人γδT细胞过继免疫治疗的临床前研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
T淋巴细胞可按照其表达的T细胞抗原受体(TCR)的不同分为两种:αβT淋巴细胞和_γδT淋巴细胞。其中_γδT淋巴细胞数量少,识别抗原广泛且无MHC分子限制性,对自体、同种异体或异种肿瘤细胞均可显示明显的杀伤活性,因此,_γδT细胞作为过继免疫治疗的候选细胞引起了越来越多的国内外学者的关注。但由于_γδT细胞在外周血及肿瘤组织中分布频率较低(<10%),从而造成分离纯化的过程十分繁琐。深入的_γδT细胞功能研究及其可能的临床应用在很大程度上取决于该细胞亚群的有效分离与纯化。在这一领域,人们做了很多有益的尝试,其中本课题组建立的固相化抗TCR_γδ抗体选择性扩增的方法可获得高纯度的_γδT细胞,并可使TCR的受体谱保持相对完整。为了将_γδT细胞真正用于临床过继免疫治疗,有必要优化其培养条件,力求获得高纯度大量的_γδT细胞。为此,本研究对_γδT细胞体外培养条件进行了摸索,以期获得_γδT细胞体外培养的最佳条件,同时对其功能也进行了验证性的研究,希望为_γδT细胞最终临床应用奠定重要的实验基础和提供理论指导。本研究的主要研究内容与结果如下:
     1.过继治疗用_γδT细胞制品研究
     参照国家药品监督管理局2003年3月22日颁布的《人体细胞治疗研究和制剂质量控制技术指导原则》(以下简称指导原则)的要求,对过继治疗用的_γδT细胞进行制剂制备程序规范化与标准化的研究。研究结果表明固相抗体法可在体外有效地扩增来自健康人和肿瘤病人PBMC的_γδT细胞。
     2._γδT细胞制品安全性研究
     主要包括急性毒性、过敏性、溶血性和局部刺激性等主要的、局部的、全身给药相关的特殊安全性实验及致瘤性检测。研究结果表明_γδT细胞制品无明显的毒、副反应,对过继免疫治疗的受者无致瘤性的危险。
     3._γδT细胞制品有效性评价
     通过表型鉴定、体外杀伤实验检测_γδT细胞生物学效力,验证_γδT细胞对肿瘤的杀伤作用及合适的效靶细胞比例,寻找合适的靶肿瘤。实验结果显示,体外培养扩增的外周血_γδT细胞对多种组织来源的恶性肿瘤细胞系包括人胰腺癌细胞系PANC-1、人肺癌细胞系NCI-H520、人卵巢上皮癌细胞系SKOV3和淋巴瘤细胞系Daudi均有着较强的细胞毒作用,且随着效靶比增高而有所增强。且外周血_γδT细胞对化疗耐药SKOV3也有着良好的体外杀伤作用,提示了_γδT细胞制剂在临床治疗上与化疗配伍使用的可能。
     4.动物体内实验
     ①建立小鼠移植瘤模型,观察体外扩增的免疫功能正常小鼠脾_γδT细胞过继免疫治疗效果;②建立裸鼠皮下肿瘤模型,观察人_γδT细胞对肿瘤的治疗效果及其与化疗有无协同或拮抗作用;③建立人外周血PBMC免疫重建的SCID小鼠皮下肿瘤模型,模拟正常人体免疫环境,回输人_γδT细胞,观察治疗效果。通过动物体内实验为制定临床给药方案提供依据。实验结果显示_γδT细胞对荷人肺癌细胞系NCI-H520细胞裸鼠、荷人卵巢癌细胞系SKOV3细胞裸鼠和SCID小鼠,均有良好的体内抑瘤作用,其治疗效果与剂量呈正相关;_γδT细胞治疗效果与抗癌药物顺铂的疗效相似。小鼠脾_γδT细胞对小鼠卵巢癌细胞系OV2944肿瘤也有较强的体内抑瘤作用。
     综上所述,固相抗体法可以有效地扩增外周血_γδT细胞,且扩增方法简便、安全、有效。体外扩增的外周血_γδT细胞对多种恶性肿瘤有着良好的体内外杀伤效应。外周血_γδT细胞作为一种能够简便获得足够数量而且有效的效应细胞,有望在今后的过继免疫治疗中发挥作用。本研究结果为申报临床Ⅰ期试验提供了重要的临床前研究资料。本研究突出的成果在于我们在实验动物中首次发现过继_γδT细胞治疗实体肿瘤的效果与化疗药物(顺铂)接近。如果这一效果在临床试验中得到重复的话,将是T细胞过继治疗领域当中里程碑式的事件。
T cells can be divided into two subgroups: TCRαβlymphocytes and TCRγδlymphocytes based on their expression of T cell receptors (TCR) on the cell surfaces. AlthoughγδT cells account for no more than 10% of the peripheral blood mononuclear cells (PBMC), they display unique nature of antigen recognition and appear to play an important role in host defense against tumor growth.γδT cells could recognize and bind to antigen molecules directly, including peptides and lipoid proteinosis molecules and so on.γδT cell invokes great interests of many immunologists for its unique nature of antigen recognition and cytotoxic activity in recent years.
