镀锌钢板激光填丝钎焊工艺与热过程数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镀锌钢板由于低熔点镀层金属的存在,给其焊接带来了困难。激光高温钎焊工艺的开发改进了在接头强度、气孔、成形、接头抗腐蚀性能及焊接效率等方面存在的问题。这在工业生产中给结构设计改进、成本降低提供了可能。由于激光的加热特点及焊丝实时填加的影响,激光填丝钎焊过程的影响因素众多、工艺复杂,过程稳定性和接头质量需要得到进一步的提高。全面研究及定量评价各参数对焊接过程的影响规律具有重要的理论与实际意义。本文针对汽车工业中常用的镀锌薄钢板卷对接接头的连接,研究了各参数对钎缝成形、界面特征的影响规律。在此基础上,计算、分析了不同加热条件下的钎料温度分布和流动铺展成形。为深入理解激光填丝钎焊连接机理、开发新的激光填丝钎焊工艺提供技术支持和理论基础。
     在激光加热条件下,采用高速摄像系统观察和记录了预置于母材表面的钎料熔化铺展过程,研究了激光功率、光斑直径、加热时间等参数对钎料铺展效果的影响。进一步的,观察和描述了实际填丝钎焊中钎料的熔化及铺展过程。发现钎料表面张力对其流动铺展成形有重要影响,钎料温度与母材温度共同决定了其铺展性能,良好的钎焊过程需要考虑激光功率、焊接速度、送丝速度、激光加热位置等参数的匹配。
     在对圆形单光束激光填丝钎焊进行研究的基础上,本文提出双焦点激光填丝钎焊新工艺。与单光束相比,光束特征参数增加了双束激光功率配比、焦点间距、离焦方式、光束排布等参数,使双焦点光束激光钎焊更具灵活性。结合激光加热参数与光斑特征参数,可以改变钎焊热源能量密度分布,实现不同要求的加热效果。试验发现,双焦点光束激光填丝钎焊过程对焊接参数的变化具有更大的适应性,能够提高激光能量利用率。
     基于延长钎料与母材作用时间、改进接头下部界面结合质量的出发点,进一步提出矩形光斑激光填丝钎焊工艺。采用积分镜来获得长度方向能量均匀分布的矩形光斑。试验结果发现,采用合适的钎焊参数,矩形光斑激光填丝钎焊接头具有更小的焊缝宽度、更宽的钎料与母材接触面积,能有效降低镀锌层的烧损,但焊接过程适应性较低,激光能量的利用率下降。
     在对钎缝成形性能研究的基础上,采用金相显微镜、电子探针扫描、SEM及EDS等手段,对接头组织及界面行为进行了观察和分析。发现以CuSi3为填充材料的钎缝组织为以胞状树枝晶为主的α固溶体;界面附近的母材受焊接热作用而形成粗晶区。对不同加热条件下的界面形态进行了SEM分析,揭示了钎缝界面金属间化合物形成机制,界面金属间化合物层厚度和形态与焊接热循环及界面温度梯度有很大关系。
     建立激光加热下钎料流动铺展的热流耦合数学模型,考虑钎料自由表面的演变,采用有限元方法,模拟了激光定点加热、圆形单光束加热、双焦点光束加热及矩形光斑加热下的钎料铺展过程温度场、流场分布和形状变化。计算结果表明,激光定点加热时,光斑直径对钎料铺展形状影响显著,自由表面上的温度梯度和钎料液滴形状是钎料内部流动的主导因素。采用圆形单光束激光加热时,钎料升温迅速,上下部分具有较大的温度梯度;双焦点激光和矩形光斑加热下,钎料温度升高缓慢,内部温度分布更为均匀。单光束加热初期,钎料以向下填充钎缝接头间隙的流动为主,钎缝形状趋于稳定后,钎料的流动过渡到以Marangoni流动为主;双焦点激光加热的整个过程中均以向下填充接头间隙的流动为主,钎缝的填充过程时间更长;矩形光斑加热下具有更小的流动速度,焊缝中心线附近的钎料以向下填充接头间隙的流动为主,而钎缝上表面边沿区域钎料以Marangoni流动为主,向钎缝边沿流动。对钎料铺展的自由表面形状的模拟结果与试验结果相比较,两者吻合较好。
The joining of galvanized steel sheets is difficult due to the existence of Zn coat. The evaporation and oxidation of zinc can lead to an unstable arc, low corrosion resistance and other welding defects such as porosity, inadequate fusion and cracks and so on. These problems can be avoided with the development of laser brazing process, which provides the possibility to improve the structure design and reduce the cost in production. With the laser heating feature and real-time wire feeding, the process is complex and the influencing factors are various, and process stability and joint quality are required to improve further. So, comprehensive investigation and quantitative evaluation of the influence of process parameters are significant in theory and practice. Aiming at the laser brazing of flange butt joints of galvanized steel sheets, the influence regularity of process parameters on brazing seam forming and interface behaviors was studied in this paper. Based on the analysis, the filler metal flow and temperature distribution in brazing process with different heating condition were calculated. These results provide technique support and fundamental theory in comprehending mechanics of laser brazing process and developing new process. The melting and spreading process of filler metal with static laser heating were observed and analyzed using high speed photographing system in this paper.
