磁标记骨髓间充质干细胞构建组织工程软骨MRI活体示踪技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     多种原因所致的关节软骨缺损在医学临床较为常见,目前所用的保守治疗和手术治疗方法均存在明显缺陷。关节软骨组织工程技术可为其再生修复提供新的治疗手段。近年来骨髓间充质干细胞(BMSCs)因具有良好的体外扩增能力、且具有软骨分化潜能,已成为体外构建组织工程软骨的重要种子细胞来源,许多实验表明移植入宿主体内的BMSCs能促进宿主体内缺损功能的修复,展示了光明的前景。然而目前困扰关节组织工程技术临床应用的一个重要难题――对体内原位种子细胞的研究缺乏有效的识别和追踪监测手段,因而难以明确外源性种子细胞在软骨缺损修复中的作用和转归,体内新生软骨组织的细胞来源,细胞移植术的疗效。因此迫切需要探索一种对体内原位移植细胞进行追踪和监测的安全、有效、无创的手段,以促进组织工程软骨修复关节软骨缺损技术研究的进一步深入。
     目的
     本项目拟在课题组既往关节软骨组织工程研究获得重要进展的基础上,借鉴国内外最新研究成果,研究体外SPIO标记种子细胞BMSCs的适宜方法、磁标记物对种子细胞生物学特性的影响、MRI监测体外磁标记细胞的灵敏度、准确度及MRI活体示踪自体皮下移植磁化标记BMSCs的可行性,最后通过不同时相点1.5T MRI在体示踪种子细胞在活体内的存活、迁徙及分布,以及结合BrdU细胞示踪技术作为阳性对照,并判定其磁标记细胞的分化转归过程,完成其自体移植修复关节软骨缺损的动物实验应用研究,为关节软骨组织工程种子细胞的在体示踪提供一种安全无创、动态直观的新技术和新方法。
     方法
     1、体外纳米磁标记BMSCs的体外细胞生物学特性及其MR成像
     从兔骨髓中分离培养BMSCs,不同浓度SPIO(50μg/ml、25μg/ml、12.5μg/ml)联合硫酸鱼精蛋白转染剂与BMSCs孵育12h,未标记细胞设为对照组。普鲁士染色和电镜检查鉴定细胞内是否含铁颗粒;胎盼蓝染色检测细胞存活和MTT法测定生长曲线的变化;磁标记BMSCs转入各定向培养基中进行诱导培养2w后;鉴定磁标记BMSCs的多向分化潜能:对成骨定向诱导组进行钙结节茜素红染色和碱性磷酸酶(ALP)组化染色,对成脂肪定向诱导组观察细胞形态学变化或油红-O染色,对成软骨定向诱导组进行番红-O染色和II型胶原免疫组化染色检测胞外基质的分泌和表达;应用1.5T MR梯度回波T2加权(GRET2*WI)扫描序列和自旋回波T2加权(SET2WI)扫描序列对磁标记细胞成像示踪。
     2、MR成像示踪磁标记兔BMSCs自体皮下移植
     BMSCs经体外采用SPIO和BrdU双重标记后,与壳聚糖-甘油磷酸钠(C-GP)支架复合植入兔自体大腿皮下,在术后1h、第5d及2w、4w、8w应用0.2T MR GRET2*WI序列对磁标记细胞成像行连续示踪,扫描后即处死动物并取材行组织切片普鲁士染色及免疫组化BrdU检查。实验组为自体皮下移植SPIO标记BMSCs(n=6),设立自体皮下移植未标记BMSCs(n=6)和皮下单纯注射SPIO组(n=2)为两组对照。
     3、MR在体成像示踪磁标记的BMSCs修复兔关节软骨缺损
     建立兔膝直径4mm深约3mm的股骨髁软骨缺损模型,1周后将经SPIO和BrdU双重标记的BMSCs与C-GP支架1ml复合,然后注射到自体软骨损伤关节腔中,术后1h、4w、8w及12w应用1.5T MR GRET2*WI序列对膝关节腔内注入的磁标记BMSCs进行扫描示踪,并与组织切片普鲁士染色及免疫组化BrdU对照。实验组为损伤侧膝关节注入1ml含1×10~8个磁标记BMSCs与C-GP支架混悬液;设立注入1ml含1×10~8个未标记BMSCs与C-GP支架混悬液、损伤侧膝关节不做任何处理为两组对照(n=6)。
     结果
     1、体外纳米磁标记BMSCs细胞生物学特性及其MR成像
     磁标记细胞普鲁士染色和电镜检查显示细胞胞浆内含致密铁颗粒;胎盼蓝染色和MTT分析测定生长曲线证实磁标记对BMSCs活性和增殖无影响(P>0.05);纳米磁标记BMSCs在体外具有向成骨细胞、软骨细胞和脂肪细胞表型诱到的潜能。1.5TMR扫描GRET2*WI序列和SET2WI序列提示与未标记细胞SI相比,1×10~6个标记细胞、5×10~5个标记细胞信号强度均有不同程度显著性下降(P<0.05)其中GRET2*WI的信号强度衰减率显著性高于T2WI序列(P<0.05)。在两个序列中1×10~6(标记细胞)信号强度衰减率均高于5×10~5(标记细胞)信号强度衰减率,但不具有有显著性差异。
     2、MR成像示踪磁标记兔BMSCs自体皮下移植
     自体皮下移植的磁标记兔BMSCs在GRET2*WI序列成像时产生特征性的低信号改变至少维持8周。术后1h兔后肢0.2T MR GRET2*WI序列成像示磁标记细胞在皮下注入部位形成直径约1.5cm的特异性类圆形低信号影。术后5d观察到距注射部位后侧0.5cm处皮下出现孤立的特异性低信号影,原皮下注射部位特异性低信号影直径扩大至1.7cm,低信号强度未见减弱。术后2w见皮下孤立的特异性低信号影已与原皮下注射部位特异性低信号影融合,并呈线性延伸为0.6cm,低信号区域直径扩大为2.0cm,侵及肌层。术后4w见低信号区域进一步扩大。术后8w见皮下注射部位向周围发出的低信号线显著长达1.1cm,低信号区域直径扩大为2.6cm,侵及肌肉深层,低信号强度减弱。MRI信号改变区域与组织学切片普鲁士染色及免疫组化BrdU显示植入细胞结果相对应。术后第5d移植部位见植入细胞密集,植入物与宿主组织界面周围散在出现植入细胞。术后2w至4w见移植部位与宿主组织界面周围出现的植入细胞较前增加,但植入细胞主要聚集在移植部位内,术后8w移植部位植入细胞减少,宿主组织内出现的植入细胞较前显著增加。HE染色观察到术后初期在植入区域出现炎性反应,但术后1周炎性反应消失,所有动物的移植部位均未出现切口红肿和分泌物。
     3、MR在体成像示踪磁标记的BMSCs修复兔关节软骨缺损
     体外磁标记的BMSCs与C-GP复合注射入关节腔后1.5T MR GRET2*WI序列成像显示关节腔内磁标记BMSCs产生弥漫性颗粒状低信号影改变至少12w,术后1h可见关节腔内出现弥漫性颗粒状异常低信号改变,主要分布于和腘窝部位,术后4w观察到软骨缺损部位、软骨下骨处特异性低信号影改变。但随着移植时间延长,低信号强度逐渐减弱,术后12w软骨缺损处特异性低信号影不明显,而关节腔内髌上囊、腘窝处结节状低信号改变仍清晰存在。MRI信号改变区域与组织学切片普鲁士染色及免疫组化BrdU显示植入细胞结果相对应。术后4w见软骨修复区有少量植入细胞存在,大量植入细胞主要分布于髌上囊、腘窝处滑膜和软骨下骨,术后8w软骨修复区植入细胞消失,滑膜中植入细胞数目亦减少,术后12w软骨修复区亦未见植入细胞,而髌上囊滑膜和软骨下骨部位仍较多存在植入细胞。
     结论
     1、SPIO联合硫酸鱼精蛋白转染剂能成功标记BMSCs,磁标记对细胞存活、增殖及潜在多向分化能力无影响,磁标记细胞在MR上产生特征性的低信号改变,临床1.5TMR成像示踪标记细胞可行,以GRET2*WI序列成像最为敏感。
     2、自体皮下移植的磁标记兔BMSCs在0.2T GRET2*WI序列产生特征性的低信号改变至少8w,术后1h、第5d、2w、4w、8w不同时相MR连续成像观察到植入细胞从皮下移植部位向远处迁移并逐渐进入宿主组织。术后2w、4w、8w时植入细胞的组织学改变与MRI结果基本一致。移植的磁标记细胞在具有免疫功能的皮下未诱发明显的免疫反应。利用0.2T MR连续示踪自体皮下移植的磁标记BMSCs活体内的分布和迁移是可行的。
     3、兔BMSCs经SPIO标记后仍然具有成软骨细胞诱导能力;磁标记后植入关节腔内的BMSCs可以在临床1.5T MR上产生明显的低信号改变至少12w,术后1h、4w、8w、12w时不同时相MR连续成像观察到关节腔内部分植入细胞向软骨缺损迁移聚集随后又逐渐减少,至术后12w时软骨缺损部位植入细胞消失,此时植入细胞主要分布于关节腔内髌上囊、腘窝、软骨下骨。术后4w、8w、12w时植入细胞的组织学改变与MRI结果基本一致,关节腔内注入体外扩增培养的磁标记BMSCs,不能促进软骨缺损修复。应用MRI在体示踪磁标记细胞技术可以连续示踪组织工程软骨种子细胞BMSCs在活体关节腔内的分布和迁移,可望为组织工程种子细胞的示踪提供一种无创动态、直观简便的方法。
Background
