几类神经网络模型的动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文探讨了几类神经网络的动力学行为。首先,我们给出了离散型细胞神经网络存在全局吸引的概周期序列解和κ-概周期序列解的新结果。我们的结果是基于神经网络的参数,不仅容易验证而且能为神经网络在实际应用中的实时计算提供出相应的数值估计。我们还进一步发展了适用于具有分段常数项微分方程的wa(?)ewski类型拓扑方法,并利用它来研究具有分段常数项神经网络解的定性行为。其次,通过利用Laypunov泛函和不等式技巧我们给出了具有非线性脉冲的双向联想记忆神经网络平衡点的存在性和全局指数型稳定性。此外,我们还探讨了具有有限分布时滞的脉冲双向联想记忆神经网络指数型周期吸引子的动力学行为。最后,我们研究了Cohen-Grossberg神经网络的一些动力学特性。通过利用Laypunov-Krasovskii泛函和同胚映射原理,我们得到了具有传输时滞和Hebbian类型学习行为的二阶Cohen-Grossberg神经网络平衡点稳定性的一些结果。我们的结果不仅给出了平衡点的全局指数型p-稳定,还给出了神经元在学习过程中的指数型收敛行为。对于具有分布时滞的脉冲Cohen-Grossberg神经网络,我们给出平衡点稳定性的充分条件不仅容易验证,而且我们不需要行为函数的可逆性和激活函数的有界性。我们的结果适用于一般Cohen-Grossberg神经网络的应用和设计。
In this thesis, we investigate dynamic behaviors of several classes of neural networks. First, we derive new criteria for the existence and global attractivity of almost periodic sequence solution and k-almost periodic sequence solution of discrete-time cellular neural networks. These criteria based on system parameters are easy for us to check. Our results can also provide us with relevant estimates on how precise such networks can perform during real-time computations in applications. Furthermore, we develop a topological approach of wa(z|·)ewski-type which is suitable for differential equations with piecewise constant argument to investigate qualitative behavior of cellular neural networks with piecewise constant argument. Secondly, by using Laypunov-Krasovskii functional and inequality technique, some sufficient conditions for the existence and global stability of equilibrium are attained for bidirectional associative memory (BAM) neural networks with nonlinear impulses. The exponential stability of periodic solutions for BAM neural networks with finite distributed delays is also discussed. At last, we discuss dynamical properties of Cohen-Grossberg neural networks. By using Laypunov-Krasovskii functional and homeomorphism mapping, some new sufficient conditions are established for global exponential p-stability of a unique equilibrium for second order Cohen-Grossberg neural networks with transmission delays and an unsupervised Hebbian-type learning behavior. Moreover, the learning dynamic behavior of neurons is also given. For impulsive Cohen-Grossberg networks with distributed delays, the obtained results of stability of equilibrium are easy to verify, meanwhile we remove the boundedness of activation functions and invertibility of the suitable behaved functions. It is believed that these results are suitable and useful for the design and applications of general Cohen-Grossberg networks.
引文
[1] J. Cao, D. Zhou, Stability analysis of delayed cellular neural networks, Neural Networks, 1998(11):1601-1605.
    [2] J. Cao, Global stability analysis in delayed cellular neural networks, Phys. Rev. E, 1999(59):5940-5944.
    [3] T. Chen, Global exponential stability of delayed Hopfield neural networks, Neural Networks, 2001(14):977-980.
    [4] L. O. Chua, L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits Syst., 1988(35):1257-1272.
    [5] Cohen M., Grossberg S., Absolute stability and global pattern information and parallel memory storage by competitive neural networks,IEEE Trans. Syst. Man Cybern., 1983(13)815-826.
    [6] L. O. Chua, L. Yang, Cellular neural networks: Applications, IEEE Trans. Circuits Syst., 1988(35):1273-1290.
    [7] S. Amari, Characteristics of randomly connected threshold element networks and neural systems, Proc. IEEE, 1971(59):35-47.
    [8] T. Chen, S. Amari, Stability of asymmetric Hopfield networks, IEEE Trans. Neural Networks, 2001(12):159-163.
    [9] T. Chen, W. Lu, S. Amari, Global Convergence Rate of Recurrently Connected Neural Networks, Neural Computation, 2002(14): 2947-2957.
    [10] T. Chen, W. Lu, G. R. Chen, Dynamical behavior of a large class of general delayed neural networks, Neural Computation, 2005(17):949-974.
    [11] Z. G. Liu, L. S. Liao, Existence and global exponential stability of periodic solution of cellular neural networks with time-varying delays, J. Math. Anal. Appl., 2004(290):247-262.
    [12] J. D. Cao, New results concerning exponential stability and periodic solutions of delayed cellular neural networks, Physics Letters A, 2003(307):136-147.
    [13] J. D. Cao, Global Exponential Stability and Periodic Solutions of Delayed Cellular Neural Networks , Journal of Computer and Systems Science, 2000(60) :38-46.
    [14] A. P. Chen, J.D. Cao, Existence and attractivity of almost periodic solutions for cellular neural networks with distributed delays and variable coefficients, Applied Mathematics and Computation, 2003(134):125-140.
    [15] H. Xia, J.D. Cao, Almost periodic solution of shunting inhibitory cellular neural networks with time-varying delay, Physics Letters A , 2003(314):222-231.
    [16] W. Lu, T. Chen, Global exponential stability of almost periodic solution for a large class of delayed dynamical systems, Chin. Sci. E., (2005), in press.
    [17] S. Mohamad, K. Gopalsamy, Exponential stability of continuous-time and discrete-time cellular neural networks with delays, Applied Mathematics and Computation, 2003(135):17-38.
    [18] S. Mohamad, Global exponential stability in continuous-time and discrete-time delayed bidirectional neural networks, Physica D, 2001 (159):233-251.
    [19] S. Mohamad, K. Gopalsamy, Dynamics of a class of discrete-time neural networks and their continuous-time counterparts, Mathematics and Computers in Simulation, 2000(53): 1-39.
    [20] S. Mohamad, A.G. Nairn, Discrete-time analogues of integro-differential equations modelling bidirectional neural networks, Journal of Computational and Applied Mathematics, 2002(138):1-20.
    [21] K. Gopalsamy, S. Mohamad, Canonical solutions and almost periodicity in a discrete logistic equation, Applied Mathematics and Computation, 2000(113):305-323.
    [22] S. N. Zhang, Existence of almost periodic solutions for difference systems, Ann. of Diff. Eqs., 2000(16):184-206.
    [23] R. Yuan, The existence of almost periodic solutions of retarded differential equations with piecewise constant argument, Nonlinear Analysis, 2002(48): 1013-1032.
    [24] S. N. Zhang, Almost periodic solutions of difference systems, Chinese Science Bulletin, 1998(43):2041-2046.
    [25] C. He, On almost periodic solutions of Lotka-Volterra almost periodic competition systems, Ann. Diff. Eqs., 1993(9):26-36.
    [26] Y. H. Xia, F. Chen, J. Cao and A. Chen, Existence and global attractivity of an almost periodic ecological model, Applied Mathematics and Computation, 2004(157):449-475.
    [27] Z. K. Huang, Y. H. Xia, A Predator-Prey System With Anorexia Response, Nonlinear Analysis Series B: Real World Applications, 2007(8): 1-19.
    [28] K. Gopalsamy, Global asymptotic stability in a almost periodic Lotka-Volterra system, J. Austral. Math. Soc. Ser. B, 1986(27):346-360.
    [29] Z. K. Huang, F. Chen, Almost periodic solution in two species competitive system with feedback controls, Journal of engineering mathematics, 2004(21):33-40.
    [30] K. Gopalsamy, P. Weng, Feedback regulation of Logistic growth, Internat. J. Math. Math. Sci., 1993(16):177-192.
    [31] S. N. Zhang, Z. Guang, Almost periodic solutions of delay difference systems, Applied Mathematics and Computation, 2002(131): 497-516.
    [32] J. L. Hong, R. Obaya, A. Sanz, Almost periodic type solutions of some differential equations with piecewise constant argument, Nonlinear Analysis, 2001(45):661-688.
    