     The influence of process parameters such as laser power, spot diameter and heating time on spreading ability was evaluated. In further investigation, the melting and spreading process of feeding wire in real brazing process was analyzed. The experimental results indicate that the surface tension is the most important influencing factor in the spreading flow and forming of filler metal, the temperature of filler metal and base metal determine the spreading ability. Furthermore, the matching of parameters such as laser power, brazing speed, wire feeding speed and laser heating position should be considered for a good appearance brazing joint.
     Based on the investigation of individual laser beam brazing, a new brazing process, dual-spot laser beam brazing was presented. Compared with individual beam brazing, new beam parameters include beam power ratio, focus distance, defocusing mode and spot arrange method, which make the brazing process more flexible. Combining the heating parameters and beam parameters, energy intensity distribution of brazing heat source can be changed to realize the different thermal distribution. Experimental results show that the better process adaptability and higher laser power availability ratio can be achieved in dual-spot beam brazing than in individual beam brazing.
     In order to expand the interaction time between filler metal and base metal and increase the interface combination quality at the bottom joint area, rectangular spot laser beam was used as brazing heat source. Integrator mirror was used to obtain rectangular laser spot with uniform laser power distribution in spot length direction. The rectangular spot brazing results indicate that narrower brazing seam surface and more joint interface area with suitable brazing parameters can be achieved, and the process can reduce the burning loss of Zn coat. Whereas, the adaptability and laser power availability ratio are lower.
     Further investigation was focus on the laser brazing joint structure and interface behaviors, in which metallographic microscope, electron microprobe scanning, SEM and EDS analysis were used. In experiments, cellular dendritic crystal ofαsosoloid was found in brazing seam with filler material of CuSi3 and the adjacent interface area of base metal is coarse grain zone. The joint SEM analysis with different heating condition was carried out to understand the mechanics of intermetallic compounds formed at the interface, and the results indicate that the thickness and shape of intermetallic compounds layer relate to brazing thermal cycle and interface temperature gradient.
     A FEM model of thermal-fluid coupling of laser brazing was developed. With the model, fixed beam heating, individual beam, dual-spot beam and rectangular spot brazing process were simulated, and the temperature distribution, flow field and filler metal shape were calculated. The simulated results show that beam spot size is the determining factor of brazing droplet shape, the temperature gradient on free surface and droplet shape determine the flow of filler metal for fixed beam heating. In individual beam brazing, the temperature of filler metal increase rapidly, and a great temperature gradient can be obtained. For dual-spot and rectangular spot brazing, the temperature filed is more uniform. The simulated results of flow field show that, the downward flow filling the joint gap is the main flow situation of the filler metal at the early stage of individual beam heating, and Marangoni flow is more important after brazing seam shape forming. For dual-spot laser brazing, the downflow is dominant in the whole process and the time of filling joint gap process is longer. The average velocity of filler metal flow is small in rectangular spot brazing and the filler metal adjacent seam center line flow downwards and Marangoni flow is dominant for the filler metal at the upper part of brazing seam. Simulated and experimental brazing shapes were compared, and a good agreement is obtained.