     Clinically, articular cartilage defects occur commonly in association with different pathological situations. Clinical treatments for cartilage defects elicit incomplete repair, e.g. fibrocartilage. Recently, tissue-engineering procedures hold promise for the treatment of articular cartilage defects to achieve the re-generation to hyaline cartilage. However, there is still a lack of understanding regarding the characteristics of the seed cells in repairing defects. The development of tissue-engineering therapies requires an efficient and noninvasive technique to monitor the in vivo behavior of implanted cells in host tissue and thus help understand the characteristics of the seed cells.
     Purpose
     The aim of this study was to label BMSCs with SPIO(superparamagnetic iron oxide nanoparticles, SPIO) and study the effects of magnetic labeling on the proliferation and differentiation of BMSCs, to study the feasibility of magnetic resonance imaging tracking of transplanted SPIO-labeled BMSCs in vivo after implantation into rabbit subcutaneous tissue, and to evaluate in vivo magnetic resonance imaging with 1.5T system tracking for the surviva1, migration and differentiation of magnetically labeled BMSCs injected in articular cavity in rabbit cartilage defect model.
     Method
     1. Biological characteristics and in vitro MRI of SPIO labeled BMSCs from rabbits.
     rabbit BMSCs were isolated, purified, expanded ,then coincubated with various doses of SPIO(50μg/ml、25μg/ml、12.5μg/ml) complexed to protamine sulfate(Pro) transfection agents overnight. Prussian blue stain and transmission electron microscopy were performed to show intracellular iron, Tetrazolium salt (MTT) assay was applied to evaluate toxicity and proliferation of magnetic labeled BMSCs. Cell differentiation capacity were assessed in vitro using appropriate functional assays.Vials containing cells underwent 1.5T MR imaging (MRI) with GRE T2*WI weighted and SET2WI sequence. Data were expressed as the mean±SD, and one-way analysis of variance and the Independent-Samples T test were used to test for significant differences.
     2. In vivo Magnetic Resonance Imaging Tracking of SPIO-labeled BMSCs after Autologous Transplantation In Subcutaneous Tissue of Rabbits.
     rabbit BMSCs were in vitro coincubated with SPIO(25μg/ml) complexed to protamine sulfate transfection agents for 12h, subsequently BMSCs were grown in medium containing BrdU for 2h.After colabeled, BMSCs were encapsulated in chitosan and g1ycero- phosphate(C-GP) gel. Autologous co-labeled BMSCs encapsulated in C-GP gel constructs were injected into thigh subcutaneous tissue of rabbits.All rabbits were performed on a clinical 0.2-T MR imager using a T2*-weighted gradient- echo(GRE T2*WI) sequence at 1 day , 5 days, 2 weeks, 4 weeks, 8 weeks after implantation. Animals were divided into 3 experimental groups: 1) rabbits injected with SPIO and BrdU colabeled BMSCs seeded inC-GP gel into autologus thigh subcutaneous tissue(n=6); 2) rabbits injected with BrdU labeled BMSCs seeded in chitosan and glycerophosphate (C-GP ) gel into autologus thigh subcutaneous tissue(n=6); 3) rabbits injected with SPIO lonely into autologus thigh subcutaneous tissue(n=2);
     3. In vivo MR Imaging Tracking of Magnetic Iron-oxide Nanoparticles Labeled Bone Marrow Mesenchymal Stem Cells injected Into the Intra-articular Space of Knee Joints In Rabbit
     BMSCs colabeled with SPIO(25μg/ml) and BrdU were suspended in 1ml of C-GP gel and injected into the intra-articular space of knee joints in rabbit cartilage defect model. 18 Japanese White rabbits were equally divided into 3 groups. In group A, SPIO and BrdU co-labeled, autologous BMSCs that were seeded in C-GP gel were injected into the knee joint cavity of the rabbit models of articular cartilage defects. In group B, BrdU-labeled, autologous BMSCs that were seeded in C-GP gel were injected. In group C, no treatment was applied to the rabbit models for cartilage defects.All rabbits were imaged at 1 day, 4 weeks, 8 weeks,12 weeks post-injection. 1.5-T MR imaging findings were compared with histology.