     In order to evaluate their functional activity against tumors, large numbers of cells are required. In our laboratory, the research on the tumor immunology ofγδT cells has already been performed and the solid-phase monoclonal anti-TCRy5 antibody was used to isolate and expand theγδT cells from PBMC and obtainγδT cells with high purity. In the present study, we tried to find the best culture conditions and obtain the most effectiveγδT cells for the clinical adoptive immunotherapy . The conditions and processes forγδT cells expanded in vitro were optimized and the relative functional studies were performed to validated the results. We hope to establish experiment foundation and provide theory instruction for the clinical application ofγδT cells. The research mainly included:
     1.γδT cells preparation for adoptive therapy. According to the request of "Human cell therapy research and quality control technical guidelines" (abbreviated as guidelines) published by State Drug Administration on 22th March, 2003, we performed the normalization and standardigation research ofγδT cells preparation for adoptive therapy. It showed thatγδT cells with high purity could be obtained from PBMC of healthy individuals and patients with malignant carcinoma using the solid-phase monoclonal anti-TCRγδAb methods.
     2. Safety investigation ofγδT cells preparation. The safety test mainly included tumorigenicity test, systemic and local safety tests such as acute toxicity, allergy, hemolytic and local irritation which were related to local or systemic administration. The results indicated thatγδT cells preparation had neither acute toxicity nor tumorigenicity to the acceptor.
     3. Effectiveness evaluation ofγδT cells preparation. The study included detecting the biological characteristic ofγδT cells through phenotype analysis and cytotoxic experiments in vitro. In this study, we validated the cytotoxic effects ofγδT cells to tumor cells, determinated the suitable propotion of effective cells to target cells and find out the suitable taget tumor cells. The results demonstratedγδT cells expanded from human PBMC could kill various solid tumor cells, such as human ovarian carcinoma (SKOV3), lung carcinoma (NCI-H520), pancreatic carcinoma (PANC-1), and hematological B lymphoma (Daudi) cell lines within a wide range of effector to target ratios. Furthermore,γδT cells expanded from healthy individual PBMC could kill SKOV3 cells and cis-platinum resistant SKOV3 cells within a wide range of effector to target ratios, suggesting thatγδT cells might be used in future clinical treatment combined with chemotherapy.
     4. Anti-tumor effect on tumor-bearing animals in vivo was observed , including the effects of adoptive immunotherapy with healthy mice spleenγδT cells using mice tumor model, the effects of adoptive immunotherapy with healthy humanγδT cells and the relation between adoptive immunotherapy and chemotherapy using nude mice xenograft tumor model and the effects of adoptive immunotherapy with healthy humanγδT cells xenograft tumor model in immune-reconstituted SCID mice with healthy human PBMC . The results demonstrated that adoptive transferring ofγδT cells was effective in inhibiting SKOV3 ovary tumor cells growth in Hu-PBMC-SCID mice and nude mice; adoptive transferring ofγδT cells was effective in inhibiting NCI-H520 lung cancer cells growth in nude mice;γδT cells from spleen of mice can effectively inhibited tumor growth of OV2944 in vivo.
     In conclusion, the present study demonstrated thatγδT cells with high purity could be obtained using this solid-phase method. The purity ofγδT cells expanded could reach 90% and 70% from normal controls and patients with malignant carcinoma, respectively. The methods was proved to be safe, effective and simple. TheseγδT cells displayed significant cytotoxicities against a variety of tumor cell lines both in vivo and in vitro. The results demonstrated thatγδT cells might be suitable for clinical trials of adoptive immunotherapy.
引文
1.项永兵 肿瘤登记资料的统计分析 中国肿瘤 2001;(02)
    2.中国癌症预防与控制规划纲要(2004—2010)
    3.Rosenberg SA,Yannelli JR,Yang JC,Topalian SL,Schwartzentruber DJ,Weber JS,Parkinson DR,Seipp CA,Einhorn JH,White DE.Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2.J.Natl.Cancer Inst.1994;86:1159-1166.
    4.Figlin RA,Thompson JA,Bukowski RM,Vogelzang NJ,Novick AC,Lange P,Steinberg GD,Belldegrun AS.Multicenter,randomized,phase Ⅲtrial of CD8(+) tumor-infiltrating lymphocytes in combination with recombinant interleukin-2 in metastatic renal cell carcinoma.J.Clin.Oncol.1999;17:2521-2529.
    5.Dreno B,Nguyen JM,Khammari A,Pandolfino MC,Tessier MH,Bercegeay S,Cassidanius A,Lemarre P,Billaudel S,Labarriere N,Jotereau F.Randomized trial of adoptive transfer of melanoma tumor-infiltrating lymphocytes as adjuvant therapy for stage Ⅲ melanoma.Cancer Immunol.Immunother.2002;51:539-546.
    6.Dudley ME Yang JC Yang JC.Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma.J.Clin.Oncol.2005; 23:2346-2357.
