基于生长模型的虚拟植物技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在建立植物生长模型时同时考虑植物的形态结构与生理功能变化,是构建反映植物生长规律的虚拟植物模型的关键问题,同时也能增强模型在现代农业生产中的应用。本文主要以北固山湿地优势植物芦苇作为对象,在大量试验观测基础上研究并建立芦苇的生长模拟模型,进而构建出芦苇的虚拟植物模拟模型及其可视化模型。在此基础上开发一个参数化虚拟植物生长原型系统,对芦苇植株在不同参数条件下的生长进行了模拟,从而通过直观的可视化方式为湿地芦苇植物生长发育状况的分析和预测提供理论依据和技术基础。
     本文的主要工作包括以下内容:
     1)提出虚拟植物生长的结构功能参考模型。依据虚拟植物的结构功能模型构建思想,构建出虚拟植物生长的结构功能参考模型,并根据植物形态构成及其生长规律,对虚拟植物生长的形态拓扑结构变化进行了定量化描述。
     2)建立芦苇的发育模拟模型。分析了北固山湿地自然条件及其优势种群芦苇的生长特性,采用生长度日法建立了芦苇发育模拟模型,确定了芦苇在各生育阶段的生长度日参数。
     3)研究了芦苇的形态发生模拟模型与生理功能模拟模型。在形态发生模型方面,依次建立了芦苇的茎高变化动态模型、芦苇的节间个数变化动态模型、叶面积指数变化动态模型;在生理功能模型方面,建立了芦苇的光合生产动态模型,并采用分配指数的方法建立芦苇的干物质分配模型,克服了分配系数在建立植株干物质分配模型时因不同水肥条件、试验取样差异等造成的较大误差,使得干物质分配的动态模拟具有较好的解释性和预测性。对当年人工移栽芦苇进行了生长动态模拟,与原生芦苇生长进行了比较。
     4)基于生长机建立芦苇的虚拟植物模拟模型。对芦苇植株的形态结构与生理学特性进行了相关假定,提出器官获取强度、器官扩展分布率和扩展分布函数、同化物的初分配和再分配等概念,建立了植株拓扑结构与累积生长度日的关系模型。在现有的同化物分配理论基础上,提出了同化物的再分配方法,并建立了器官获取强度大小与器官干物质分配指数的对应关系,确立了植株生长年龄为i时不同位置处的同类器官所获得的同化物模型,有机地将同化物的生产和分配过程融为一体。根据模型各参数特点,采用非线性函数参数的最小二乘估算法确定了各器官扩展分布率函数参数。在同化物再分配模型基础上,建立了植株的叶片、叶鞘、节间等器官的形态模拟模型,并对相关参数进行了分析和确定。利用2006年试验观测数据对所构建的模型进行了验证分析,结果表明模型达到一定的可靠性和准确性。
     5)研究了虚拟植物生长的可视化模型。在所构建的虚拟植物模型基础上,利用可视化技术,建立了虚拟植物生长的可视化模型。采用结构体形式有效地组织了构造单元、叶片、叶鞘、节间等对象包含的数据信息。提出植株拓扑结构信息图形化算法流程,并给出了构造单元的图形化方法。
     6)建立虚拟植物生长模拟系统,并对系统进行了应用。以Visual C++作为开发工具,结合开放式图形开发工具包OpenGL中的各图形函数模块功能,开发了一个参数化虚拟植物生长原型系统,利用该系统对湿地芦苇生长进行了预测与可视化模拟,验证了模型及相关算法的有效性和可行性。对影响系统模拟结果的参数进行了敏感性分析,并给出了这些参数的试验确定方法。
It is a key issue for constructing virtual plant model conforming to the developmental rule of botany to consider simultaneously the change of morphology and physiology,which can also extend the application area in modern agriculture production.The dissertation develops the growth simulation model of dominant plant reed in beigu mountain after doing lots of experiments,and the corresponding virtual plant simulation model as well as its visual model are also founded.Through developing a virtual plant growth simulation system with parameters,it can perform the simulation of reed growth process with various parameters,which will offer theoretic and technologic bases in analyzing or predicting the wetland reed developmental conditions with visualization method.
     The main research works in the paper are as follows:
     1. Introducing a consulting model of structure and function for virtual plant growth. According to the construction method of functional-structural model of virtual plant, the author proposes a consulting model of structure and function for virtual plant growth,and elaborates the change of morphological topology architecture of virtual plant growth quantitively based on the plant morphological architecture and its growing law.