引文
1 T. Yih-fong. Gap-free Lap Welding of Zinc-coated Steel Using Pulsed CO2 Laser. The International Journal of Advanced Manufacturing Technology. 2006, 29(3-4): 287~295
    2 熊建钢, 胡伦骥. 镀锌板激光焊接工艺及锌行为研究. 激光技术. 1998, 22(1): 26~28
    3 E. Lugscheider, K. Schlimbach. Development of a Technology for the Flux-free Brazing of Galvanized Steel. Schweissen and Schneiden with English Translation. 2000, 52(4): E74~E77
    4 U. Resigen, J. Dickersbach. Resistance Spot Welding and Metal-Active Gas Welding of Galvanized Sheets. Schweissen and Schneiden. 2000, 52(11): E238-244
    5 J. Husner, A. Luft, C. Olaineck. Laser Brazing in Automobile Production. ThyssenKrupp Techforum. 2003, December: 58~63
    6 C. Bonan, Left Bracket Protective Atmosphere Laser Brazing of Titanium and Complex Alloys to Titanium: Examples of Applications Right Bracket. Schweissen Schneiden. 1976, 28(10): 389~391
    7 邹僖. 钎焊. 北京: 机械工业出版社. 1989: 1~12
    8 M. Geiger, H. Hanebuth, P. Hoffmann. Laser-beam Brazing in the Automotive Industry. Blech, Rohre, Profile. 1994, 41(12): 825~828
    9 陈彦宾. 现代激光焊接技术. 北京: 科学出版社. 2005: 119~128
    10 H. Hanebuth, P. Hoffmann, M. Geiger. Laser Beam Brazing Using the Twin Spot Technology. Laser Materials Processing: Industrial and Microelectronics Applications Meeting, SPIE Proceedings. Vienna, Austria, 1994, 2207: 146~153
    11 M. Halschka, J. Schwarz, D. Wildmann, et al. Machine Vision-the Powerful Tool for Quality Assurance of Laser Welding and Brazing. ICALEO, Jacksonville, Florida, USA. 2003: 63~68
    12 C. Ulimann, A. Eltze. Laser Brazing in the Auto Industry. Industrial Laser Solutions. 2005, 20(1): 28~29
    13 P. Kugler, S. Goffschling, P. Hoffomann. High Power Diode Lasers forBrazing-aspects of Manufacturing Technology and System Engineering. 6th International Conference on Brazing, High Temperature Brazing and Diffusion Welding. Aachen, Germany, 2001: 99~102
    14 K. Loeffler. The Latest Laser Applied Technology of the Auto Industry in Europe on the Example of the Body in White Application of the Volkswagen Golf V. Welding Research Abroad. 2005, 51(11): 9~12
    15 H. Schubert, S. Hauser. Laser Brazing with Solid State Laser-status and Prospects. Brazing, High Temperature Brazing and Diffusion Welding. Aachen, Germany, 2004: 205~206
    16 J. Wilden, J. P. Bergmann. Low Temperature Brazing of Zinc Coated Steel. Brazing, High Temperature Brazing and Diffusion Welding. Aachen, Germany, 2004: 217~222
    17 J. Wilden, J. P. Bergmann, M. Dolles. Use of Zinc-alloys for Low Temperature Soldering of Zinc Coated Steels. Sheet Metal 2005/Proceedings of the 11th International Conference on Sheet Metal. Eriangen-Nuremberg, Germany, 2005: 127~134
    18 F. G. Bachmann. High Power kW-range Diode Lasers for Direct Materials Processing. XIII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference. Florence, Italy, 2001: 166-171
    19 P. Kugler, M. Negendank, I. Schwab. Flux Free Brazing with High Power Lasers. Lasers in Manufacturing 2001, Proceedings of the First International WLT-Conference on Lasers in Manufacturing. German Sci. Laser Soc, 2001: 502~510.