     Result
     1. Intracytoplasmic nanoparticles were stained with Prussian blue and observed by transmission electron microscopy clearly except the unlabeled control. As compared with the nonlabeled cells, MTT values of light absorption had no statistically significant difference. It showed no significant difference in effects on the viability, growth rate and differentiation of the labeled BMSCs. And the differentiation of the labeled cells were unaffected by the endosomal incorporation of SPIO after the labeled BMSCs were incubated in appropriate inducers for 3 weeks. The lipid drop emergence and some specimens were stained with Oil-red-O. The calcium nodu1es were stained with alizarin red. For Chondrogenesis in labeled and unlabeled BMSCs, Safranin-O staining shows deposition of proteoglycan and immunohis- tochemical staining shows production of collagen type II expressed equally. GRET2*WI and T2*WI demonstrated significant decrease of signal intensity (SI) in vials containing 1×106 and 5×105 labeled cells, in comparison with unlabeled cells (P<0.05). The percentage change of SI(△SI) was significantly higher in 1×106 labeled cells than that in 5×105 labeled cells, particularly on GRET2*WI (P<0.05). Among pulse sequences, GRE T2*WI demonstrated the highest△SI(P<0.05).
     2. At injection sites low signal intensity could be observed on MRI examination with the scanning sequences of GRET2*WI. Low signal intensity lines could be observed targeting to the host tissue areas in experimental group.
     3. Marked hypointense signal void areas representing the implanted BMSCs could be observed in intra-articular space after cell injection on GRE T2-weighted MR image in group A, and persisted for 12 weeks at least. Two week after injection, we observed a hypointense signal in the defect, which reached its maximum in signal intensity at about 4 weeks and decreased for the next weeks.12 weeks after injection, no recognizable hypointense signal in the defect was detected. Histochemical staining demonstrated the presence of Prussian blue-positive cells and BrdU-positive cells in tissue sections in areas that corresponded well to the signal intensity loss regions in the MRI images. Group B and group C showed no signal intensity loss in intra-articular space on GRE T2-weighted MR image. The histological observation showed that the defects were repaired with fibrocartilage in group A and group B, fiber tissue in group C.
     Conclusion
     1. BMSCs can be labeled with Fe-Pro efficiency without significant change in cell viability and differentiation capacity.The suspension of labeled BMSCs can be imaged with standard 1.5-T MR equipment,Low signal intensity could be observed and GRET2*WI was the most sensitive sequence for detecting SPIO-labeled BMSCs.
     2. SPIO can be used to label BMSCs in vitro efficiently. 0.2-T MRI in vivo tracking of the transplanted SPIO-labeled BMSCs in subcutaneous tissue is effective.
     3. 1.5-T MRI tracking for the surviva1, migration and differentiation of magnetically labeled BMSCs injected in articular cavity in rabbit articular cartilage defect model is feasible and efficient. BMSCs cultured in vitro and injected into intra-articular space can not improve the treatment results of the articular cartilage defect. MRI would be an efficient noninvasive technique to monitor the fate and dynamic redistribution of seed cells labeled with SPIO in future articular cartilage tissue engineering applications.
引文
1. Browne JE, Branch TP. Surgical alternatives for treatment of articular cartilage lesions. J Am Acad Orthop Surg 2000,8(3):180-189.
    2. O’Driscoll S. The healing and regeneration of articular cartilage. J Bone Joint Surg A 1998,80(12):1795-1812.
    3. Buckwalter JA, Mankin H. Articular cartilage part II: degeneration and osteoarthrosis, repair, regeneration and transplantation. J Bone Joint Surg 1997, 79A: 612–632.
    4. RussliesM, Behrens P, Ehlers EM, et al. Periosteum stimulates subchondral bone densification in autologous chondrocyte transp lantation in a sheep model. Cell Tissue Res, 2004, 10 (8) : 1001 - 1009.
    5. JungM, Gotterbarm T, Gruettgen A, et al. Molecular characterization of spontaneous and growth-factor-augmented chondrogenesis in periosteum-bone tissue transferred into a joint. Histochem Cell Biol,2005, 123 (4-5): 447 - 456.
    6. Koulalis D, SchultzW, Heyden M, et al.Autologous osteochondral grafts in the treatment of cartilage defects of the knee joint. Knee Surg Sports Traumatol Arthrosc, 2004, 12 (4) : 329-334.
    7. Wakitani S, Mitsuoka T, Nakamura N, et al. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patel- lae: two case reports. Cell Transp lant, 2004, 13 (5) : 595 - 600.
    8. Rudert M,Wilms U, Hoberg M, et al. Cell-based treatment of osteochondral defects in the rabbit knee with natural and synthetic matrices: cellular seeding determines the outcome. Arch Orthop Trauma Surg, 2005, 125 (9) : 598 - 608.
    9. Alford J W, Cole B J. Cartilage Restoration, Part 1: Basic Science, Historica Perspective, Patient Evaluation, and Treatment Options. Am J Sports Med, 2005, 33 (2): 295-306.
    10. Langer R,Vacanti JP.Tissue engineering.Science,1993,260:920-925.
    11. Liu W,Cui L, Cao Y. A closer view of tissue engineering China: the experience of tissue construction in immunocompetent animals. Tissue Eng,2003,9(S1):17-30.
    12.裴国献.面向21世纪的组织工程学研究趋势与策略.中华创伤骨科杂志,2004,6(7):721-723.
    13.曹谊林,崔磊,刘伟.中国组织工程研究回顾与发展.中华实验外科杂志,2003,20:485-486.
    14. Brittberg M, Peterson L, Sjouml E, et al. Articular Cartilage Engineering with Autologous Chondrocyte Transplantation: A Review of Recent Developments. J Bone Joint Surg Am, 2003, 85 (8): 109-115.
    15. SchaeferD, Martin I, Jundt G, et al. Tissue engineered composites for the repair of large osteochondral defects. Arthritis Rheum, 2002, 46 (9) : 2524 - 2534.
    16.杨柳.加强软骨与骨组织工程中关键技术的应用研究.中华实验外科杂志, 2005, 22(3): 263-265.
    17. Murphy JM, Dixon K, Beck S, et al. Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum, 2002,46(3): 704-713
    18. Bhardwaj T, Pilliar RM, Grynpas MD, et al. Effect of material geometry on cartilaginous tissue formation in vitro. J Biomed Mater Res 2001,57(2):190-199.
    19. Peretti GM, Randolph MA, Villa MT, et al. Cell-based tissue-engineered allogeneic implant for cartilage repair. Tis sue Eng 2000;6(5):567-576.
    20. Reinholz GG, Lu L, Saris DBF, et al. Animal models for cartilage reconstruction. Biomaterials 2004; 25(9):1511-1521.
    21. Zhou GD, Wang XY, Miao CL, et al. Repairing procine knee joint osteochondral defects at non-weight bearing area by autologous BMSC. Zhonghua Yixue Zazhi , 2004, 84(11): 925-931.
    22. Ponticiello MS, Schinagl RM, Kadiyala S, et al. Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater Res 2000,52(2):246-255.
    23. Xiang Z, Hu W, Kong Q, et al. Preliminary s tudy of mesenchymal stem cells -seeded type I collagen-glycosaminoglycan matrices for cartilage repair. Zhongguo Xiufu Chongjian Waike Zazhi 2006; 20(2):148-154.
    24. Adachi N, Ochi M, Deie M, et al. Transplant of mesenchymal stem cells and hydroxyapatite ceramics to treat severe os teochondral damage after septic arthritis of the knee. J Rheumatol 2005,32(8):1615-1618.