     2. Constructing the developmental simulation model of reed.After analyzing the natural conditions of beigu mountain wetland and the developmental characteristics of its dominant plant reed,it constructs the developmental simulation model of reed with the method of growing degree day,and the growing degree day parameters are also calculated in every developmental stage.
     3. Studying the morphological and physiological simulation model. For morphological architecture model,it constructs the dynamic model of reed stem change and internode number change as well as leaf area index change;For physiological function model,it constructs the dynamic model of reed photosynthesis,and the reed dry matter allocation model is founded using allocating index method,which can replace allocating coefficient method that usually causes much variation in constructing dry matter allocation model under different water fertilization condition or various experimental specimen,the model is also demonstrated better explanation and prediction in the dynamic simulation of dry matter allocation.Additionally,it simulates the growth of man-planted reed in the paper,and compares the developmental process of man-planted reed with that of the crude reed.
     4. Constructing virtual plant simulation model of reed based on growth mechanism.On the assumption of reed morphological architecture and physiological characteristics,the author offers some concepts such as organ acquiring strength、organ expansion distribution rate and expansion distribution function、first-allocation and second-allocation of assimilate.The correlationship between plant topology architecture and accumulative growing degree day is founded. On the basis of the existing allocation theory of assimilate,the way of second-allocation of assimilate is introduced,and the corresponding relationship between the organ acquiring strength and the allocating index of dry matter is also constructed.Additionally,the model of dry matter acquired by the same organs at different places when the plant growth age is i years old,which effectively connects the production with the allocation of assimilateAccording to the character of model parameters, parameters of the expansion distribution rate function of organs are calculated by adopting the least square estimation method of nonlinear function parameter.Based on the presented model of second-allocation of assimilate,models of geometric architecture simulation of organs such as leaf and petiole as well as internode are constructed,and the related parameters are also analyzed or calculated.The presented models are proved to be true and feasible to some extent through the experimental data from the year 2006.
     5. Studying on the visualization model of virtual plant growth. Based on the constructed virtual plant model,the visualization model of virtual plant growth is founded adopting the visualization technology.The information included in the objects such as leaf、petiole and internode in addition to structural unit is organized effectively in terms of structural object.Furthermore,the algorithm of graphic information of plant topology structure is presented,and the graphic method of structural unit is introduced.
     6. Constructing the virtual plant growth simulation system which is also applied in practice.The dissertation uses Visual C++ as programming tool,connected with the function of related graphic modules of the open graphic tool library,develops a prototype system with parameters of virtual plant growth.In the end,it predicts and simulates visually the wetland reed growth process using the system,which proves the presented models and related algorithms effective and feasible.In addition,the dissertation analyzes the sensitivity of parameters which can affect the simulated results,the methods through experimental determination of these parameters are also introduced.
引文
[1]胡包钢,赵星,严红平.植物生长建模与可视化--回顾与展望[J].自动化学报,2001,27(6):816-835.
    [2]胡包钢.植物生长建模--数字农业的核心与关键技术[A].中国数字农业与农村信息化发展战略研讨会[C].2003,71-75.
    [3]刘洪斌,谢德体.中国数字农业的构建与展望[A].中国数字农业与农村信息化发展战略研讨会[C].2003,126-130.
    [4]Guo Y,Li B G.New advances in virtual plant research.Chinese Science Bulletin[J],2001,46(11):888-894.
    [5]苏中滨,孟繁疆,康丽等.基于Agent技术虚拟植物模型的研究与探索[J].农业工程学报,2005,21(8):114-117.
    [6]郭焱,李保国.数字农业的基础--虚拟植物[A].中国数字农业与农村信息化发展战略研讨会[C].2003,31-38.
    [7]侯加林,王一鸣,董乔雪等.虚拟植物生长的研究现状与发展趋势[J].农业机械学报,2004,35(3):159-163.
    [8]章家,恩徐琪.现代生态学研究的几大热点问题透视[J].地理科学进展,1997,16(3):29-37.
    [9]Edward B B,et al.Economic valuation of wetlands[M].Ramsar Convention Bureau.Gland,Switzerland,1997.
    [10]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:高等教育出版社,2003.
    [11]宋有洪.玉米生长的生理生态功能与形态结构并行模拟模型[博士学位论文].中国农业大学,2003.
    [12]Ross J,RossV,Koppel A.Estimation of leaf area and its vertical distribution during growth period[J].Agricultural and Forest Meteorology,2000,101:273-246.
    [13]W.Graneli,Reed Phragmites australis(Cav.) Trin.ex Steudel as an energy source in Sweden[J].Bioass,1984,4:183-208.