    [33] Z. K. Huang and F. Chen, Global attractivity of three-species almost periodic system with II functional response, Journal of mathematics study, 2003(36):124-132.
    
    [34] K. L. Cooke, J. Wiener, Retarded differential equations with piecewise constant delays, J. Math. Anal. Appl, 1984(99):265-297.
    
    [35] K. L. Cooke, J. Wiener, A survey of differential equations with piecewise constant argument, in: Lecture Notes in Mathematics, Vol. 1475, Springer, Berlin, 1991, pp.1-15.
    
    [36] A. M. Samoilenko, N.A. Perestyuk, Impulsive Differential Equations, World Scientific Series on Nonlinear Science, World Scientific, Singapore, 1995.
    
    [37] A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Mathematics , Vol.377, Springer-Verlag, Berlin, 1974.
    
    [38] T. Matsumoto, L. O. Chua, H. Suzuki, CNN cloning template: Connected component detector, IEEE Trans. Circuits Syst., 1990(37): 633-635.
    
    [39] T. Roska, L. O. Chua, Cellular networks with nonlinear and delay-type templete, Int. J. Circuit Theor. Appl., 1992(20): 469-481.
    
    [40] T. Chen, Global exponential stability of delayed Hopfield neural networks, Neural Networks, 2001(14):977-980.
    
    [41] J. Cao, Periodic solutions and exponential stability in delayed cellular neural networks, Phys. Rev. E, 1999(60):3244-3248.
    
    [42] W. J. Xiong, J. D. Cao, Global exponential stability of discrete-time Cohen-Grossberg neural networks, Neurocomputing, 2005(64):433-446.
    
    [43] J. D. Cao, A. P. Chen, Xia Huang, Almost periodic attractor of delayed neural networks with variable coefficients, Physicis Letters A, 2005 (13): 104-120.
    
    [44] F. Pasemann, Synchronized chaos and other coherent states for two coupled neurons, Physica D, 1999(128):236 - 249.
    [45] R. Agarwal, Difference equations and inequalities, 2nd revised and extended edn. Marcel Dekker, New York 2000.
    [46] Y. Rang, R. Agarwal, On periodicity of difference equations of a general type, J. Differ. Equ. Appl, 1996(2):271-287.
    [47] G. Wang, S. Cheng, Positive periodic solutions for nonlinear difference equations via a continuation theorem, Adv. Differ. Equ., 2004(4):311-320.
    [48] F. L. Luo and R. Unbehauen, Applied Neural Networks for Signal Processing, Cambridge University Press, U.K. 1997.
    [49] A. Iserles, Stability and dynamics of numerical methods for nonlinear ordinary differential equations, IMA J. Numer. Anal., 1990(10): 1-30.
    [50] R. E. Michens, Nonstandard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994.
    [51] M. Prufer, Turbulence in multistep methods for initial value problems, SIAM J. Appl. Math., 1985(45):32-69.
    [52] Z. K. Huang, X. H. Wang and F. Gao, Existence and global attractivity of almost periodic solution of discrete-time neural network, Physics Letters A, 2006(350):182-191.
    [53] J. Wiener, A second-order delay differential equation with multiple periodic solutions, J. Math. Anal. Appl, 1999(229): 259-676.
    [54] A. R. Aftabizadeh, J. Wiener, J. M. Xu, Oscillatory and periodic solutions of delay differential equations with piecewise constant delays, Proc. Amer. Math. Soc, 1987(99) :673-679.
    [55] C. Y. He, Almost periodic differential equations, Higher Education Press, Beijing, 1992(in Chinese).
    [56] Z. K. Huang and F. Chen, A Predator-Prey system with viral infection and anorexia response, Appl. Math. Comput., 2006(175):1455-1483.
    