    7. Norell H, Carlsten M, Ohlum T, Malmberg KJ, Masucci G, Schedvins K, Altermann W, Handke D, Atkins D, Seliger B, Kiessling R. Frequent loss of HLA-A2 expression in metastasizing ovarian carcinomas associated with genomic haplotype loss and HLA-A2-restricted HER-2/neu-specific immunity. Cancer Res. 2006;66:6387-6394.
    8. Marincola F.M., Jaffee E.M., Hicklin D.J., Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv. Immunol. 2000;74:181-273.
    9. Cassian Yee, John A. Thompson, Patrick Roche, David R. Byrd, Peter P. Lee, Michael Piepkorn, Karla Kenyon, Mark M. Davis, Stanley R. Riddell, and Philip D. Greenberg. Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of T cell-mediated vitiligo. J. Exp. Med. 2000;192:1637-1644.
    10. J Borst, JJ van Dongen, RL Bolhuis, PJ Peters, DA Hafler, E de Vries and RJ van de Griend. Distinct molecular forms of human T cell receptor γ/δ detected on viable T cells by a monoclonal antibody. J Exp Med 1988 ;167:1625-1644.
    11. V Groh, S Porcelli, M Fabbi, LL Lanier, LJ Picker, T Anderson, RA Warnke, AK Bhan, JL Strominger and MB Brenner. Human lymphocytes bearing T-cell receptor γδ are phenotypically diverse and evenly distributed throughout the lymphoid system. J Exp Med 1989; 169:1277.
    12. Chowers Y. Holtmeier W, Harwood J, et al. The V delta 1 T cell receptor repertoire in human small intestine and colon. J Exp Med 1994; 180:183-190.
    13. Matis LA. Fry AM, Cron RQ, Cotterman MM, Dick RF, Bluestone JA. Structure and specificity of a class II MHC alloreactive γδ T cell receptor heterodimer. Nature. 1989;245:746-749.
    14. Davis M M. Bjorkman P J. T-cell antigen receptor genes and T-cell recognition. Nature 1988; 334:395-402.
    15. Schild H, Navaddat N, Lizenberger C et al. The nature of major histocompatibility complex recognition by γδT cells. Cell .1994; 76: 29-37.
    16 . Sciammas R, Johnson R M, Sperling A I, Brady W, Linsley P S, Spear P G, Fitch F W, Bluestone J A.. Unique antigen recognition by a herpesvirus-specific TCR γδ T cells. J Immunol .1994; 152:5392-5398.
    17. Rust C J, Verreck F, Vietor H, Koning F. Specific recognition of staphylococcal enterotoxin A by human T cells bearing receptors with Vγ9 region. Nature 1990; 346:572-4.
    18. Haregewoin A, Soman G, Horn RC, Finberg RW, et al. Human γδ T cells respond to mycobacterial heat-shock proteins. Nature .1989; 340:309-312.
    19. Steven Porcelli, Michael B.Brenner, Julia L.Greenstein, Coxterhorst, Steven P.Balk.Paul A.Bleicher. Recognition of cluster of differentiation 1 antigens by human CD4-CD8 cytolytic T lymphocytes. Nature 1989;341:447-450.
    20. Mami-Chouaib, F., Del Porto, P., Delorme, D., and Hercend T.. Further evidence for a γ/δ T cell receptor-mediated TCT 1/CD48 recognition. J Immunol 1991; 147:2864-2867.
    21. Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial T cells. Science 1998; 279:1737-1740.
    22. Bauer S, Groh V, Wu J et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999; 285: 727-729.
    23. Burk MR, De Mori L, Libero G. Human Vγ9-δ2 are stimulated in a cross-reactive fashion by a verity of phosphorylated metabolites. Eur J Immunol 1995; 25: 2052-2058.
    24. Constant, Patricia; Davodeau, Francois; Peyrat, Marie-Alix; Poquet, Yannick; Puzo, Germain; Bonneville, Marc; Fournie, Jean-Jacques.. Stimulation of human γδ T cells by nonpeptidic mycobacterial ligands. Science 1994; 264: 267-270.
    25. Spada FM, Grant EP, Peters PJ, Sugita M, Melian A, Leslie DS, Lee HK, van Donselaar E, Hanson DA, Krensky AM, Majdic O, Porcelli SA, Morita CT, Brenner MB.. Self-recognition of CD1 by gamma/delta T cells: implications for innate immunity. J Exp Med .2000; 191: 937-948.
    26 . Tanaka, Yoshimasa; Morita, Craig T.; Tanaka, Yoko; Nieves, Edward; Brenner, Michael B. Bloom, Barry R... Natural and synthetic non-peptide antigens recognized by human γδ T cells. Nature 1995; 375:155-158.
    27. Jomaa, H., J. Feurle, K. Luhs, V. Kunzmann, H. P. Tony, M. Herderich, and M. Wilhelm.. Vγ9/δ2 T cell activation induced by bacterial low molecular mass compounds depends on the 1-deoxy-D-xylulose 5-phosphate pathway of isoprenoid biosynthesis. FEMS Immunol Med Microbiol 1999; 25:371-378.