    25. Oshima Y, Watanabe N, Matsuda K, et al. Behavior of transplanted bone marrow-derived GFP mesenchymal cells in osteochondral defect as a simulationautologous transplantation. J Histochem Cytochem, 2005,53(2): 207-216.
    26. Chang CH, Kuo TF, Lin CC, et al.Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: A porcine model assessed at 18, 24, and 36 weeks. Biomaterials, 2006, 27(9): 1876-1888.
    27. Quintavalla J, Uziel-Fusi S, Yin J, et al. Fluorescently labeled mesenchymal stem cells (BMSCs) maintain multilineage potential and can be detected following implantation into articular cartilage defects. Biomaterials, 2002, 23 (1): 109-119.
    28. Krause DS. Plasticity of marow-derived stem cells.Gene Ther, 2002,9(11):754-758.
    29. Chen J,Li Y,Chopp M. Intracerebral transplantation of bone marrow with BDNF after MCAo in rat.Neuropharmacology,2000,39(5): 711-716.
    30. Skuk D,Caron NJ,Goulet M, et al. Resetting the problem of cell death following muscle-derived cell transplantation:detection ,dynamics and mechanisms. J Neuropathol Exep Neurol,2003,62(9):951-967.
    31. Ehrhardt D. GFP technology for live cell imaging. Curr Opin Plant Biol,2003,6: 622-628.
    32. Panchal RG, Williams DA, Kitchner PD, et al. Gene transfer: manipulating and monitoring function in cells and tissues. Clin Exp Pharmacol Physiol, 2001,28(8): 687-691.
    33. Rosochal SJ, Matejczyk M. Green fluroesent protein as a molecular marker in microbiology. Acta Microbiol Pol, 2002,51(3):205-216.
    34. Chalfie M, Tu Y, Euskirchen G, et al. Green flurorescent protein as a marker for gene expression. Science, 1994,263:802-805.
    35. Tsicn RY. The green fluorescent protein. Annu Rev Biochem, 1998,67:509-912.
    36. Cheng L, Fu J, Tsukamoto A, et al. Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Nature Biotechnol, 1996,14: 351-354.
    37.段小军,杨柳,周跃,等.兔骨髓间充质干细胞同种异体皮下移植研究.中华创伤杂志, 2005, 21(7): 512-516.
    38.周广东,王小云,苗春雷,等.骨髓基质细胞修复猪关节非负重区软骨与骨复合缺损的实验研究.中华医学杂志,2004, 84(11): 925-931.
    39. Zhao DC, Lei JX, Chen R, et al. Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats. World Journal of Gastroenterology,2005,11(22): 3431-3440.
    40.孙明学,卢世璧,王继芳,等.脱钙骨基质为骨组织工程支架修复骨缺损实验研究.中国医学科学院学报,2003,25(1):32-35.
    41. Ding WM, Bai JZ, Zhang JM, et al.In vivo tracking of implanted stem cells using radio-labeled transferrin scintigraphy. Nuclear Medicine and Biology, 2004, 31(6):719-725.
    42. Rochefort GY, Vaudin P, Bonnet N, et al. Influence of hypoxia on the domiciliation of Mesenchymal Stem Cells after infusion into rats: possibilities of targeting pulmonary artery remodeling via cells therapies?. Respiratory Research, 2005, 6(125): 1-13.
    43.李经伦,刘长征.干细胞移植治疗中的示踪术研究现状.放射免疫学杂志,2004,17(6):464-467.
    44. Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature medicine, 2001, 7(9): 1028-1034.
    45. Yoon YS, Park JS, Tkebuchava T, et al. Unexpected Severe Calcification After Transplantation of one Marrow Cells in Acute Myocardial Infarction. Circulation. 2004,109(25):3154-3157.
    46. Kruyt MC, De Bruijn J, Veenhof Met, et al. Application and limitations of chloromethyl-benzamidodialkylcarbocyanine for tracing cells used in bone Tissue engineering. Tissue Eng, 2003, 9(1): 105-115.
    47. Askenasy N, Farka DL. Optical Imaging of PKH-Labeled ematopoietic Cells in Recipient Bone Marrow In Vivo. Stem Cells, 2002, 20(6): 501-513.
    48. Weissleder R. Molecular imaging: exploring the next frontier. Radiology, 1999, 212(3): 609~614.
    49. Ntziachristos V, Ripoll J, Wang LV, et al. Looking and listenting to light: the evolution of whole-body photonic imaging,NatureBiotechnology,2005, 23(3):313-320.
    50. Maggi A, Ciana P. Innovation: Reporter mice and drug discovery and development. Nature Reviews Drug Discovery, 2005, 4(3): 249-255.
    51. Wang XL, Rosol M, Ge S, et al. Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. BLOOD, 2003,102(10): 3478-3482.
    52. Brazelton TR, Blaua HM. Optimizing Techniques for Tracking Transplanted Stem Cells In Vivo. Stem Cells 2005; 23:1251-65.
    53. Modo M, Cash D, Mellodew K, et al. Tracking transplanted stem cell migration using bifunctional, contrast agent—enhanced, magnetic resonance imaging. Neuroimage, 2002, 17: 803-811.
    54. Bulte JWM, Kraitchman DL. Monitoring Cell Therapy Using Iron Oxide MR Contrast Agents. Current Pharmaceutical Biotechnology, 2004, 5(6): 567-584.
    55. Bulte JWM, Douglas T, Witwer B et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 2001, 19(12), 1141-1147.
    56. Kraitchman DL, Heldman AW, Atalar E et al. In Vivo Magnetic Resonance Imaging of Mesenchymal Stem Cells in Myocardial Infarction. Circulation, 2003, 107(18): 2290-2293.
    57. Anderson SA, Shukaliak-Quandt J, Jordan EK, et al. Magnetic resonance imaging of labeled T-cells in a mouse model of multiple sclerosis. Ann Neurol, 2004, 55(5): 654-659.
    58. Frank JA, Miller BR, Arbab AS, et al. Clinically Applicable Labeling of Mammalian and Stem Cells by Combining Superparamagnetic Iron Oxides and Transfection Agents. Radiology,2003,228(2): 480-487.
    59. Arbab AS. Bashaw LA. Miller BR. et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR Imaging. Radiology, 2003, 229(3): 838-846.
    60. Arbab AS, Jorfdan EK, Wilson LB, et al. In vivo trafficking and targeted delivery of magnetically labeled stem cells. Human Gene Therapy, 2004, 15(4): 351~360.
    61. Yeh TC, Zhang W, Ildstad ST, et al. In vivo dynamic MRI tracking of rat T-cells labeled with superparamagnetic iron-oxide particles. Magn Reson Med,1995,33(2): 200-208.
    62.陆荔,马明,张宇,唐萌,顾宁.纳米材料生物安全性研究进展.东南大学学报(自然科学版),34(5):711-714.
    63. Guillaume G, S bastien G, Pierre G, et al. Benzo (a) pyrene-coated onto Fe2O3 particles-induced lung tissue injury: role of free radicals. Cancer Letters, 2001,17(1): 7-15.
    64. Hinds KA, Hill JM, Shapiro EM, et al. Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic reson- ance imaging of single cells. Blood. 2003,102(3): 867-872.