    20 A. Ribolla, G. L. Damoulis, G. F. Batalha. The Use of Nd:YAG Laser Weld for Large Scale Volume Assembly of Automotive Body in White. Journal of Materials Processing Technology. 2005, 164-165: 1120~1127
    21 李飞群, 瞿丰, 丁健军, 等. 镀锌板填丝激光钎焊的工艺初探. 电焊机. 2003, 33(2): 40~50
    22 F. Klocke; A. Castell-Codesal; D. Donst. Process Characteristics of Laser Brazing Aluminum Alloys. Sheet Metal 2005 / Proceedings of the 11th International Conference on Sheet Metal. Eriangen-Nuremberg, Germany, 2005: 135~142
    23 F. Klocke, P. Senster. Laser Brazing of Aluminum Alloys. Brazing, HighTemperature Brazing and Diffusion Welding. Aachen, Germany, 2004: 217~222
    24 T. Markovits, J. Takacs, A. Lovas. Laser Brazing of Aluminium. Journal of Materials Processing Technology. 2003, 143-144(1): 651~655
    25 J. P. Bergmann, J. Wilden, M. Dolles. Working Zinc-coated Steels and Making Steel-aluminium Alloy Joints Using High Power Lasers-brazing and Braze Welding. Welding International, 2006, 20(1): 37~44
    26 Song Woohyun, Saida Kazuyoshi, Ando Akiyoshi, et al. Brazability of Aluminum Alloy to Steels Using Aluminum Filler Metal - Dissimilar Laser Brazing of Aluminum Alloy and Steels (Report 1). Quarterly Journal of the Japan Welding Society, 2004, 22(2): 315~322
    27 K. Saida, W. Song, K. Nishimoto. Laser Brazing of Aluminum Alloy to Steels with Aluminum Filler Metals. Schweissen im Anlagen –und Behalterba. 2004, 231: 232~237
    28 A. Mathieu, S. Mattei, A. Deschamps. Temperature Control in Laser Brazing of a Steel/Aluminium Assembly Using Thermographic Measurements. NDT and E International. 2006, 39(4): 272~276
    29 A. Mathieu, S. Pontevicci, J. Viala. Laser Brazing of a Steel/aliuminium Assembly with Hot Filler Wire. Material Science and Engineering. 2006, 435(10): 19~28
    30 A. Mathieu, R. Shabadi, A. Deschamps, et al. Dissimilar Material Joining Using Laser (Aluminum to Steel Using Zinc-based Filler Wire). Optics & Laser Technology. 2007, 39(3): 652~661
    31 L. Li. The Advances and Characteristics of High-power Diode Laser Materials Processing. Optics and Lasers in Engineering. 2000, 34(4-6): 231~253
    32 J. J. Ding, F. Q. Li, F. Qu. Investigation on Laser Brazing AA6056 Al alloy to XC18 Low-carbon Steel. Chinese Optics Letters. 2005, 3(1): 31~34
    33 J. J. Ding, H. J. Huang, P. Peyre. Temperature Criterion of Laser Welding for Joining Aluminum Alloy with Low-Carbon Steel. Materials and Manufacturing Processes. 2006, 12(1): 59~61
    34 F. W. Bach, A. Beniyash, K. Lau. Joining of Steel-aluminum Hybrid Structures with Electron Beam on Atmosphere. Sheet Metal2005/Proceedings of the 11th International Conference on Sheet Metal. Eriangen-Nuremberg, Germany, 2005: 143~150
    35 M. Geiger, H. Hanebuth, P. Hoffmann. Laserstrahlhartl?ten von Blechformteilen mit dem Nd:YAG-Laser. Pr?zisionsbearbeitung mit Festk?rperlasern (Fügen), VDI Technologiezentrum Physikalische Technologien, Düsseldorf, 1996
    36 H. Laukant, C. Wallmann, M-Korte. Flux-less Joining Technique of Aluminium with Zinc-coated Steel Sheets by a Dual-spot-laser Beam, Sheet Metal 2005/Proceedings of the 11th International Conference on Sheet Metal. Eriangen-Nuremberg, Germany, 2005: 163~170
    37 H. Haferkamp, F. W. Bach, F. V. Alvensleben, et al. Laser Beam Active Brazing of Metal Ceramic Joints. Lasers as Tools for Manufacturing of Durable Goods and Microelectronics, San Jose, CA, USA, SPIE, 1996, 2703: 300~309