    [57] Y. Xia, J. Cao, Almost periodicity in an ecological model with M-Predators and N-preys by pure-delay type system, Nonlinear Dyn., 2005(39):275-304.
    
    [58] C. Y. Sun, C. B. Feng, Exponential Periodicity of Continuous-time and Discrete-time Neural Networks with Delays, Neural Processing Letters, 2004(00):1-16.
    
    [59] Z. G. Zeng, D. S. Huang and Z. F. Wang, Global Stability of a General Class of Discrete-Time Recurrent Neural Networks, Neural Processing Letters, 2005(22) :33-47.
    
    [60] T. Waiewski, Sur un principle topologique de l'examen de Failure asymptotique des integrates des equations differentielles ordinaires, Ann. Soc. Polon. Math., 1947(20) :279-313.
    
    [61] Ph. Hartman, Ordinary Differential Equations, Second edn, SIAM, 2002.
    
    [62] K. Borsuk, Theory of Retracts, PWN Polish Scientific Publishers, Warsaw, 1967.
    
    [63] Ph. Hartman, On invariant sets and on a theorem of Waiewski, Proceedings of The American Mathematical Society, 1972(32):511-520.
    
    [64] J. Dibllk, Anti-Lyapunov method for systems of discret equations, Nonlinear Analysis, 2004(57):1043-1057.
    
    [65] Lloyd K. Jackson, Gene Klaasen, A variation of the topological method of Waiewski, SIAM. J. Appl. Math., 1971(20):124-130.
    
    [66] K. P. Rybakowski, Waiewski principle for retarded functional differential equations, J. Differential Equations, 1980(36):117-138.
    
    [67] J. Dibl(?)k, A criterion for existence of positive solutions of systems of retarded functional differential equations, Nonlinear Analysis, 1999(38):327-339.
    
