zinc Acetate Solution. Thin solid films, 1997, 306:78-85.
    [171] Ohyama M, Kozuka H. Sol-Gel Preparation of Transparent and Conductive Aluminum-Doped Zinc Oxide Films with Highly Preferential Crystal Orientation. Journal of American ceramics society, 1998, 81 (6): 1622-1632
    [172] 葛春桥,郭爱云,胡小峰.掺杂透明导电半导体薄膜的光电性能研究.应用光学,2006,27(1):40-42.
    [173] Walker D. Kumar V, Mi K. Solar-blind A1GaN photodiodes with very low cutoff wavelength. Appl .Phys .Lett, 2000, 76(4):403-405.
    [174] Chen Zhiming, Wang Jiannong. Basic Material Physics for Semiconductor .The First Edition, Bejing: Science Press (in Chinese), 330 (1999).
    [175] Z. Z. Ye, J. G. Lu, H. H. Chen, Y. Zn Zhang, L. Wang, B. H. Zhao, J. Y. Huang. Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering. J. Cryst. Growth., 2003, 253:258-264.
    [176] Jinzhong Wang, Guotong Du, Baijun Zhao, Xiaotian Yang, Yuantao Zhang, Yan Ma, Dali Liu, Yuchun Chang, Haisong Wang, Hongjun Yang,and Shuren Yang, Epitaxial growth of NH_3-doped ZnO thin films on (02-24)oriented sapphire substrates. J.Cryst.Growth., 2003, 255:293-297.
    [177] A. Dadgar, N. Oleynik, J. Biasing, S. Deiter, D. Forster, F. Bertram, A. Diez, M. Seip, A. Greiling, J. Christen, and A. Krost. Heteroepitaxy and nitrogen doping of high-quality ZnO.J. Cryst. Growth., 2004, 272:800-804.
    [178] U. Haboeck, A. Hoffmann, C. Thomsen, A. Zeuner, and B. K. Meyer. High-energy vibrational modes in nitrogen-doped ZnO. Phys. Stat. Sol. (b), 2005, 242:R21-R23.
    [179] 傅竹西,林碧霞,祝杰,刘丽萍,彭小滔,贾云波.MOCVD方法生长的氧化锌薄膜及其发光特性.发光学报,2001,22(2):119-124.
    [180] Vanheusden K, Seager C H, Warren W L. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett., 1996, 68(3):403-405.
    [181] Y. R. Ryu, T. S. Lee, and H. W. White, Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition. Appl. Phys. Lett., 2003, 83:87-89.
    [182] B.P. Zhang, N.T. Binh, Y. Segawa, Y. Kashiwaba, K. Haga. Photoluminescence study of ZnO nanorods epitaxially grown on sapphire (11-20) substrates. Appl. Phys. Lett., 2004,84:586-588.
    [183] 叶志镇,徐伟中,曾昱嘉,江柳,赵炳辉,朱丽萍,吕建国,黄靖云,汪雷,李先杭.MOCVD法制备ZnO同质发光二极管.半导体学报,2005,26(11):2264-2266.
    [184] A. Zeuner, H. Alves, D. M. Hofmann, B. K. Meyer, A. Hoffmann, U. Haboeck, M. Strassburg, and M. Dworzak. Optical Properties of the Nitrogen Acceptor in Epitaxial ZnO. Phys. Stat. Sol. (b), 2002, 234(3):R7-R9.
    [185] K. Tamura, T. Makino, A. Tsukazaki, M. Sumiya, S. Fuke, T. Furumochi, M. Lippmaa, C. H. Chia, Y. Segawa,H. Koinuma, and M. Kawasaki. Donor-acceptor pair luminescence in nitrogen-doped ZnO films grown on lattice-matched ScAlMgO_4 (0001) substrates. Solid State Commun, 2003,127:265-269.
    [186] Ikuo Suemune, ABM Almamun Ashrafi, Masato Ebihara, Makoto Kurimoto, Hidekazu Kumano, Tae-Yeon Seong, Bong-Joong Kim, and Young-Woo Ok. Epitaxial ZnO Growth and p-Type Doping with MOMBE. Phys. Star. Sol. (b), 2004, 241(3):640-647.