    38 H. Haferkamp, B. Friedrich-Wilhelm, V. A. F. Mai, et al. Laser Beam Brazing of Metal-ceramic Joints. Schweissen Schneiden. 1996, 48(11): E210~E212
    39 Li M G, Sun D Q, Qiu X M. Effect of Tin on Melting Temperature and Microstructure of Ag-Cu-Zn-Sn Filler Metals. Materials Science and Technology. 2005, 21(11): 1318~1322
    40 W. Lippmann, J. Knorr, R. Wolf. Laser Joining of Silicon Carbide - a New Technology for Ultra-high Temperature Resistant Joints. Nuclear Engineering and Design. 2004, 231(2): 151~161
    41 S. H. Yoon, S. J. Na. Application of Laser Joining Process for Elimination of Stair Steps in Steel Laminate Tooling. International Journal of Advanced Manufacturing Technology. 2005, 25(1-2): 154~159
    42 J. G. Shan, J. L. Ren, V. F. Khorunov. Repairing of the Defects of the Engine Vanes of an Aeroplane by Light Beam Brazing. Journal of Materials Processing Technology. 2002, 121(1): 23~26
    43 http://www.erlas.com
    44 P. Hoffmann, P. Kugler, J. Schwab. Process and System Technology for Laser Brazing. Brazing, High Temperature Brazing and Diffusion Welding. Aachen, Germany, 2004: 207~210
    45 http://www.corusautomotive.com
    46 T. 哈默. 激光焊接方法. 中国专利, 公开号: CN1217248A
    47 Takemura Shinsuke. Laser Brazing Method and Its Device. Japanese Patent, Publication Number: 2003225784A
    48 Tarui Hiroshi. Laser Brazing Method and Device. Japanese Patent, Publication Number: 2003311452A
    49 Tarui Hiroshi. Method and Device of Laser Brazing. Japanese Patent, Publication Number: 2003205382A
    50 Hendrik Rohde, Jochen Katic. ESAB Pulsed Gas-shielded Metal Arc Brazing of Surface-coated Sheets. Svetsaren. 2000, 55(3): 20~23
    51 M. Mucha, R. Dubsky. MIG brazing of galvanised plates in automotive industry. Zvaranie. 2003, (9/10): 200~204
    52 H. Hackl. MIG Brazing of Galvanized Light-gauge Sheets. Welding in the World, 2001, 45sup: 57~63
    53 Heinrich Hackl. MIG-brazing of Galvanized Thin Sheets and Profiles. Schweissen-Schneiden with English Translation, 1998, 50(6): E102~E104
    54 B. Bouaifi. Low-heat Joining of Coated Sheet Metals. Welding Journal. 2003, 82(1): 26~30
    55 H. Hackl. MIG-brazing of Galvanized Thin Sheets and Profiles. Schweissen and Schneiden. 1998, 50(6): E102~E104
    56 黄钦筠. 镀层薄板的 MIG 钎焊. 电焊机, 2001, 31(1): 29~30
    57 于治水, 周方明, 王宇, 等. 镀锌薄钢板 MIG/TIG 电弧钎焊研究及应用现状. 汽车技术. 2006, (6): 32~35
    58 A. Joseph, C. Webb, M. Haranmia. Variable Polarity Improve Weld Brazing of Galvanized Sheet. Welding Journal. 2001, 80(10): 36~40
    59 H. Rohde, J. Katic. ESAB Pulsed Gas-shielded Metal Arc Brazing of Surface-coated Sheets. Svetsaren. 2000, 55(3): 20~23
    60 王宇, 于治水. 薄板电弧钎焊钎缝形成及界面现象. 机械设计与制造工程. 2000, 29(2): 89~92
    61 于治水. 镀锌板氩弧钎焊润湿铺展及界面行为. 哈尔滨工业大学博士论文. 2003
    62 B. Bouaifi, U. Draugelates. Plasma Arc Brazing – a Low Energy Joining Technology for Steel Sheets. 6th International Conference on Brazing, HighTemperature Brazing and Diffusion Welding, Aachen, Germany, 2001: 88~92
    63 Min-Kyu Jeon, Weon-Bae Kim, Guk-Chan Han, et al. A Study on Heat Flow and Temperature Monitoring in the Laser Brazing of a Pin-to-plate Joint. Journal of Material Processing Technology. 1998, 82(1-3): 53~60
    64 J. S. Park, S. J. Na. Heat Transfer in a Stud-to-plate Laser Braze Considering Filler Metal Movement. Welding Journal. 1998, 77(4): 155s~163s
    65 J. S. Park, S. J. Na. A Study on the Numerical Analysis of Thermomechanical Behaviour in a Stud-to–plate Laser Braze Joint. Proceedings of the Institution of Mechanical Engineers; Part C: Journal of Mechanical Engineering Science. 1999, 213(C8): 763~774