    28. Emilie Viey, Gaelle Fromont, Bernard Escudier, Yannis Morel, Sylvie Da Rocha, Salem Chouaib and Anne Caignard. Phosphostim-Activated γδ T Cells Kill Autologous Metastatic Renal Cell Carcinoma The Journal of Immunology. 2005; 174: 1338-1347.
    29. Zocchi MR, Ferrarini M, Casorati G, T-cell receptor Vδ gene usage by tumor reactive γδ T lymphocytes infiltrating human lung cancer. Immunology, 1994; 81:234.
    30. Bunsussan A, Lagabrielle JF, Degos L, TCR γδ bearing lymphocyte clones with lymphokine-activated killer activity against autologous leukemic cells. Blood. 2001;73:2077.
    31. Graham Pawelec, Robert C. Rees, Rolf Kiessling. Cells and cytokines in immunotherapy and gene therapy of cancer. Critical reviewsTM in oncogenesis. 1999; 10(1&2): 82-127.
    32. Kabelitz D. Role of γδ T cells in the immune response against tumor cells. Cancer J 1995; 8:190-194.
    33. E Sturm, E Braakman, P Fisch, RJ Vreugdenhil, P Sondel and RL Bolhuis. Human Vγ9-Vδ2 T cell receptor-γδ lymphocytes show specificity to Daudi Burkitt's lymphoma cells. J Immunol .1990; 145:3202-3208.
    34. Kabelitz D. Role of γδ T cells in the immune response against tumor cells. Cancer J 1995; 8:190-194.
    35. Rojas RE, Balaji KN, Subramanian A. Infect Immun, 1999; 67(12): 6461-6472.
    36. Garcia VE, Sieling PA, Gong J, Barnes PF, Uyemura K, Tanaka Y, Bloom BR, Morita CT, Modlin RL. Single-cell cytokine analysis of γδ cell responses to nonpeptide mycobacterial antigen. J Immunol. 1997; 159:1328-1335.
    37. Lundqvist C, Baranov V, Teglund S, Hammarstrom S, Hammarstrom ML.. Cytokine profile and ultrasturcture of intraepithelial γδ cells in chronically inflamed human gingival suggest a cytotoxic effector function. J Immunol 1994; 153:2302-2312.
    38. F Lang, MA Peyrat, P Constant, F Davodeau, J David-Ameline, Y Poquet, H Vie, JJ Fournie and M Bonneville. Early activation of human Vγ9/δ2 T cell broad cytotoxicity and TNF production by nonpeptidic mycobacterial ligands. J Immunol 1995; 154:5986-5994.
    39. Brandes M, Willimann K, Moser B Professional antigen-presentation function by human gammadelta T Cells. Science. 2005; Jul 8;309(5732):264-8. Epub 2005 Jun 2.
    40. Modlin RL, Sieling PA. Immunology. Now presenting: gammadelta T cells Science. 2005 ;Jul 8;309(5732):252-3.
    41. P Nistico, P De Berardinis, S Morrone, T Alonzi, C Buono, I Venturo, and P G Natali. Tumor cytolysis by lymphocytes infiltrating ovarian malignant ascites. Cancer Res. 1991; 51(16): 4257-65.
    42. Kabelitz D, Bender A, Prospero T,. Wesselborg S, Janssen O, Pechhold. K. The primary response of human γ/δT cells to mycobacterium tuberculosis is restricted to Vγ9-bearing cells. J.Exp Med, 1991; 173:1331.
    43. Holoshitz J, Vila LM, Keroack BJ, McKinley DR, Bayne NK. Dual antigen recognition by clonal human γδ T cells. J.Clin. Invest, 1992; 89:308-14.
    44. Indreshpal, K., S.D. Voss, R.S. Gupta, K. Schell, P. Fisch, and P.M. Sondel.. Human peripheral γδ T cells recognize hsp 60 molecules on Burkitt's lymphoma cells. J Immunol, 1993;150:2046-55.
    45. Gennaro De Libero. Sentinel fuction of broadly reactive human γδ T cells. Immunology Today, 1997; 18:22-6.
    46.Tomohiro Ymaguchi,Yoshiaki Fujimiya,Youichi Suzuki.A simple method for the propagation and purification of γδ T cells from the peripheral blood of glioblastoma patients using solid-phase anti CD3 antibody and soluble IL-2.J.of Immunological Methods,1997;205:19-28.
    47.Songtao Yu,Wei He,Juan Chen Fang Zhang Denian Ba..Expansion and immunological study of Human Tumor Infiltrating Gamma/Delta T Lymphocytes in vitro.Int Arch Allergy Immunol,1999;119:31.
    48.人的体细胞治疗申报临床试验指导原则
    49.朱忆斯,张学光,朱传远.青年胃印戒细胞癌细胞免疫状态及γδT细胞应用研究[J].苏州医学院学报,1998;18:149-151.
    50.Tsakovska I,Pajeva I.Phenothiazines and structurally related compounds as modulators of cancer multidrug resistance.Curr Drug Targets.2006;Sep;7(9):1123-34.
    51.Steiner E,Holzmann K,Elbling L,Micksche M,Berger W.Cellular functions of vaults and their involvement in multidrug resistance Curr Drug Targets.2006;Aug;7(8):923-34.Review.