    65. Kraitchman DL, Heldman AW, Atalar E, Amado L, et al. In Vivo Magnetic Re-sonance Imaging of Mesenchymal Stem Cells in Myocardial Infarction. Circulation, 2003,107(18): 2290-2293.
    66. Jendelova P, Herynek V, DeCroos J, et al. Imaging the Fate of Implanted Bone Marrow Stromal Cells Labeled With Superparamagnetic Nanoparticles. Magnetic Resonance M,2003,50(4):767-776.
    67. Jendelova P, Herynek V, Urdzikova L, et al. Magnetic Resonance Tracking of Transplanted Bone Marrow and Embryonic Stem Cells Labeled by Iron Oxide Nanoparticles in Rat Brain and Spinal Cord. Neuroscience Research,2004,76(2): 232–243.
    68. Sykova E, Jendelova P. Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. Ann N Y Acad Sci. 2005,1049: 146-160.
    69. Hauger Q, Frost EE, Heeswij R, et al. MR Evaluation of the Glomerular Homing of Magnetically Labeled Mesenchymal Stem Cells in a Rat Model of Nephropathy. Radiology, 2006, 238(1): 200-210.
    70. Bulte JWM, Douglas T, Witwer B, et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol. 2001, 19: 1141-1147.
    71. Jiang Y, Jahagirdar B, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adultmarrow. Nature, 2002, 418(6893): 41-49.
    72.李忠,杨柳.骨组织工程学间充质干细胞研究进展.中华创伤杂志, 2003, 19(12):766-768.
    73. Pettenger MF, AM Mackay, SC Beck, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999,284:143-147.
    74. Arbab AS, Yocum GT, Kalish H, et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Transplantation, 2004, 104: 1217-1223.
    75.杨柳,段小军,戴刚,等.人间充质干细胞体外成骨诱导培养及其生物学特性变化.第三军医大学学报,2002,24(5):509—512.
    76. Bruder SP, N Jaiswal, SE Haynesworth. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997; 64:278-94.
    77. Banfi A, A Muraglia, B Dozin, et al. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp. Hematol 2000; 28:707-15.
    78. Sottile V, Halleux C, Bassilana F, et al. Stem cell characteristics of human trabecular bone-derived cells. Bone, 2002,30(5): 699-704.
    79.段小军,杨柳,周跃.不同荧光蛋白标记对兔骨髓基质干细胞体外增殖的影响.中华创伤骨科杂志,2004,6(7):731-734.
    80. Ju S, Teng G, Zhang Y, et al. In vitro labeling and MRI of mesenchymal stem cells from human umbilical cord blood. Magnetic Resonance Imaging, 2006, 24(5): 611-617.
    81.司徒镇强,吴军正,主编.细胞培养.西安:世界图书出版西安公司,1996:186-l87.
    82. Bulte JWM. Magnetic nanoparticles as markers for cellular MR imaging. J Magnetism Magnetic Materials 2005; 289: 423-427.
    83. Unger EC. How can superparamagnetic iron oxides be used to monitor disease and treatment?. Radiology 2003; 229: 615–616.
    84. Hill JM, Dick AJ, Raman VK, et al. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation, 2003, 108: 1009~1014..
    85. Arbab AS, Yocum GT, Rad AM, et al. Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hema- topoietic or mesenchymal stem cells. NMR Biomed, 2005, 18(8): 553-559.
    86. Frank JA, Kalish H, Jordan EK, Anderson SA, Pawelczyk E, Arbab AS. Color transformation and fluorescence of Prussian blue-positive cells: implications for histologic verification of cells labeled with superparamagnetic iron oxide nanoparticles.Mol Imaging.2007,6(3):212-218.
    87. Pawelczyk E, Arbab AS, Chaudhry A, Balakumaran A, Robey PG, Frank JA. In Vitro Model of BrdU or Iron Oxide Nanoparticle Uptake by Activated Macrophages from Labeled Stem Cells: Implications for Cellular Therapy. Stem Cells. 2008 Feb 14; [Epub ahead of print]
    88. Pawelczyk E, Arbab AS, Pandit S, Hu E, Frank JA. Expression of transferrin receptor and ferritin following ferumoxides-protamine sulfate labeling of cells: implications for cellular magnetic resonance imaging. NMR Biomed, 2006 ,19(5): 581-92
    89.杨志明.细胞示踪技术.见:杨志明,主编.组织工程.北京:化学工业出版社,2002:203—213.
    90. Solchaga LA, Dennis JE, Goldberg VM et al. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res,1999,17(2): 205-213.
    91. Lu L, Zhu X, Valenzuela RG, et al. Biodegradable polymer scaffolds for cartilage tissue engineering. Clin Orthop, 2001,391(s):251-270..
    92.葛薇,姜文学,李长虹,等. 3种可注射性支架体内构建组织工程软骨的比较研究.实用骨科杂志,2005,11(5):424-428.
    93. Chenite A, Chaput C, Wang D, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. 2000,12(21):2155-2161.
    94. Jian XL, Florence P, Alain M, et al. Effect of chitosan on rat knee cartilage. Biomaterials,1999,20(20):1937-1947.
    95. Suh JK,M atthew HW. Application of chitosan based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 2000, 21(24):2589-2598.
    96. Lahiji A, Sohrabi A, Hungerford DS, et al. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes.J Biomed Mater Res, 2000,51(4):586-595.
    97. Risbud M, Ringe J, Bhonde R, et al. In vitro espression of cartilage specific markers by chondrocytes on a biocom-partible hydrogel: implication for engineering cartilage tissue. Cell Transplant,2001,10(8):755-763.
    98. Radice M, Brun P, Cortivo R, et al. Hyaluronan-based biopolymers as delivery vehicles for bone-marrow-derived mesenchymal progenitors. J Biomed Mater Res, 2000,50(2):101-109.
    99.曾春,蔡道章,全大萍.壳聚糖在软骨组织工程中的应用.中国修复重建外科杂志,2005,19(10): 831-834.
    100. Donati I, Stredanska S, Silvestrini G, et al. The aggregation of pig articular chondrocyte and synthesis of extracellular matrix by a lactose-modified chitosan. Biomaterials, 2005,26(9):987-998.
    101.金旭红,杨柳.骨髓间充质干细胞标记及活体示踪技术研究进展.中华创伤杂志, 2007,23(4):311-313.
    102. Magnitsky S, Watson DJ, Walton DM, et al. In vivo and ex vivo MRI detection of localized and disseminated neural stem cell grafts in the mouse brain. Neuroimage,2005, 26: 744-754.
    103. Jendelova P, Herynek V, DeCroos J, et al. Imaging the Fate of Implanted Bone Marrow Stromal Cells Labeled With Superparamagnetic Nanoparticles. Magnetic Resonance M,2003,50:767-776.
    104. Wang WG, Lou SQ, Ju XD, et a1. In vitro chondrogenesis of human bone marrow-derived mesenchymal progenitor cells in monolayer culture:activation by transfection with TGF beta2.Tissue Cell, 2003, 35:69-77.