    [68] J. Cao, Global asymptotic stability of delayed bi-directional associative memory neural networks, Appl. Math. Comput., 2003(142):333-339.
    [69] J. Cao, Exponential stability of delayed bi-directional associative memory neural networks, Appl. Math. Comput., 2003(135): 105-112.
    [70] Gopalsamy K., X. Z. He, Delay-independent stability in bi-directional associative memory networks, IEEE Trans. Neural Networks, 1994(5):998-1002.
    [71] J. Cao, Periodic oscillatory solution of bidirectional associative memory networks with delays, Phys Rev E, 2000(61):1825-1828.
    [72] J. Dibllk, Asymptotic convergence criteria of solutions of delayed functional differential equations, J. Math. Anal. Appl., 2002(274):349-373.
    [73] K. P. Rybakowski, A topological principle for retarded functional differential equations of Caratheodory type, J. Differential Equations, 1981(39):131-150.
    [74] J. Dibllk, M. Migda, E. Schmeidel, Bounded solutions of nonlinear discrete equations, Nonlinear Analysis, 2006(65):845-853.
    [75] Z. K. Huang, Y. H. Xia, X. H. Wang, The existence and exponential attrac-tivity of κ-almost periodic sequence solution of discrete time neural networks, Nonlinear Dynamics, 2007(50): 13-26.
    [76] Z. K. Huang, Y. H. Xia, Global exponential stability of BAM neural networks with transmission delays and nonlinear impulses, Chaos Solitons and Fractrals, doi:10.1016/j.chaos.2006.11.032.
    [77] Z. K. Huang, Y. H. Xia, Exponential periodic attractor of impulsive BAM networks with finite distributed delays, Chaos Solitons and Fractrals, doi:10.1016/j.chaos.2007.04.014.
    [78] Z. K. Huang, Y. H. Xia, Exponential p-stability of second order Cohen-Grossberg neural networks with transmission delays and learning behavior, Simulation Modelling Practice and Theory, 2007(15):622-634.
    [79] Y. H. Xia, Z. K. Huang, Existence of almost periodic solutions for forced perturbed systems with piecewise constant argument, J. Math. Anal. Appl., in press.
    [80] Yuan Rong, J. Hong, The existence of almost periodic solutions for a class of differential equations with piecewise constant argument, Nonlinear Analysis, 1997(28):1439-1450.
    [81] K. Borsuk, On the topology of retracts, Annals of Mathematics, 1947(48): 1082-1094.
    [82] H. Y. Zhao, J. Cao, New conditions for global exponential stability of cellular neural networks with delays, Neural Networks, 2005(18):1332-1340.
    [83] C. X. Huang, H. Zhao, Z. Yuan, Global stability analysis of a class of delayed cellular neural networks, Mathematics and Computers in Simulation, 2005(70): 133-148.
    [84] H. J. Jiang, Z. D. Teng, Global eponential stability of cellular neural networks with time-varying coefficients and delays, Neural Networks, 2004(17):1415-1425.
    [85] J. Cao, J. Wang, Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays, Neural Networks, 2004(17):379-390.
    [86] Z. G. Liu, L. S. Liao, Existence and global exponential stability of periodic solution of cellular neural networks with time-varying delays, J. Math. Anal. Appl, 2004(290):247-262.
    [87] X. F. Liao, Z. F. Wu, J. B. Yu, Stability analyses of cellular neural networks with continuous time delay, J. Comput. Appl. Math., 2002(143):29-47.
    [88] Y. Q. Yang, J. Cao, Stability and periodicity in delayed cellular neural networks with impulsive effects, Nonlinear Analysis: RWA, 2007(8):362-374.
    [89] Rehim M, H. J. Jiang, Z. D. Teng, Boundedness and stability for nonautonomous cellular neural networks with delay, Neural Networks, 2004(17):1017-1025.
    [90] X. M. Li, L. H. Huang, H. Y. Zhu, Global stability of cellular neural networks with constant and variable delays, Nonlinear Analysis, 2003(53):319-333.
    [91] B. Kosto, Bi-directional associative memories, IEEE Trans Syst Man Cybernet, 1988(18):49-60.
    [92] B. Kosto, Adaptive bi-directional associative memories, Appl Optics, 1987(26) :4947-4960.
    [93] Gopalsamy K., He X.Z., Delay-independent stability in bi-directional associative memory networks, IEEE Trans Neural Networks, 1994(5):998-1002.
    [94] Cao JD., Periodic oscillatory solution of bidirectional associative memory networks with delays, Phys Rev E, 2000(61):1825-1828.
    [95] Liao XF, Yu JB., Qualitative analysis of bidrectional associative memory with time delays, Int. J. Circuit Theory Appl., 1998(26):219-229.
    [96] Cao JD, Wang L., Exponential stability and periodic oscillatory solution in BAM networks with delays, IEEE Trans Neural Networks, 2002(13):457-463.
    [97] Xia YH, Cao JD, Lin MR., Existence and Exponential Stability of Almost Periodic Solution for BAM Neural Networks with Impulse. Dynamics of Continuous, Discrete and Impulsive Systems A, DCDIS proceding, 2005(3):248-255.
    [98] Li YK., Global exponential stability of BAM neural networks with delays and impulses, Chaos Solitons and Fractals, 2005(24):279-285.
    [99] Cao JD., Global asymptotic stability of delayed bi-directional associative memory neural networks, Appl. Math. Compput., 2003(142):333-339.
    [100] Cao JD., Exponential stability of delayed bi-directional associative memory neural networks, Appl. Math. Compput., 2003(135):105-112.
    [101] Xia YH, Lin MR, Cao JD., New results on the existence and uniqueness of almost periodic solutions for BAM neural networks wiht continuously distrubted delays, Chaos Solitons and Fractals, in press, doi:10.1016/j.chaos.2005.10.043.
    [102] Xia YH, Cao JD, Huang ZK., Existence and Exponential Stability of Almost Periodic Solution for Shunting Inhibitory Cellular Neural Networks with Impulses, Chaos Solitons and Fractrals, in press, doi:10.1016/j.chaos.2006.05.003.
    [103] Liu BW, Huang LH., Global exponential stability of BAM neural networks with recent-history distributed delays and impulses, Neurocomputing, in press, doi:10.1016/j.neucom.2005.09.014.
    [104] Chen AP, Cao JD, Huang LH., Exponential stability of BAM neural networks with transmission delays, Neurocomputing, 2004(57):435-454.
    [105] Lou XY, Cui BT., Global asymptotic stability of delay BAM neural networks with impulses, Chaos Solitions and Fractals, 2006(29):1023-1031.
    [106] Wang H, Liao XF, Li CD., Existence and exponential stability of periodic solution of BAM neural networks with impulse and time-varying delay, Chaos Solitions and Fractals, in press, doi:10.1016/j.chaos.2006.01.112.
    [107] D.D.Bainov, P.S.Simeonov., Theory of Impulsive Differential Equations: Periodic Solutions and Applications, Longman Harlow 1993.
    [108] V.Lakshmikantham, D.D.Bainov and P.S.imeonov., Theory of Impulsive Differential Equations, World Scientific Singapore 1989.
    [109] A.M.Samoilenko, N.A.Perestyuk., Differential Equations with Impulses Effect, Visca Skola Kiev 1987 (in Russian).
    [110] H. Akca, L. Berezansky, E. Braverman, On linear integro-differential equations with integral impulsive conditions, Z Anal Anwendwngen, 1996(15):709-727.
    [111] H. Akca, R. Alassar, V. Corachav, Continuous-time additive Hopfield-type networks with impulses, J. Math. Anal. Appl., 2004(290):436-451.
    [112] Li YT, Yang CB., Global exponential stability analysis on impulsive of BAM neural networks with distributed delays, J. Math. Anal. Appl., in press, doi:10.1016/j.jmaa.2006.01.016.
    [113] Berman A, Plemmons RJ., Nonnegative Matrices in the Mathematical Science, Academic Press New York 1929.
    [114] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ Press Cambridge UK 1991.
    [115] Gopalsamy K., Stability of artifical neural networks with impulses, Appl. Math. Comput., 2004(154):783-813.
    [116] Daniel W.C. Ho, Liang JL, James L., Global exponential stability of impulsive high-order BAM neural networks with time-varing delays, Neural networks, in press, doi:10:1016/j.neunet.2006.02.006.
    [117] Chen AP,Huang LH, Liu ZG, Cao JD., Periodic bidirectional associative memory neural networks with distributed delays, J. Math. Anal. Appl., 2006(317):80-102.
    [118] Zhao HY., Exponential stability and periodic oscillatory of bi-directional associative memory neural network involving delays, Neurocomputing, 2006(69) :424-448.
    [119] Sabri Arik, Vedat Tavsanoglu, Global asymptotic stability analysis of bidirectional associative memory neural networks with constant time delays, Neurocomputing, 2005(68):161-176.
    [120] Liu ZG, Chen AP, Huang LH., Existence and global exponential stability of periodic solution to self-connection BAM neural networks with delays, Physics Letters A, 2004(328): 127-143.
    [121] Zhao HY, Global stability of bidirectional associative memory neural networks with distributed delays, Physics Letters A, 2002(297): 182-190.
    [122] Huang ZK, Xia YH., Global Exponential Stability of BAM Neural Networks with Transmission Delays and Nonlinear Impulses, Chaos Solitons and Fractrals, in press, doi: 10.1016/j.chaos.2006.11.032.
    [123] Song QK, Wang ZD., An analysis on existence and global exponential stability of periodic solutions for BAM neural networks with time-varying delays, Nonlinear Analysis: Real World Applications, in press, doi:10.1016/j.nonrwa.2006.07.002.
    [124] Jiang MH, Shen Y, Liao XX., Global stability of periodic solution for bidirectional associative memory neural networks with varying-time delay, Appl. Math. Comput., in press, doi:10.1016/j.amc.2006.04.012.
    [125] Yang XF, Global exponential periodicity of a class ofbidirectional associative memory networks with finite distributed delays, Applied Mathematics and Computation, 2005(171):108-121.
    [126] P. Baldi, A. F. Atiya, How delays affect neural dynamics and learning, IEEE Trans Neural Networks, 1994(5):612-621.
    [127] Li YK, Existence and stability of periodic solution for BAM neural networks with distributed delays, Applied Mathematics and Computation, 2004(159) :847-862.
    [128] V. S. H. Rao, B. R. M. Phaneendra, Global dynamics of bi-directional associative memory neural networks involving transmission delays and dead zones, Neural Networks, 1999(12):455-465.
    [129] S. Townley, et al., Existence and learning of oscillations in recurrent neural networks, IEEE Trans. Neural Networks, 2000(11):205-214.
    [130] Liu YQ, Tang WS., Existence and exponential stability of periodic solution for BAM neural networks with periodic coefficients and delays, Neurocom-puting, 2006(69):2152-2160.
    [131] Gui ZJ, Yang XS, Ge WG., Periodic solution for nonautonomous bidirectional associative memory neural networks with impulses, Neurocomputing, in press, doi:10.1016/j.neucom.2006.08.004.
    [132] M. Cohen, S. Grossberg, Absolute stability and global pattern formation and parallel memory storage by competitive neural networks, IEEE Trans. Syst. Man Cybernet. SMC, 1983(13):815-826.
    [133] J. Cao, J. Liang and J. Lam, Exponential stability of high-order bidirectional associative memory neural networks with time delays, Physica D, 2004(199) :425-436.
    [134] L. Wang and X. Zou, Exponential stability of Cohen-Grossberg neural network, Neural Networks, 2002(15):415-422.
    [135] L. Wang and X. Zou, Harmless delays in Cohen- Grossberg neural networks, Physica D, 2002(170):162-173.
    [136] T. P. Chen and L. B. Rong, Delay independent stability analysis of Cohen-Grossberg neural networks, Phys. Lett., 2003(317):436-449.
    [137] T. P. Chen and L. B. Rong, Robust global exponential stability of Cohen-Grossberg neural networks with delays, IEEE Trans. Neural Networks, 2004(15):203-206.
    [138] W. Lu and T. Chen, New conditions for global stability of Cohen-Grossberg neural networks, Neural Computation, 2003(15): 1173-1189.
    [139] Q. Song and J. Cao, Stability analysis of Cohen- Grossberg neural network with both time varying and continuously distributed delays, Jour. Comp. Appl. Math., 2006(197):188-203.
    [140] X. F. Liao, C. G. Li and K. W. Wong, Criteria for exponential stability of Cohen-Grossberg neural networks, Neural Networks, 2004(17):1401-1414.
    