    52.Nobili S,Landini I,Giglioni B,Mini E.Pharmacological strategies for overcoming multidrug resistance Curr Drug Targets.2006;Jul;7(7):861-79.
    53.Molnar J,Gyemant N,Tanaka M,Hohmann J,Bergmann-Leitner E,Molnar P,Deli J,Didiziapetris R,Ferreira MJ.Inhibition of multidrug resistance of cancer cells by natural diterpenes, triterpenes and carotenoids. Curr Pharm Des. 2006; 12(3):287-311.
    54. Gasser, S., Orsulic, S., Brown, E. J. & Raulet, D. H.The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 2005; 436. 1186-1190.
    55. Gasser, S. & Raulet, D. The DNA damage response, immunity and cancer. Semin. Cancer Biol. 2006; 16, 344-347
    56. Ljunggren HG, Malmberg KJ. Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol. 2007; May;7(5):329-39.
    57. Mosier DE, Gulizia RJ, Baird SM. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature, 1988; 335:256-259.
    58. McCune,J.M et al .The SCID-hu mouse: murine model for the analysis of human hematolympoid differentiation and function. Science, 1988;241:1632.
    59. Magdalena TL, Andrew S, Paul VL. The human immune system in hu-PBL-SCID mice. Immunology Today, 1995; 11:529-553.
    60. Bruce E.Torbett, Gaston Picchio, Picchio Hu-PBL-SCID mice: A model for human immune function, AIDS, and lymphomagenesis . Immunological Reviews,1991;124:139-163
    61 Eleme K, Taner SB, Onfelt B, Collinson LM, McCann FE, Chalupny NJ, Cosman D, Hopkins C, Magee AI, Davis DM. Cell surface organization of stress-inducible proteins ULBP and MICA that stimulate human NK cells and T cells via NKG2D. J Exp Med. 2004; Apr 5; 199(7): 1005-10. Epub 2004 Mar 29.
    62 Multhoff G. Heat shock proteins in immunity. Handb Exp Pharmacol. 2006;(172):279-304.
    63 Espinosa, E., C. Belmant, F. Pont, B. Luciani, R. Poupot, F. Romagne, H. Brailly, M. Bonneville, J. Fournie. Chemical synthesis and biological activity of bromohydrin pyrophosphate, a potent stimulator of human γδ T cells. J. Biol.Chem. 2001 ;276:18337.
    64 Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T, Minato N, Toma H. Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunology, Immunotherapy, Volume 56, Number 4, April 2007 ; pp. 469-476(8)
    65 Hans-Jurgen Gober, Magdalena Kistowska, Lena Angman, Paul Jeno, Lucia Mori and Gennaro De Libero.Human T Cell Receptor γδ Cells Recognize Endogenous Mevalonate Metabolites in Tumor Cells. The Journal of Experimental Medicine, Volume 197, Number 2, 163-168
    1. Borst J, van Dongen J J, Bolhuis R L, et al. Distinct molecular forms of human T cell receptor γ/δ detected on viable T cells by a monoclonal antibody. J Exp Med (1988) 167:1625-1644.
    2. Gorh V, Porcelli S, Fabbi M, et al. Human lymphocytes bearing T-cell receptor γδ are phenotypically diverse and evenly distributed throughout the lymphoid system. J Exp Med (1989) 169:1277.
    3. Moretta A, Bottino C, Ciccone E, et al. Human peripheral blood lymphocytes bearing T-cell receptor γ/δ. Expression of CD8 differentiation antigen correlates with the expression of the 55-kD. Cγ2-encoded γ chain. J Exp Med (1988) 168:2349.
    4. C. Giachino, L. Granziero, V. Modena et al. Clonal expansions of Vδ1~+ and Vδ2~+ cells increase with age and limit the repertoire of human γδT cells Eur. J. Immunol, 1994, 24:1914-1918.
    5. Chowers Y, Holtmeier W, Harwood J, et al. The V delta 1 T cell receptor repertoire in human small intestine and colon. J Exp Med (1994) 180:183-190.
    6. Timothy J. Allison, Christine C. Winter, Jean-Jacques Fournie et al. Structure of a human γδ T-cell antigen receptor. Nature 2001, Vol. 411, 820-823.
    7. Porcelli SA, Brenner MB, Band H. Biology of the human γδ T-cell receptor. Immunol Rev (1991) 120:137-183.
    8. Morita CT, Parker CM, Brenner MB, et al. TCR usage and functional capabilities of human γδ T cells at birth. J Immunol (1994) 153:3979-3988.
    9. Parker CM, Groh V, Band H, et al. Evidence for extrathymic changes in the T-cell receptor γδ repertoire. J Exp Med (1990) 171:1597-1612.
    10. Ueta C, Tsuyuguchi I, Kawasumi H, et al, Increase of γ/δ T cells in hospital workers who are in close contact with tuberculosis patients. Infect Immun 1994, 62: 5434.
    11. Hara T, Mizuno Y, Takaki K, et al . Predominant activation and expansion of Vγ2-bearingγ/δ T cells in vivo as well as in vitro in Salmonella infection. J Clin Invest 1992,90:204.