    105. Johnstone B, Hering TM, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998;238:265–272.
    106. Cai L, Okumu FW, Cleland JL, et al. A slow release formulation of insulin as a treatment for osteoarthritis . Os teoarthritis Cartilage 2002,10(9): 692-706.
    107. Ogueta S, M?noz J, Obregon E, et al. Prolaction is a component of the human synovial liquid and modulates the growth and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Mol Cell Endocrinol, 2002,190(1): 51-63.
    108. Yokoyama A, Sekiya I,Miyazaki K, et al. In vitro cartilage formation of composites of synovium-derived mesenchymal stem cells with collagen gel. Cell Tissue Res, 2005, 10 (6) : 441 - 445.
    109. Derfoul A, Perkins GL, Hall DJ , et al. Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal s tem cells by enhancing expres s ion of cartilage extracellular matrix genes . Stem Cells 200,24(6): 1487-1495.
    110. Starkman BG, Cravero JD, Delcarlo M, et al. IGF-I stimulation of proteoglycan synthes is by chondrocytes requires activation of the PI 3-kinase pathway but not ERK MAPK. Biochem J 2005, 389( 3) :723-729.
    111. Madry H, Kaul G, Cucchiarini M, et al. Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes over expressing insulin-like growth factorⅠ(IGF-Ⅰ). Gene Ther 2005, 12(5):1171-1179.
    112. Fukumoto T, Sperling JW, Sanyal A, et al. Combined effects of insulin-like growth factor-1 and transforming growth factor-betal on periosteal mesenchymal cells during chondrogenes is in vitro.Osteoarthritis Cartilage 2003, 11(1): 55-64.
    113. Zheng ZH, Zhu P, Wang YH, et al. In vitro induction of directional differentiation of bone marrow mesenchymal s tem cells towards chondrocytes . Xibao Yu Fenzi Mianyixue Zazhi 2005; 21(1):79-82.
    114. Bosnakovski D, Mizuno M, Kim G, et al. Chondrogenic differentiation of bovine bonemarrow mesenchymal s tem cells (BMSCs ) in different hydrogels : influence of collagen type II extra cellular matrix on MSC chondrogenes is. Biotechnol Bioeng 2006, 93(6):1152-1163.
    115. Mierisch CM, Wilson HA, Turner MA, et al. Chondrocyte transplantation into articular cartilage defects with use of calcium alginate: the fate of the cells. J Bone Joint Surg Am 2003; 85-A: 1757-67.
    116. Oshima Y, Watanabe N, Matsuda K, et al. Behavior of transplanted bone marrow-derived GFP mesenchymal cells in osteochondral defect as a simulation of autologous transplantation. J Histochem Cytochem 2005,53(2):207-216.
    117. Quintavalla J, Uziel-Fusi S, Yin J, et al. Fluorescently labeled mesenchymal stem cells (BMSCs) maintain multilineage potential and can be detected following implantation into articular cartilage defects. Biomaterials 2002,23(1):109-119.
    118. George AJT, Bhakoo KK, Haskard, DO, Larkman DJ, Reynolds1 PR. Imaging Molecular and Cellular Events in Transplantation. Transplantation 2006,82(9): 1124–1129.
    119.夏鹰,江澄川,杨林,等.超顺磁性氧化铁标记神经干细胞移植治疗帕金森病大鼠模型的研究.中华医学杂志,2006,86: 1207-1210.
    120.景猛,刘新权,梁鹏,等.应用超顺磁性氧化铁纳米粒子标记神经干细胞及活体磁共振示踪的实验研究.中华医学杂志,2004,84: 1386-1389.
    121. Arbab AS, Yocum GT, Kalish H, et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Transplantation, 2004, 104: 1217-1223.
    122. Kostura L, Kraitchman DL, Mackay AM, et al. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed, 2004, 17: 513–517.
    123. Lee JK, Lee MK, Jin HJ, Kim DS, Yang YS, Oh W, Yang SE, Park TS, Lee SY, Kim BS, Jeun SS. Efficient intracytoplasmic labeling of human umbilical cord blood mesenchymal stromal cells with ferumoxides. Cell Transplant. 2007;16(8):849-857.
    124. Bulte JW, Kostura L, Mackay A, et al.Feridex-Labeled Mesenchymal Stem Cells: Cellular Differentiation and MR Assessment in a Canine Myocardial Infarction Model.Academic Radiology, 2005,12 Suppl 1: S2-S6.
    125. Hegewald AA, Ringe J , Bartel J , et al. Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells : a preliminarystudy. Tissue Cell, 2004,36 (6): 431-438.
    126. Bosnakovski D, Mizuno M, Kim G, Takagi S, et al. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (BMSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng. 2006 Apr 20;93(6):1152-1163.
    127. Quintavalla J, Uziel-Fusi S, Yin J, et al. Fluorescently labeled mesenchymal stem cells (BMSCs) maintain multilineage potential and can be detected following implantation into articular cartilage defects. Biomaterials, 2002, 23(1): 109-119.
    128. Baragi VM, Renkiewicz RR, Qiu L, et al. Transplantation of adenovirally transduced allogeneic chondrocytes into articular cartilage defects in vivo. Osteoarthritis Cartilage 1997, 5(4):275–282.
    129. Kang R, Marui T, Ghivizzani SC, et al. Ex vivo gene transfer to chondrocytes in full-thickness articular cartilage defects: a feasibility study. Osteoarthritis Cartilage 1997, 5(2):139–143.
    130. Ikeda T, Kubo T, Nakanishi T, et al. Ex vivo gene delivery using an adenovirus vector in treatment for cartilage defects. J Rheumatol 2000, 27(4): 990-996.
    131. Hunziker EB, Quinn TM, Hauselmann HJ. Quantitative structural organization of normal adult human articular cartilage. Osteoarthritis Cartilage 2002, 10(7):564-572.
    132. Jeffery AK. Articular cartilage and the orthopaedic surgeon Part 1: Structure and function. Current Orthopaedic 1994,8: 38-44.
    1. Tomita S, Mickle DA, Weisel RD, et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. Journal of Thoracic and Cardiovascular Surgery, 2002, 123(6): 1132-1140.
    2.孙明学,卢世璧,王继芳,等.脱钙骨基质为骨组织工程支架修复骨缺损实验研究.中国医学科学院学报,2003,25(1):32-35.
    3. Dann O, Fernbach R, Pfeifer W, et al. Trypanocidal diamidines with three rings in two isolated ring systems. Justus Liebigs Ann Chem, 1972, 760(761): 37-87.
    4. Brunk CF, Jones KC, James TW. Assay for nanogram quantities of DNA in cellular homogenates. Analytical Biochemistry, 1979,92(2): 497-500.
    5. Wang JS, Shum-Tim D, Galipeau J, et al. Marrow stromal cells for cellular cardiomyoplasty: Feasibility and potential clinical advantages. J Thoracic and Cardiovascular Surgery, 2000,120(5): 999-1006.
    6. Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature medicine, 2001, 7(9): 1028-1034.
    7. Teupser D, Thiery J, Walli AK, et al. Determination of LDL- and scavenger-receptor activity in adherent and non-adherent cultured cells with a new single-step fluorometric assay. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1996, 1303(3): 193-198.