    66 董平, 陈裕泽, 邹觉生, 等. 铍环激光束钎焊过程的数值模拟. 金属学报. 2002, 38(8): 881~884
    67 V. R. Dave, R. W. Carpenter, D. T. Christensen. Precision Laser Brazing Utilizing Nonimaging Optical Concentration Welding Journal. 2001, 80(6): 142~147
    68 S. Safdar, L. Li, M. Sheikh. Numerical Analysis of the Effects of Non-conventional Laser Beam Geometries during Laser Melting of Metallic Materials. Journal of Physics. D, Applied Physics. 2007, 40(2): 593~603
    69 T. E. Voth, S. E. Gianoulakis, J. A. Halbleib. Thermal Response of Ceramic Components During Electron Beam Brazing. Proceedings of the 1996 31st ASME National Heat Transfer Conference, Part 1, Houston, TX, USA, 1996, 323(1): 185~192
    70 Yu Zhi-shui, Li Rei-feng, Qi Kai et al. Numerical Simulation of Copper Based Filler Metal Droplets Spreading under Arc Brazing. Transactions of Nonferrous Metals Society of China. 2005, 15(4): 818~822
    71 S. Lu, H. Fujii, K. Nogi. Sensitivity of Marangoni Convection and Weld Shape Variations to Welding Parameters in O2-Ar Shielded GTA Welding. Scripta Materialia. 2004, 51(3): 271~277
    72 F. Lu, X. Tang, H. Yu. Numerical Simulation on Interaction between TIG Welding Arc and Weld Pool. Computational Materials Science. 2006, 35(4): 458~465
    73 I. S. Kim, A. Basu. A Mathematical Model of Heat Transfer and Fluid Flow in the Gas Metal Arc Welding Process. Journal of Materials ProcessingTechnology. 1998, 77(1-3): 17~24
    74 C. Chan, J. Mazumder, M. M. Chen. Two-dimensional Transient Model for Convection in Laser Melted Pool. Metall. Trans. 1984, A15A: 2175~2184
    75 W. S. Kim, B. C. Sim. Study of Thermal Behavior and Fluid Flow during Laser Surface Heating of Alloys. Numer Heat Transfer. 1997, A31: 703~723
    76 S. Basu, T. Debroy. Liquid Metal Expulsion During Laser Irradiation. J Appl Phys. 1992, 72: 3317~3322
    77 Ha E-J, Kim W-S. A Study of Low-power Density Laser Welding Process with Evolution of Free surface. International Journal of Heat and Fluid Flow. 2005, 26(4): 613~621
    78 A. G. Marathe, M. R. Ravi. Simulation of Laser and Electron Beam Melting Problems. XVII National and VI ISHMT/ASME Heat and Mass Transfer Conference, IGCAR, Kalpakkam, J, 2004: 57~62
    79 K. Ravindran, J. Srinivasan, A. G. Marathe. Role of Surface Tension Driven Convection in Pulsed Laser Melting and Solidification. Proceedings of the Institution of Mechanical Engineers. 1995, 209(B1): 75~82
    80 H. G. Fan, H. L. Tsai, S. J. Na. Heat Transfer and Fluid Flow in a Partially or Fully Penetrated Weld Pool in Gas Tungsten Arc Welding. International Journal of Heat and Mass Transfer. 2001, 44(2): 417~428
    81 M. C. Tsai, S. Kou. Electromagnetic-force-induced Convection in Weld Pools with a Free Surface. Welding journal. 1990, 69: 241s~246s
    82 S. D. Kim, S. J. Na. Effect of Weld Pool Deformation on Weld Penetration in Stationary Gas Tungsten Arc Welding. Welding journal. 1992, 71: 179s~193s
    83 V. Pavlyk; U. Dilthey. A Numerical and Experimental Study of Fluid Flow and Heat Transfer Instationary GTA Weld Pools. 5th International Seminar on the Numerical Analysis of Weldability. Graz, Austria, 1999: 135~163
    84 V. Pavlyk; U. Dilthey. A Numerical and Experimental Investigation of Heat and Fluid Flow in ElectricArc Weld Pools. Modeling of Casting, Welding and Advanced Solidification Processes IX. Aachen, Germany, 2000: 830~837
    85 X. He, J. T. Norris, P. W. Fuerschbach, T. Debroy. Liquid Metal Expulsion during Laser Spot Welding of 304 Stainless Steel. Journal of Physics. D, Applied Physics. 2006, 39(3): 525~534