    [141] K. Yuan and J. Cao, An analysis of global asymptotic stability of delayed Cohen-Grossberg neural networks via non-smooth analysis, IEEE Trans. Circuits and Systems I, 2005(52):1854-1861.
    
    [142] L. Rong, LMI-based criteria for robust stability of Cohen-Grossberg neural networks with delay, Physics Letters A, 2005(339):63-73.
    
    [143] H. Ye, A. N. Michel and K. N. Wang, Qualitative analysis of Cohen-Grossberg neural networks with multiple delays, Phys. Rev. E, 1995(51):2611-2618.
    
    [144] Y. Abu-Mostafa and J. Jacques, Information capacity of the Hopfield model, IEEE Trans. Information Theory, 1985(31): 461-464.
    
    [145] R. McEliece, E. Posner, E. Rodemich and S. Venkatesh, The capacity of the Hopfield associative memory, IEEE Trans. Inform. Theory, 1987(33) :461-482.
    
    [146] P. Baldi, Neural networks, orientations of hypercube, and algebraic threshold functions, IEEE Trans. Inform. Theory, 1988(34):523-530.
    
    [147] Y. Kamp and M. Hasler, Recursive Neural Networks for Associative Memory , Wiley, New York, 1990.
    
    [148] P. K. Simpson, High ordered and intra-connected bidirectional associative memories, IEEE Trans. Syst. Man Cybern., 1990(20):637-653.
    
    [149] A. Dembo, O. Farotimi and T. Kailath, High order absolutely stable neural networks, IEEE Trans. Neural Networks, 1991(38):57-65.
    