    [187] M Sumiya, S. Fuke, A.Tsukazaki, K. Tamura, A. Ohtomo, M. Kawasaki and H. Koinuma. Quantitative control and detection of heterovalent impurities in ZnO thin films grown by pulsed laser deposition .J. Appl.Phys,(2003,93:2562-2569.
    [188] H. W. Liang, Y. M. Lu,, D. Z. Shen, Y. C. Liul, J. F. Yan, C. X. Shan, B. H. Li, Z. Z. Zhang, J. Y. hang, and X. W. Fan. P-type ZnO thin films prepared by plasma molecular beam epitaxy using radical NO. Phys. Stat. Sol. (a), 2005:1-6.
    [189] T. Akane, K. Sugioka, and K. Midorikawa. Nonalloy Ohmic contact fabrication in a hydrothermally grown n-ZnO (0001) substrate by KrF excimer laser irradiation. J. Vac. Sci. Technol.B, 2000,18:1406-1408.
    [190] H. K. Kim, S. H. Han, T. Y. Seong, and W. K. Choi. Low-resistance Ti/Au ohmic contacts to Al-doped ZnO layers. Appl. Phys. Lett., 2000, 77:1647-1649.
    [191] J. M. Lee, K. M. Chang, K. K. Kim, W. K. Choi, and S. J. Park. Dry Etching of ZnO Using an Inductively Coupled Plasma. J. Electrochem. Soc., 2001,148:G1-G3.
    [192] H. K. Kim, K. K. Kim, S. J. Park, T. Y. Seong, and I. Adesida. Formation of low resistance nonalloyed Al/Pt ohmic contacts on n-type ZnO epitaxial layer. J. Appl. Phys.,2003, 94:4225-4227.
    [193] Makoto Kurimoto, A. B. M. Almamun ,Ashrafi, Masato Ebihara, Katsuhiro Uesugi, Hidekazu Kumano, and Ikuo Suemune. Formation of ohmic contacts to p-type ZnO. Phys. Stat. Sol. (b), 2004,241(3):635-639.
    [194] Jae-Hong Lim, Kyoung-Kook Kim, Dae-Kue Hwang, Hyun-Sik Kim,Jin-Yong Oh, and Seong-Ju Parka. Formation and effect of thermal annealing for low-resistance Ni/Au ohmic contact to phosphorous-doped p-type ZnO. Journal of The Electrochemical Society, 2005,152(3):G179-G181.
    [195] X. Guo, J. Choi, H. Tababata, and T Kawai. Fabrication and optoelectronic properties of a transparent ZnO homostructural Light-Emitting Diode. Jpn. J. Appl. Phys., 2001, 40:L177-L180.
    [196] Y.R.Ryu, W.J. Kim, H.W. White. Fabrication of homostructural ZnO p-n junctions. J. Crystal Growth, 2000, 219:419-422.
    [197] J. M. Bian, X. M. Li, C. Y Zhang, L. D. Chen, and Q. Yao. A polymer blend approach to fabricating the hole transport layer for polymer light-emitting diodes. Appl. Phys. Lett., 2004, 84:3873-3875.
    [198] Soohwan Jang, Jau-Jiun Chen, B. S. Kang, F. Ren, D. P Norton, S. J. Pearton, J. Lopata and W. S. Hobson. Formation of p-n homojunctions in n-ZnO bulk single crystals by diffusion from a Zn_3P_2 source. Appl. Phys. Lett., 2005,87:222113-222115.
    [199] 矫淑杰,张振中,吕有明,申德振,赵东旭,张吉英,姚斌,范希武.在蓝宝石衬底上生长的氧化锌p-n同质结发光二极管.发光学报,2005,26:542-544.
    [200] Hung-Ta Wang, B. S. Kang, Jau-Jiun Chen, T. Anderson, S. Jang, F. Ren ,H. S. Kim, Y. J. Li, D. P. Norton, and S. J. Pearton. Band-edge electroluminescence from N~+-implanted bulk ZnO. Appl. Phys. Lett., 2006, 88:102107-102109.
    [201] X. Li, Y. Yan, T. A. Gessert, C. DeHart, C. L. Perkins, D. Young, and T. J. Coutts. P-Type ZnO Thin Films Formed by CVD Reaction of Diethylzinc and NO Gas. Electrochem. Solid-State Lett.,2003,6:C56-C58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700