    8. Yoon YS, Park JS, Tkebuchava T, et al. Unexpected Severe Calcification After Transplantation of one Marrow Cells in Acute Myocardial Infarction. Circulation. 2004,109(25):3154-3157.
    9.李东,刘向东,肖开颜,等.接种浓度对人骨髓基质干细胞在脱钙骨上生长和分布的影.上海第二医科大学学报,2004,24(4):232-234.
    10. Kruyt MC, De Bruijn J, Veenhof Met, et al. Application and limitations of chloromethyl-benzamidodialkylcarbocyanine for tracing cells used in bone Tissue engineering. Tissue Eng, 2003, 9(1): 105-115.
    11. Askenasy N, Farka DL. Optical imaging of PKH-Labeled ematopoietic cells in recipient bone marrow in vivo. Stem Cells, 2002, 20(6): 501-513.
    12. Ice RD. History of medical radionuclide production. Health Phys, 1995, 69(5): 721-727.
    13.柳太云,李经伦,姚晓黎,等.3H-TdR标记人骨髓间充质干细胞移植治疗mdx鼠的实验研究.第一军医大学学报,2005,25(5):498-502.
    14. Ding WM, Bai JZ, Zhang JM, et al.In vivo tracking of implanted stem cells using radio-labeled transferrin scintigraphy. Nuclear Medicine and Biology, 2004, 31(6):719-725.
    15. Rochefort GY, Vaudin P, Bonnet N, et al. Influence of hypoxia on the domiciliation of Mesenchymal Stem Cells after infusion into rats: possibilities of targeting pulmonary artery remodeling via cells therapies?. Respiratory Research, 2005, 6(125): 1-13.
    16. Zhao DC, Lei JX, Chen R, et al. Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats. World Journal of Gastroenterology, 2005, 11(22): 3431-3440.
    17. Chalfie M, Tu Y, Euskirchen G et al . Green fluorescent protein as a marker for gene expression [J]. Science , 1994,263: 802-805.
    18. Satake K, Lou J, Lenke LG. Migration of mesenchymal stem cells through cerebrospinal fluid into injuryed spinal cord tissue. Spine, 2004, 29(18): 1971-1979.
    19.段小军,杨柳,周跃,等.兔骨髓间充质干细胞同种异体皮下移植研究.中华创伤杂志,2005,21(7):512-516.
    20.周广东,王小云,苗春雷,等.骨髓基质细胞修复猪关节非负重区软骨与骨复合缺损的实验研究.中华医学杂志,2004, 84(11): 925-931.
    21.段小军,杨柳,周跃,等.荧光蛋白表达对小鼠成纤维细胞系NIH3T3体外增殖能力的影响.中华烧伤杂志, 2005,21(5):374-377.
    22. Weissleder R. Molecular imaging: exploring the next frontier. Radiology, 1999,212(3): 609~614.
    23. Bulte JWM, Kraitchman DL. Monitoring Cell Therapy Using Iron Oxide MR Contrast Agents.Current Pharmaceutical Biotechnology,2004, 5(6): 567-584.
    24. Bulte JWM, Douglas T, Witwer B et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 2001, 19(12), 1141-1147.
    25. Kraitchman DL, Heldman AW, Atalar E et al. In Vivo Magnetic Resonance Imaging of Mesenchymal Stem Cells in Myocardial Infarction. Circulation, 2003, 107(18): 2290-2293.
    26. Frank JA, Miller BR, Arbab AS, et al. Clinically Applicable Labeling of Mammalian and Stem Cells by Combining Superparamagnetic Iron Oxides and Transfection Agents. Radiology,2003,228(2): 480-487.
    27. Anderson SA, Shukaliak-Quandt J, Jordan EK, et al. Magnetic resonance imaging of labeled T-cells in a mouse model of multiple sclerosis. Ann Neurol, 2004, 55(5): 654-659.
    28. Arbab AS, Jorfdan EK, Wilson LB, et al. In vivo trafficking and targeted delivery of magnetically labeled stem cells. Human Gene Therapy, 2004, 15(4): 351~360.
    29. Yeh TC, Zhang W, Ildstad ST, et al. In vivo dynamic MRI tracking of rat T-cells labeled with superparamagnetic iron-oxide particles. Magn Reson Med,1995,33(2): 200-208.
    30. Hill JM, Dick AJ, Raman VK, et al. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation, 2003, 108: 1009~1014..
    31. Arbab AS, Bashaw LA, Miller BR, et al. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation methods and techniques. Transplantation, 2003, 76(7): 1123-1130.
    32. Hinds KA, Hill JM, Shapiro EM, et al. Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood. 2003,102(3): 867-72.
    33. Kraitchman DL, Heldman AW, Atalar E, Amado L, et al. In Vivo Magnetic Resonance Imaging of Mesenchymal Stem Cells in Myocardial Infarction. Circulation,2003,107: 2290-2293.
    34. Jendelova P, Herynek V, DeCroos J, et al. Imaging the Fate of Implanted Bone Marrow Stromal Cells Labeled With Superparamagnetic Nanoparticles. Magnetic Resonance M,2003,50(4):767-776.
    35. Jendelova P, Herynek V, Urdzikova L, et al. Magnetic Resonance Tracking of Transplanted Bone Marrow and Embryonic Stem Cells Labeled by Iron Oxide Nanoparticles in Rat Brain and Spinal Cord. Neuroscience Research,2004,76(2): 232–243.
    36. Sykova E, Jendelova P. Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. Ann N Y Acad Sci. 2005,1049: 146-160.
    37. Mayer-Kuckuk P, Gade TP, Buchanan IM, et al. High-Resolution Imaging of Bone Precursor Cells within the Intact Bone Marrow Cavity of Living Mice. J ymthe, 2005, 12(1): 33-41.
    38. Bulte JWM, Kraitchman DL, Mackay AM, et al. Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides. Blood, 2004,104(10): 3410-3412.
    39. Arbab AS, Yocum GT, Kalish H, et al. Feride–protamine sulfate labeling does not alter differentiation of mesenchymal stem cells. Blood, 2004,104(10): 3412-3413.
    40. Contag PR, Olomu IN, Stenvenson DK, et al. Bioluminescent indicators in living mammals. Nature Medicine, 1998, 4(2): 245-247.
    41. Ntziachristos V, Ripoll J, Wang LV, et al. Looking and listenting to light: the evolution of whole-body photonic imaging, Nature Biotechnology, 2005, 23(3):313-320.
    42. Maggi A, Ciana P. Innovation: Reporter mice and drug discovery and development. Nature Reviews Drug Discovery, 2005, 4(3): 249-255.
    43. Wang XL, Rosol M, Ge S, et al. Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. BLOOD, 2003,102(10): 3478-3482.
    1. Weissleder R. Molecular imaging: exploring the next frontier. Radiology, 1999, 212(3): 609~614.
    2. Cherry SR. In vivo molecular and genomic imaging :new challenges for imaging physics[review][J]. Phys Med Biol, 2004, 9(3): 13-48.
    3. Modo M, Cash D, Mellodew K, et al. Tracking transplanted stem cell migration using bifunctional, contrast agentenhanced,magnetic resonance imaging.Neuroimage, 2002, 17(2): 803-811.