    [150] Z. H. Guan, D. B. Sun and J. J. Shen, Qualitative analysis of high order Hopfield neural networks, Acta Electron. Sin 2000(28):77-80.
    
    [151] G. Joya, M. A. Atencia and F. Sandoval, Hopfield neural networks for optimization: Study of the different dynamics, Neurocomputing, 2002(43):219-237.
    [152] E. B. Kosmatopoulos and M. A. Christodoulou, Structural properties of gradient recurrent high order neural networks, IEEE Trans Circuits Syst. II, 1995(42):592-603.
    [153] E. B. Kosmatopoulos, M. M. Polycarpou, M. A. Christodoulou and P. A. Ioannou, High order neural network structures for identification of dynamical systems, IEEE Trans. Neural Networks, 1995(6):422-431.
    [154] X. Liu, K. L. Teo and B. Xu, Exponential stability of impulsive high-order Hopfield type neural networks with time varying delays, IEEE Trans. Neural Networks, 2005(16):1329-1339.
    [155] D. Psaltis, C. H. Park and J. Hong, High order associative memories and their optical implementations, Neural Networks, 1988(1): 149-163.
    [156] F. Ren and J. Cao, LMI-based criteria for stability of high order neural networks with time varying delay Nonlinear Analysis, Real World Applications, 2006(7) :967-979.
    [157] B. J. Xu, X. Z. Liu and X. X. Liao, Global asymptotic stability high-order Hopfield type neural networks with time delays, Comp. Math. Appl., 2003(45): 1729-1737.
    [158] B. Xu, X. Liu and X. Liao, Global exponential stability of high order Hopfield type neural networks, Appl. Math. Comp., 2006(174):98-116.
    [159] Daniel W.C. Ho, Liang JL, James L. Global exponential stability of impulsive high-order BAM neural networks with time-varing delays. Neural networks, in press, doi:10:1016/j.neunet.2006.02.006.
    [160] S. Amari, Mathematical theory of neural learning, New Generation Computing, 1991(8):281-294.
    [161] S. Amari, Competitive and cooperative aspects in dynamics of neural excitation and self-organization, Lect. Notes in Biomath., 1982(45): 1-28.
    [162] S. Haykin, Neural Networks, Prentice Hall, New Jersey, 1999.
    
    [163] D. O. Hebb, The Organization of Behaviour, John Wiley, New York 1949.
    
    [164] B. Kosko, Neural Networks and Fuzzy Systems, Prentice Hall, New Delhi, 1992.
    
    [165] M. Lemmon and V. Kumar, Emulating the dynamics for a class of laterally inhibited neural networks, Neural Networks, 1989(2): 193-214.
    
    [166] H. Lu and Z. He, Global exponential stability of delayed competitive neural networks with different time scales, Neural Networks, 2005(18):243-250.
    
    [167] A. Meyer-Baese, S. S. Pilyugin and Y. Chen, Global exponential stability of competitive neural networks with different time scales, IEEE Trans. Neural Networks, 2003(14):716-719.
    
    [168] A. Meyer-Baese, F. Ohl and H. Scheich, Singular perturbation analysis of competitive neural networks with different time scales, Neural Computation, 1996(8):545-563.
    
    [169] K. Gopalsamy, Second order neurons and learning in cohen-grossberg networks , International Journal of Neural Systems, 2006(16): 179-189.
    
    [170] Todd W. Troyer, Feedforward Hebbian learning with nonlinear output units: a Lyapunov Approach, Neural Networks, 1996(9):321-328.
    
    [171] H. C. Tseng, D. D. (?)iljak, A learning Scheme for dynamic neural networks : Equilibrium manifold and connective stability, Neural Networks, 1995(8):853-864.
    
    [172] K. Gopalsamy, Learning dynamics in second order networks, Nonlin. Anal.: Real World Applications, in press, doi:10.1016/j.nonrwa.2006.02.007.
    
    [173] J. D. Cao, X. L. Li, Stability in delayed Cohen-Grossberg neural networks: LMI optimization approach, Physica D: Nonlinear Phenomena 2005(212):54-65.
    [174] J. D. Cao, J. L. Liang, Boundedness and stability for Cohen-Grossberg neural network with time-varying delays, Journal of Mathematical Analysis and Applications, 2004(296):665-685.
    [175] X. F. Liao, C. D. Li, Global attractivity of Cohen-Grossberg model with finite and infinite delays, Journal of Mathematical Analysis and Applications, 2006(315):244-262.
    [176] H. T. Lu, Global Exponential Stability Analysis of Cohen-Grossberg Neural Networks, IEEE Transactions on Circuits and Systems II: Express Briefs, 2005(52):476-479.
    [177] H. T. Lu, R. M. Shen, F. L. Chung, Global exponential convergence of Cohen-Grossberg neural networks with time delays, IEEE Transactions on Neural Networks, 2005(16):1694-1696.
    [178] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov., Theory of Impulsive Differential Equations, World Scientific: Singapore, 1989.
    [179] D. D. Bainov, P. S. Simenov., Systems with Impulse Effect: Stability Theory and Applications, Ellis Horwood Limited: Chichester, 1989.
    [180] M. A. Arbib, Branins, Machines, and Mathematics, Springer-Verlag: New York, 1987.
    [181] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall: Englewood Cliffs, 1998.
    [182] Z. C. Yang, D. Y. Xu, Existence and exponential stability of periodic solution for impulsive delay differential equations and applications, Nonlinear Analysis 2006(64):130-145.
    [183] Daniel W.C. Ho, J. L. Liang and James Lam., Global exponential stability of impulsive high-order BAM neural networks with time-varying delays, Neural Networks, 2006(19):1581-1590.
    