    12. Sumida T, Maeda T, Takahashi H, et al. Predominant expansion of Vγ9//Vδ2 cells in a tularemia patient. Infect Immun 1992, 60: 2554.
    13. Modlin RL, Pirmez C, Hofman FM, et al. Lymphocytes bearing antigen-specificγδ T cells receptors accumulate in human infectious disease lesions, Nature 1989, 339:544.
    14. Edwin P. Rock, Peter R. Sibbald, Mark M. Davis, and Rueh-hsiu Chien, CDR3 length in antigen-specific immune receptors, J. Exp. Med., vol. 179, January 1994,323-328.
    15. Paul Fisch, Arnaud Moris, Hans-Georg Rammensee et al. Inhibitory MHC class I receptors on γδ T cells in tumour immunity and autoimmunity. Immunology Today 2000, Vol. 21, 4: 187-191.
    16. Mak TW, and Ferrick DA: The γ/δ T-cell bridge: linking innate and acquired immunity. Nat Med 4: 764, 1998.
    17. Hayday AC: γ/δ cells: a right time and a right place for a conserved third way of protection. Annu Rev Immuno 2000, 18: 975.
    18. Bensmana M P, Mattei M G, Lefranc M P. Localization of the human T-cell receptor γ locus(TCRG) to 7p14-p15 by in situ hybridization. Cytogenet Cell Genet (1991) 56:31-32.
    19. Lefranc M P, Chuchana P, Dariavach P, et al. Molecular mapping of the human T cell receptor γ(TCRG) genes and linkage of the variable and constant regions.Eur J Immunol (1989) 19:989-994.
    20. Fort M P, Chen Z, Bories J C, et al. The Vy locus of the human T cell receptor γ gene. Repertoire polymorphism of the first variable gene segment subgroup. J Exp Med (1988) 168:1383-1394.
    21. Lefranc M P, Forster A, Rabbitts T H. Genetic polymorphism and exon changes of the constant regions of the human T-cell rearranging gene γ. Proc Natl Acad Sci U.S.A(1986) 83:9596-9600.
    22. Huck S, Lefranc M P. Rearrangements to the JP1, JP and JP2 segments in the human T-cell rearranging γ gene(TRGγ) locus. FEBS Lett(1987) 224:291-296.
    23. Boehm T, Baer R, Lavenir I, et al. The mechanism of chromosomal translocation t(11;14) involving the T-cell receptor Cδ locus on human chromosome 14q11 and a transcribed region of chromosome 11p15. EMBO J (1988)7:385-394.
    24. Hata S, Clabby M, Devlin P, et al. Diversity and organization of human T cell receptor δ variable gene segments. J Exp Med (1989) 169:41-57.
    25. Takihara Y, Tkachuk D, Michalopoulos E, et al. Sequence and organization of the diversity, joining, and constant region genes of the human T-cell δ-chain locus. Proc Natl Acad Sci U.S.A( 1988) 85:6097-6101.
    26. Arden B, Clark S P, Kabelitz D, et al. Human T-cell receptor variable gene segment families. Immunogenetics (1995) 42:455-500.
    27. 张文,γ/δT细胞简介,国外医学免疫学分册,2001, vol. 24, No.1,47-49.
    28. Takihara Y, Champagne E, Ciccone E, et al. Organizaion and orientation of a human T cell receptor δ chain V gene segment that suggests an inversion mechanism is utilized in its rearrangement. Eur J Immunol (1989) 19:571-574.
    29. Davis M M, Bjorkman P J. T-cell antigen receptor genes and T-cell recognition. Nature (1988) 334:395-402.
    30. Matis, L.A.. A. M. Fry, R. Q. Cron et al. (1989) Structure and specific of a class II MHC alloreactive γδ T cell receptor heterodimer. Science 245, 746.
    31. Kronenberg M. Antigens recognized by γδ T cells. Curr Opin Immunol 1994, 6: 64-71. Schild H, Navaddat N, Lizenberger C et al. The nature of major histocompatibility complex recognition by γδT cells. Cell 1994, 76: 29-37.
    32. Sciammas R, Johnson RM, Sperling AI et al. Unique antigen recognition by a herpesvirus-specific TCR γδ T cells. J Immunol 1994, 152:5392-5398.
    33. Rust CJJ, Vereck F, Vietor H, et al. Specific recognition of staphylococcal enterotoxin A by human T cells bearing receptors with Vγ9 region. Nature 1990,346:572-4.
    34. Haregewoin A, Soman G, Horn RC, et al. Human γδ T cells respond to mycobacterial heat-shock proteins. Nature 1989, 340:309-312.
    35. Porcelli S, Brenner MB, Greenstein JL, Balk SP, et al. Recognition of cluster of differentiation 1 antigens by human CD4-CD8 cytolytic T lymphocytes. Nature 1989,341:447-450.
    36. Mami-Chouaib F, Del Porto P, Delorme D, et al. Further evidence for a γ/δ T cell receptor-mediated TCT 1/CD48 recognition. J Immunol 1991, 147:2864-2867.