    4. Modo M, Mellodew K, Cash D, et al Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. NeuroImage, 2004, 21: 311–317.
    5. Arbab AS, Jorfdan EK, Wilson LB, et al. In vivo trafficking and targeted delivery of magnetically labeled stem cells. Human Gene Therapy, 2004, 15(4): 351~360.
    6. Yeh TC, Zhang W, Ildstad ST, et al. In vivo dynamic MRI tracking of rat T-cells labeled with superparamagnetic iron-oxide particles. Magn Reson Med, 1995,33(2): 200-208.
    7. Arbab AS, Bashaw LA, Miller BR, et al. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after celltransplantation: methods and techniques. Transplantation, 2003, 76(7): 1123~1130.
    8. Bulte JW, Duncan ID, Frank JA. In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J Cereb Blood Flow Metab. 2002, 22(8): 899-907.
    9. Hill JM, Dick AJ, Raman VK, et al. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation, 2003, 108: 1009~1014.
    10. Heyn C, Bowen CV, Rutt BK, et al. Detection threshold of single SPIO-labeled cells with FIESTA. Magn Reson Med. 2005, 53(2):312-320.
    11. Hinds KA, Hill JM, Shapiro EM, et al. Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic reson- ance imaging of single cells. Blood. 2003,102(3): 867-872.
    12. Shapiro EM, Skrtic S, Koretsky AP. Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med. 2005 , 53(2):329-338.
    13. Jeff W.M. Bulte, Dara L. Kraitchman. Monitoring Cell Therapy Using Iron Oxide MRContrast Agents. Current Pharmaceutical Biotechnology, 2004, 5(6): 567-584.
    14. Arbab AS, Bashaw LA, Miller BR, et al. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation methods and techniques. Transplantation, 2003, 76(7): 1123-1130..
    15. Bulte JW, Ma LD, Magin RL, et al. Selective MR ima1ing of labeled human peripheral blood mononuclear cells by liposome mediated incorporation of dextran-magnetite particles. Magn Reson Med, 1993,29(1): 32-37.
    16. Josephson L, Tung CH, Moore A, et al. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem. 1999, 10(2): 186-191.
    17. Lewin M, Carlesso N, Tung CH, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol. 2000, 18(4): 410-414.
    18. Bulte JW, Zhang S, van Gelderen P, et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc. Natl. Acad. Sci. USA.,1999, 96(26): 15256-15261.
    19. Jefferies WA, Brandon MR, Hunt SV, et al. Transferrin receptor on endothelium of brain capillaries. Nature. 1984, 312(5990): 162-163.
    20. Moore A, Josephson L, Bhorade RM et al. Human transferrin receptor gene as a marker gene for MR imaging. Radiology. 2001, 221(1): 244-250.
    21. Bulte JWM, Douglas T, Witwer B et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 2001, 19(12), 1141-1147.
    22. Bulte JW, Douglas T, Witwer B, et al. Magnetodendrimers allow endo- somalmagnetic labeling and in vivo tracking of stem cells. Nat Biotechnol, 2001, 19: 1141-1147..
    23. Kraitchman DL, Heldman AW, Atalar E, et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation. 2003 May 13, 107(18): 2290-2293.
    24. Anderson SA, Shukaliak-Quandt J, Jordan EK,et al. Magnetic resonance imaging of labeled T-cells in a mouse model of multiple sclerosis. Ann Neurol, 2004, 55(5): 654-659.
    25. Frank JA, Miller BR, Arbab AS, et al.Clinically applicable labeling of mammalian andstem cells by combining superparamagnetic iron oxides and transfection agents. Radiology, 2003, 228(2): 480-487.
    26. Arbab AS. Bashaw LA. Miller BR. et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR Imaging. Radiology, 2003, 229(3): 838-846.
    27. Ali S Arbab, Gene T Yocum, Ali M Rad,et al. Comparison of transfection agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability. Mol Imaging,2004,3(1):24-32.
    28. Ju S, Teng G, Zhang Y, et al. In vitro labeling and MRI of mesenchymal stem cells from human umbilical cord blood. Magnetic Resonance Imaging, 2006, 24(5): 611-617.
    29. Lisa Kostura, Dara L. Kraitchman, Alastair M. Mackay, et al. Feridex labeling of esenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NM R Biomed. 2004,17(7): 513–517.
    30. Bulte JW, Kraitchman DL, Mackay AM, et al. Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides. Blood. 2004, 104(10):3410-3412.
    31. Ali S Arbab, Gene T Yocum, Ali M Rad,et al. Labeling of cells with ferumoxides– protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed, 2005,18(8):553-559.
    32. Arbab AS, Yocum GT, Kalish H, et al. Feride–protamine sulfate labeling does not alter differentiation of mesenchymal stem cells. Blood, 2004,104(10): 3412-3413.
    33. LaConte L, Nitin N, Bao G. Magenetic nanoparticle probes. Nanotody, 2005, 8(5):32-38.
    34. Dick AJ, Guttman MA, Raman VK, et al. Magnetic resonance fluoroscopy alllows targeted delivery of mesenchymal stem cells to infarctborders in swine. Circulation, 2003, 108: 2899~2904.
    35. Kraitchman DL, Heldman AW, Atalar E, Amado L, et al. In Vivo Magnetic Resonance Imaging of Mesenchymal Stem Cells in Myocardial Infarction. Circulation, 2003, 107: 2290-2293.
    36. Karmarkar PV, Kraitchman DL, Izbudak I, et al. MR-trackable intramyocardial injection catheter. Magn Reson Med. 2004,51(6): 1163-1172.
    37. Bulte JW, Kostura L, Mackay A, et al. Feridex-labeled mesenchymal stem cells: cellular differentiation and MR assessment in a canine myocardial infarction model.Acad Radiol. 2005 May,12 Suppl 1:S2-6.
    38. Jendelova′P, Herynek V, DeCroos J, et al. Imaging the Fate of Implanted Bone Marrow Stromal Cells Labeled With Superparamagnetic Nanoparticles. Magnetic Resonance M,2003,50(4):767-776
    39. Jendelova′P, Herynek V, Urdz?′kova′L, et al. Magnetic Resonance Tracking of Transplanted Bone Marrow and Embryonic Stem Cells Labeled by Iron Oxide Nanoparticles in Rat Brain and Spinal Cord. Neuroscience Research,2004,76(2):232–243.
    40. Sykova′E, Jendelova′P. Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. Ann N Y Acad Sci. 2005, 1049: 146-160.
    41. Jendelova′P, Herynek V, Urdzikova L, et al. Magnetic resonance tracking of human CD34+ progenitor cells separated by means of immunomagnetic selection and transplanted into injured rat brain. Cell Transplant. 2005, 14(4):173-182.
    42.葛风,朱剑虹,刘军等.纳米磁化标记神经干细胞的MRI大鼠活体示踪实验研究.中国临床神经科学, 2005, 13(2):152-155.
    43. Mayer-Kuckuk P, Gade TP, Buchanan IM, et al. High-Resolution Imaging of Bone Precursor Cells within the Intact Bone Marrow Cavity of Living Mice. Mol Ther, 2005, 12(1): 33-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700