    [184] Y. T. Li, C. B. Yang, Global exponential stability analysis on impulsive BAM neural networks with distributed delays, Journal of Mathematical Analysis and Applications, 2006(324):1125-1139.
    
    [185] Haydar Akca et al, Continuous-time additive Hopfield-type neural networks with impulses, Journal of Mathematical Analysis and Applications, 2004(290):436-451.
    
    [186] Z. H. Guan, James Lam, G. R. Chen, On impulsive autoassociative neural networks, Neural Networks, 2000(13):63-69.
    
    [187] Z. H. Guan, G. R. Chen, On delayed impulsive Hopfield neural networks, Neural Networks, 1999(12):273-280.
    
    [188] F. Corinto, M. Biey, M. Gilli, Non-linear coupled CNN models for multiscale image analysis, Int. J. Circ. Theor. Appl., 2006(34):77-88.
    
    [189] M. Gilli, P. P. Civalleri, T. Roska, L. 0. Chua, Analysis of time-varying cellular neural networks for quadratic global optimization, Int. J. Circ. Theor. Appl., 1998(26):109-126.
    
    [190] M. Gilli, Pier Paolo, Civalleri, Template design methods for binary stable cellular neural networks, Int. J. Circ. Theor. Appl., 2002(30):211-230.
    
    [191] M. Gilli, Analysis of periodic oscillations in finite-dimensional CNNs through a spatio-temporal harmonic balance technique, Int. J. Circ. Theor. Appl., 1998,(25):279-288.
    
    [192] C. Zhang, D. H. Zhao, J. Ruan, Dynamic analysis of high-order Cohen-Grossberg neural networks with time delay, Chaos, Solitons and Fractals, 2007(32):1538-1546.
    
    [193] Z. S. Mao, H. Y. Zhao, Dynamical analysis of Cohen-Grossberg neural networks with distributed delays, Physics Letters A, 2007(364):38-47.
    [194] W. Wu, B. T. Cui, X. Y. Lou, Some criteria for asymptotic stability of Cohen-Grossberg neural networks with time-varying delays, Neurocomput-ing, 2007(70):1085-1088.
    [195] A. H. Wan, M. S. Wang, J. G. Peng, H. Qiao, Exponential stability of Cohen-Grossberg neural networks with a general class of activation functions, Physics Letters A, 2006(350):96-102.
    [196] S. Arik, Z. Orman, Global stability analysis of Cohen-Grossberg neural networks with time varying delays, Physics Letters A, 2005(341):410-421.
    [197] J. Y. Zhang, Y. Suda, H. Komine, Global exponential stability of Cohen-Grossberg neural networks with variable delays, Physics Letters A, 2005(338) :44-50.
    [198] J. H. Sun, L. Wan, Global exponential stability and periodic solutions of Cohen-Grossberg neural networks with continuously distributed delays, Physica D: Nonlinear Phenomena, 2005(208): 1-20.
    [199] M. Forti, A. Tesi, New conditions for global stability of neural networks with application to linear and quadratic programming problems, IEEE Transactions on Circuits and Systems I, 1995(42):354-336.
    [200] Giovanni Egidio Pazienza,et al. Robot vision with cellular neural networks: a practical implementation of new algorithms, Int. J. Circ. Theor. Appl., in press, doi:10.1002/cta.395.
    [201] Giovanni Costantini, Daniele Casali, Renzo Perfetti, Analogic CNN algorithm for estimating position and size of moving objects, Int. J. Circ. Theor. Appl, 2004(32):509-522.
    [202] S. Mohamad, Global exponential stability in continuous-time and discrete-time delayed bidirectional neural networks, Physica D, 2001(159):233-251.
    [203] S. Mohamad, K. Gopalsamy, Dynamics of a class of discrete-time neural networks and their continuous-time counterparts, Mathematics and Computers in Simulation, 2000(53): 1-39.
    
    [204] A. P. Chen, J. D. Cao, Periodic bi-directional Cohen-Grossberg neural networks with distributed delays, Nonlinear Analysis, 2007(66):2947-2961.
    
    [205] H. Y. Zhao, K. L. Wang, Dynamical behaviors of Cohen-Grossberg neural networks with delays and reaction - diffusion terms, Neurocomputing, In Press.
    
    [206] C. X. Huang, L. H. Huang, Dynamics of a class of Cohen-Grossberg neural networks with time-varying delays, Nonlinear Analysis: Real World Applications,2007(8):40-52.
    
    [207] W. L. Lu, T. P. Chen, Dynamical behaviors of Cohen-Grossberg neural networks with discontinuous activation functions, Neural Networks, 2005(18):231-242.
    
    [208] L. Wang, Stability of Cohen-Grossberg neural networks with distributed delays, Applied Mathematics and Computation, 2005(160):93-110.
    
    [209] Bernold Fiedler, TomàGedeon, A class of convergent neural network dynamics , Physica D: Nonlinear Phenomena, 1998(111):288-294.
    
    [210] Z. Chen, R. Jiong, Global stability analysis of impulsive Cohen-Grossberg neural networks with delay, Physics Letters A, 2005(345):101-111.
    
    [211] S. J. Guo, L. H. Huang, Stability analysis of Cohen-Grossberg neural networks , IEEE Transactions on Neural Networks, 2006 (17):106-117.
    
    [212] Z. D. Wang, Y. R. Liu, M. Z. Li, X. H. Liu, Stability analysis for stochastic Cohen-Grossberg neural networks with mixed time delays, IEEE Transactions on Neural Networks 2006(17):814-820.
    