    
    37. Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial T cells. Science 1998, 279:1737-1740.
    38. Bauer S, Groh V, Wu J et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999, 285: 727-729.
    39. Burk MR, De Mori L, Libero G. Human Vγ9-δ2 are stimulated in a cross-reactive fashion by a verity of phosphorylated metabolites. Eur J Immunol 1995, 25: 2052-2058.
    40. Constnat P, Davodeau F, Peyrat MA et al. Stimulation of human γδ T cells by nonpeptidic mycobacterial ligands. Science 1994, 264: 267-270.
    41. Constant P, Davodeau F, Peyrat M A, et al. Stimulation of human gamma delta T cells by nonpeptidic mycobacterial ligands. Science (1994) 264:267-270.
    42. Tanaka Y, Morita C T, Tanaka Y, et al. Natural and synthetic non-peptide antigens recognized by human γδ T cells. Nature (1995) 375:155-158.
    43. Jomaa H, Feurle J, Luhs K, et al. Vγ9/δ2 T cell activation induced by bacterial low molecular mass compounds depends on the 1-deoxy-D-xylulose 5-phosphate pathway of isoprenoid biosynthesis. FEMS Immunol Med Microbiol (1999) 25:371-378.
    44. Bukowski J F, Morita CT, Band H, et al. Crucial role of TCR γ chain junctional region in prenyl pyrophosphate antigen recognition by γδ T cells. J Immunol (1998) 161:286-293.
    45. Hayday. A. C. γδ cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol. 2000, 18, 975-1026.
    46. Laad A D, Thomas M L, Fakih A R, et al. Human gamma delta T cells recognize heat shock protein-60 on oral tumor cells. Int J Cancer (1999) 80: 709-714.
    47. Wei Y Q, Zhao X, Kariya Y, et al. Induction of autologous tumor killing by heat treatment of fresh human tumor cells: involvement of γδ T cells and heat shock protein 70. Cancer Res (1996) 56:1104-1110.
    48. Thomas M L, Samant U C, Deshpande R K, et al. Gammadelta T cells lyse autologous and allogenic oesophageal tumours: involvement of heat-shock proteins in the tumour cell lysis. Cancer Immunol Immunother (2000) 48: 653-659.
    49. Groh V, Rhinehart R, Secrist H, et al. Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc Natl Acad Sci USA (1999) 96:6879-6884.
    50. Spada F M, Grant E P, Peters P J, et al. Self-recognition of CD1 by gamma/delta T cells: implications for innate immunity. J Exp Med (2000) 191: 937-948.
    51. Kim HT, Nelson E L, Clayberger C, et al. γδ T cell recognition of tumor Ig peptide. J Immunol (1995) 154:1614-1623.
    52. Vladimir V. Yurovsky, Patricia A. Sutton, Dan H. Schulze, et al. (1994) Expansion of selected Vδ1~+ γδ T cells in systemic sclerosis patients. J. Immunol. 153,881-891.
    53. Wolfgang Holtmeier, Michael Pfander, Andreas Hennemann, et al. The TCR δ repertoire in normal human skin is restricted and distinct from the TCR δ repertoire in the peripheral blood, J Invest Dermatol 2001, 116: 275-280.
    54. Cole DJ, Weil DP, Shamamian P, et al, Identification of MART-1-specific T-cell receptors: T cells utilizing distinct T-cell receptor variable and joining regions recognize the same tumor epitope. Cancer Res 54:5265, 1994.
    55. Fisch, P. et al. (1997) Control of B cell lymphoma recognition via natural killer inhibitory receptors implies a role of human Vγ9/Vδ2 T cells in tumour immunity. Eur. J. Immunol. 27, 3368-3379.
    56. Halary, F. et al. (1997) Control of self-reactive cytotoxic T lymphocytes expressing γδ T cell receptors by natural killer inhibitory receptors. Eur. J. Immunol. 27,2812-2821.
    57. Bakker, A.B.H. et al. (1998) Killer cell inhibitory receptors for MHC class I molecules regulate lysis of melanoma cells mediated by NK cells,γδ T cells and antigen-specific CTL. J. Immunol. 160,5239-5245.
    58. Bukowski, J. F. et al. (1995) Vγ9/Vδ2 TCR-dependent recognition of non-peptide antigens and Daudi cells analyzed by TCR gene transfer. J. Immunol. 154,998-1006.
    59. B. Zheng, C. Lam, S. IM. et al., Distinct tumour specificity and IL-7 requirements of CD56~- and CD56~+ subsets of human γδ T cells. Scand. J. Immunol., 2001, 53: 40-48.
    60. Imreh, M.P. et al. (1995) Mechanisms of allele-selective down modulation of HLA class I in Burkitt's lymphoma. Int. J. Cancer 62, 90-96.
    61. Szczepanik M, Nowak B, Askenase PW, et al. Immunology 1998, 95(4):612-617.
    62. Rojas RE, Balaji KN, Subramanian A. Infect Immun, 1999, 67(12): 6461-6472.
    63. Garcia V E, Sieling P A, Gong J H, et al. Single-cell cytokine analysis of γδ cell responses to nonpeptide mycobacterial antigen. J Immunol (1997) 159:1328-1335.