    86 C. H. Kim, W. Zhang, T. Debroy. Modeling of Temperature Field andSolidified Surface Profile during Gas-metal Arc Fillet Welding. Journal of Applied Physics. 2005, 97(8): 084909-1~084909-9
    87 X. He, J. W. Elmer, T. Debroy. Heat Transfer and Fluid Flow in Laser Microwelding. Journal of Applied Physics. 2003, 94(4): 2667~2679
    88 S. Mishra, T. Debroy. A Heat-transfer and Fluid-flow-based Model to Obtain a Specific Weld Geometry Using Various Combinations of Welding Variables. Journal of Applied Physics. 2005, 98(4): 44902-1~44902-10
    89 G. G. Roy, J. W. Elmer, T. Debroy. Mathematical Modeling of Heat Transfer, Fluid Flow and Solidification during Linear Welding with a Pulsed Laser Beam. Journal of Applied Physics. 2006, 100(3): 034903-1~034903-7
    90 A. Kumar, T. DebRoy. Guaranteed Fillet Weld Geometry from Heat Transfer Model and Multivariable Optimization. International Journal of Heat and Mass Transfer. 2004, 47(26): 5793~5806
    91 Y. M. Zhang, Z. N. Cao, R. Kovaceric. Numerical Analysis of Fully Penetrated Weld Pools in Gas Tungsten Arc Welding. Proc. Instn. Mech. Engr. Part C: Journal of Mechanical Engineering Science. 1996, 210: 77~85
    92 孙承伟. 激光辐照效应. 北京, 国防工业出版社, 2002: 19~20
    93 李力钧. 现代激光加工及其装备. 北京:北京理工大学出版社, 1993: 32~35
    94 李俊昌, 郑启光, 凌东雄 等. 强激光积分变换镜的光学性能及相关热作用. 光电子·激光. 2002, 13(8): 767~772
    95 王智勇, 陈虹, 左铁钏. 一种大功率激光加工用带式积分镜的设计. 北京工业大学学报. 2002, 28(3): 334~336
    96 Li Rei-feng, Yu Zhi-shui, Qi Kai. Interfacial Structure and Joint Strengthening in Arc Brazed Galvanized Steels with Copper Based Filler. Transactions of Nonferrous Metals Society of China. 2006, 16 (2): 397~401
    97 于治水, 钱乙余, 王凤江 等. Cu 基钎料电弧钎焊接头强度及断口分析. 机械工程学报. 2001, 37(10): 88~92
    98 Yu Zhi-shui, Li Rei-feng, Qi Kai. Growth Behavior of Interfacial Compounds in Galvanized Steel Joints with CuSi3 Filler under Arc Brazing. Transactions of Nonferrous Metals Society of China. 2006, 16(6): 1391~1396
    99 章本照, 印建安, 张宏基. 流体力学数值方法. 北京: 机械工业出版社. 2003: 22~31
    100 陶文铨. 计算流体力学与传热学. 北京: 中国建筑工业出版社, 1991
    101 J. D. Kim, Y. Peng. Melt Pool Shape and Dilution of Laser Cladding with Wire Feeding. Journal of Materials Processing Technology, 2000, 104: 284~293
    102 J. Guo, P. L. Masson, E. Artioukhine, et al. Estimation of a Source Term in a Two-dimensional Heat Transfer Problem: Application to an Electron Beam Welding. Inverse Problems in Science and Engineering. 2006, 14(1): 21~38
    103 C. Chan, J. Mazumder, M. M. Chen. A 2-dimensional Transient Model for Convection in Laser Melted pool. Metall Trans A-Phys Metall Mater, 1984,
    15: 2175~2184
    104 刘振侠. 激光熔凝和激光熔敷的数学模型和数值分析. 西北工业大学博士学位论文. 2003
    105 C. R. Heiple, J. R. Rooper. Mechanism for Minor Element Effect in GTA Fusion Zone Geometry. Welding Journal, 1982, 61: 97s~102s
    106 T. Zacharia, S. A. David, J. M. Vitek, T. Debroy. Weld Pool Development during GTA and Laser Beam Welding of Type 304 Stainless Steel, Part1: Theoretical Analysis. Welding Journal, 1989, 68(12): 499~509
    107 陈民, 王遵敬, 过增元. 铜镍合金的表面张力温度系数的蒙特卡罗模拟. 工程热物理学报, 2001, 22(3): 269~271
    108 刘燕, 耿浩然, 孙民华, 崔红卫. 液态金属粘滞性的研究现状与展望. 铸造, 2000, 49(12): 875~878
    109 黄祖洽, 丁鄂江. 表面浸润和浸润相变. 上海科学技术出版社, 1993: 14~15
    110 H. Saito, L. E. Scriven. Study of Coating Flow by the Finite Element Method. Journal of Computational Physics, 1981, 42: 53~76
    111 黄兴元. 聚合物气体辅助口模挤出成型的理论及实验研究. 南昌大学博士学位论文. 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700