    [213] Y. Chen, Global asymptotic stability of delayed Cohen-Grossberg neural networks, IEEE Transactions on Circuits and Systems I, 2006 (53):351-357.
    
    [214] McCulloch W. S., Pitts W., A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics, 1943 (5):115-133.
    
    [215] Rosenblatt F., The perceptron: a probabilistic model for information storage and organization in the brain, Psychological Review, 1958 (65):386-408.
    
    [216] Windrow B., Hoff M. E., Adaptive switching circuits, 1960 IRE WESCON convertion record: part 4. Computers: Man-mathine systems, Los Angeles, 96-104.
    
    [217] Hopfield J. J., Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Acadamy of Sciences of the USA, 1982(79)2554-2558.
    
    [218] Kosko B., Bidirectional associative memories, IEEE Trans. Syst. Man Cy-bern., 1988(18)49-60.
    
    [219] Kosko B., Adaptive bidirectional associative memories, Appl. Optics, 1987(26)4947-4960.
    
    [220] Grossberg S., Nonlinear neural networks: principles, mechanisms and architectures, Neural Networks, 1988 (1):17-61.
    
    [221]郭雷,郭宝龙,神经网络计算原理,科学出版社,2000.
    
    [222]阮炯,顾凡及,蔡志杰,神经动力学模型,科学出版社,2002.
    
    [223]黄立宏,李雪梅,细胞神经网络动力学,科学出版社,2007.
    
    [224] C. Y. Cheng, K. H. Lin, C. W. Shih, Multistability in recurrent neural networks, SIAM J. Appl. Math., 2006(66): 1301-1320.
    
    [225] Z. Zeng, D. S. Huang, Z. Wang, Memory pattern analysis of cellular neural networks, Phys. Lett. A, 2005(342):114-128.
    
    [226] C. Y. Cheng, K. H. Lin, C. W. Shih, Multistability and convergence in delayed neural networks, Physica D, 2007(225):61-74.
    
    [227] T. Yang, L. B. Yang, The global stability of fuzzy cellular neural network, IEEE Trans. Circuits Syst. I, 1996(43):880-883.
    [228] T. Yang, L. B. Yang, Application of fuzzy cellular neural networks to Euclidean distance transformation, IEEE Trans. Circuits Syst. I, 1997(44):242-245.
    [229] Hanggi M., Chua L. O., Cellular neural networks based on resonant tunnelling diodes, Int. J. Circuit Theory Appl., 2001(29):487-504.
    [230] Dogaru R., Chua L. O., Hanggi M., A compact and universal RTD-based CNN cell, Circuit, piecewise-linear model and functional capacities, Memorandum VCBIERL M99172. Electronics Reasearch Laboratory, University of California, Berkeley, 1999.
    [231] Itoh M., Julian P., Chua L. O., RTD-based cellular neural networks with multiple steady states, Int. J. Bifurcation Chaos, 2001(11):2913-2959.
    [232] Chua L. O., Hasler M., Moschytz G. S., Neirynck J., Autonomous cellular neural networks: a unified paradigm for pattern formation and active wave propagation, IEEE Trans. Circuits Syst. I, 1995(42):559-577.
    [233] Henseler J., Branspenning P. J., Membrain: a cellular neural network model based on a vibrating membrane, Int. J. Circuit Theory Appl., 1992(20):483-496.
    [234] Fantacci R., Forti M., Marini M., A cellular neural network for packet selection in a fast packet switching fabric with buffers, IEEE Trans. Cornmun., 1996(44): 1649-1652.
    [235] Fantacci R., Forti M., Marini M., Pancani L., Cellular neural network approach to a class of communication problems, IEEE Trans. Circuits Syst. I, 1999(46): 1457-1467.
    [236] Forti M., A study on WTA cellular neural networks, Int. J. Circuit Theory Appl, 2001(29):522-537.
    [237] Bouzerdoum A., Pinter R. B., Shunting inhibitory cellular neural networks: derivation and stability analysis, IEEE Trans. Circuits Syst. I, 1993(40):215-221.
    
    [238] Z. J. Gui, W. G. Ge, Existence and uniqueness of periodic solutions of nonautonomous cellular neural networks with impulses, Physics Letters A, 2006(354) :84-94.
    
    [239] L. N. Chen, K. Aihara, Chaos and asymptotical stability in discrete-time neural networks, Physica D: Nonlinear Phenomena, 1997(104):286-325.
    
    [240] Z. S. Wang, H. G. Zhang, W. Y, Robust exponential stability analysis of neural networks with multiple time delays, Neurocomputing, 2007(70) :2534-2543.
    
    [241] C. J. Sun, M. A. Han, X. M. Pang, Global Hopf bifurcation analysis on a BAM neural network with delays, Physics Letters A, 2007(360):689-695.
    
    [242] L. Wan, Q. H. Zhou, Convergence analysis of stochastic hybrid bidirectional associative memory neural networks with delays, Physics Letters A, doi:10.1016/j.physleta.2007.05.095.
    
    [243] Q. K. Song, Z. J. Zhao, Y. M. Li, Global exponential stability of BAM neural networks with distributed delays and reaction-diffusion terms, Physics Letters A, 2005(335):213-225.
    
    [244] Harrer H., Nossek J. A., Discrete-time cellular neural networks, Int. J. Circ. Theor. Appl., 1992(20):455-467.
    
    [245] Harrer H., Nossek J. A., An analog implement of discrete-time cellular neural networks, IEEE Trans. Neural Networks, 1992(3):466-476.
    
    [246]Simon Haykin,神经网络原理,机械工业出版社,2004.(叶世伟,史忠植 译)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700