    64. Lundqvist C, Baranow V, Teglund S, et al. Cytokine profile and ultrasturcture of intraepithelial γδ cells in chronically inflamed human gingival suggest a cytotoxic effector function. J Immunol (1994) 153:2302-2312.
    65. Lang F, Peyrat M A, Constant P, et al. Early activation of human Vγ9/δ2 T cell broad cytotoxicity and TNF production by nonpeptidic mycobacterial ligands. J Immunol (1995) 154:5986-5994.
    66. Spinozzi F, Agea E, Bistoni O, et al. Local expansion of allergen-specific CD30~+Th2-type γδ T cells in bronchial asthma. Mol Medicine (1995) 1:821-826.
    67. Burns J, Lobo S, Bartholomew B. Requirement for CD4~+T cells in the γδ cell proliferative response to Daudi Burkitt's lymphoma. Cell Immunol (1996) 174:19-24.
    68. Tsukaguchi K, Balaji K N, Boom WH. CD4+ αβ cell and γδ cell responses to Mycobacterium tuberculosis, Similarities and differences in Ag recognition cytotoxic effector function and cytokine production. J Immunol (1995) 154:1786-1796.
    69. Young JL, Goodall J C, Beacock-Sharp H, et al. Human γδ T-cell recognition of Yersinia enterocolitica. Immunology (1997) 91:503-510.
    70. Subauste CS, Chung J Y, Do D, et al. Preferential activation and expansion of human peripheral blood γδ T-cells in response to Toxoplasma gondii in vitro and their cytokine production and cytotoxic activity against T.gondii-infected cells. J Clin Invest (1995) 96:610-619.
    71. Maccario R, Comoli P, Percivalle E, et al. Herpes simplex virus-specific human cytotoxic T-cell colonies expressing either γδ or αβ T-cell receptor: role of accessory molecules on HLA-unrestricted killing of virus-infected targets. Immunology (1995) 85:49-56.
    72. Rothenberg M E, Weber W E J, Longtine J A, et al. Cytotoxic γδ lymphocytes associated with an Epstein-Barr virus-induced posttransplantation lymphoproliferative disorder. Immunopathol (1996) 80:266-272.
    73. Wallace M, Bartz S R, Chang W L, et al. γδ lymphocyte responses to HIV. Clin Exp Immunol (1996) 103:177-184.
    74. Zocchi MR, Ferrarini M, Nigone M, et al, T-cell receptor Vδ gene usage by tumor reactive γδ T lymphocytes infiltrating human lung cancer. Immunology, 1994,81:234.
    75. Bunsussan A, Lagabrielle JF, Degos L, TCR γδ bearing lymphocyte clones with lymphokine-activated killer activity against autologous leukemic cells. Blood 73:2077.
    76. Mary A. Markiewicz and Thomas F. Gajewski. The immune system as anti-tumor sentinel: molecular requirements for an anti-tumor immune response. Critical Reviews in Oncogenesis (1999), 10(3): 247-260.
    77. Hirohito Kobayashi, Roshimasa Tanaka, Junji Yagi, et al. Gamma/delta T cells provide innate immunity against renal cell carcinoma, Cancer Immuno Immunother (2001) 50:115-124.
    78. Graham Pawelec, Robert C. Rees, Rolf Kiessling, et al. Cells and cytokines in immunotherapy and gene therapy of cancer. Critical reviews~(TM) in oncogenesis, 1999, 10(1&2): 82-127.
    79. Kabelitz D. Role of γδ T cells in the immune response against tumor cells. Cancer J (1995) 8:190-194.
    80. Sturm E, Braakman E, Fisch P, et al. Human Vγ9-Vδ2 T cell receptor-γδ lymphocytes show specificity to Daudi Burkitt's lymphoma cells. J Immunol (1990) 145:3202-3208.
    81. Kabelitz D. Role of γδ T cells in the immune response against tumor cells. Cancer J (1995) 8:190-194.
    82. Follows GA, Munk ME, Gatrill AJ, et al, Gamma interferon and interleukin 2, but not interleukin 4, are detectable in γ/δ T-cell cultures after activation with bacteria. Infect Immun 1992, 60:1229.
    83. Tsukaguchi K, Balaji KN, Boom WH, CD4~+ α./β T cell and γ/δ T cell responses to Mycobacterium tuberculosis. Similarities and differences in Ag recogition, cytotoxic effector function, and cytokine production. J Immunol 1995, 154: 1786.
    84. Yu Kato, Yoshimasa Tanaka, Fumi Miyagawa etal. Targeting of tumor cells for human γδ T cells by nonpeptide antigens. J. Immunol. 2001, 167, 5092-5098.
    85. Boismenu R, Havran WL.γδ T cells in host defense and epithelial cell biology . Clin Immunol Immunopathol 1998, 86:121-133.
    86. Juan Chen, Haitao Niu, Wei He, et al., Antitumor activity of expanded human tumor-infiltration γδ T lymphocytes, Int Arch Allergy Immunol 2001, 125: 256-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700