    [14]Lessen J P M,Menting B J,van der Putten W H.Effect of sedment type and water level on biomass production of wetland plant species[J].Aquatic Botany,1999,64:151-165.
    [15]Rollleschek,H.Rolletschek,A..K(u|¨)hl,H.Kohl.Clone specific differences in a Phragrnites austrialis stand ц.Seasonal development of morphological and physiological characteristics at the natural site and after transplantation[J].Aquat.Bot,1999,64:247-260.
    [16]Rollleschek,H.Hartzendorf.Effects of salinity and convective rhizome ventilation on amino acid and carbohydrate patterns of Phragmites austrialis populations in the Neusiedler Sea region of Austria and Hungary[J].New Phyol,2000,146:95-106.
    [17]Mauchamp A,S.Blanch,P.Grillas.Effect of submergence on the growth of Phragmites austrialis seeding[J].Aquatic Botany,2001,69:147-164.
    [18]Gorham E,Pearsall,W.H.Production ecologym Shoot production in Phragmites in relation to habitat[J].Oikos,1956,7:206-214.
    [19]Clevering,O.A.An investigation into the effects of nitrogen on growth and morphology of stable and dieback populations of Phragmites australis[J].Aquat.Bot,1998,60:11-25.
    [20]S.Fogli'R,Marchesini'R.Gerdol.Effects of salinity on the growth of Phragmites australis[J].Aquatic Botany,1997,55:247-260.
    [21]S.Fogli'R,MarchesiniR'Gerdol.Reed(Phragmites australis) decline in a brachish wetland in Italy[J].Mafine Environmental Rechearch,2002.53:465-479.
    [22]Pearcy R.W,Ustin S.L.Effects of salinity on growth and photosynthesis of three California tidal marsh species[J].Oecologia,1984,62:68-73.
    [23]J.B.Adama,G.C.Bate.Growth and photosynthetic performance of Phragmites australis in estuarine waters:a field and experimental evaluation[J].Aquatic Botany,1999,64:359-367.
    [24]Jeannine M,Lessmann,Vaclav Bauer.Effect of climatic gradients on the photosynthetic responses of four Phragmites australis populations[J].Aquatic Botany,2001,69:109-126.
    [25]王洪亮,张承烈.河西走廊不同生态型芦苇质膜特性的比较[J].植物学报,1993,7(2):537-540.
    [26]任东涛,张承烈,陈国昌等.芦苇生态型划分指标的主分量及模糊聚类分析[J].生态学报,1994,14(3):265-272.
    [27]杨允菲,郎惠卿.不同生态条件下芦苇无性系种群调节分析[J].草业学报,1998,7(2):1-9.
    [28]赵家荣.芦苇和荻的栽培与利用[M].北京:金盾出版社,2002.
    [29]王祝华,沈允钢等.芦苇生物生产力及其对大气CO2加浓的响应[J].生态学报,1994,14(4):397-400.
    [30]杨允菲,李建东.松嫩平原不同生境芦苇种群分株的生物量分配与生长分析[J].应用生态学报,2003,14(1):30-34.
    [31]王立宝.河北南大港湿地生态系统植被生态及芦苇生物量的研究[硕士学位论文].河北师范大学,2003.
    [32]郭晓云,杨允菲等.松嫩平原不同旱地生境芦苇的光合特性研究[J].草业学报,2003,12(3):16-21.
    [33]段哓男,王效科.乌梁素海野生芦苇光合和蒸腾特性研究[J].干旱区地理,2004,27(4):637-641.
    [34]孙刚,祝延成.芦苇光合与蒸腾作用的日进程[J].生物学杂志,1999:16(3):24-26.
    [35]陈歆.北固山湿地优势植物的光合作用特性及人工修复技术研究[硕士学位论文].江苏大学,2005.
    [36]李萍萍,陈歆,付为国等.北固山湿地芦苇光合作用及其与环境的关系[J].江苏大学学报(自然科学版),2005,26(4):336-339.
    [37]盖平,鲍智娟,张结军.环境因素对芦苇地上部生物量影响的灰度分析[J].2002,3(3):87-91.
    [38]段哓男,王效科等.乌梁素海野生芦苇群落生物量及其影响因子分析[J].植物生态学报,2004,28(2):246-251.
    [39]Przemyslaw Prusinkiewicz,Jim Hanan,Radomir Mech.An L-system-based plant modeling language[A].In Proceedings of AGTIVE 1999[C].Lecture Notes in Computer Science,1999,395-410.
    [40]Fourcaud T,Blaise F,Lac P,Castera P.Numerical modeling of shape regulation and growth stresses in trees PART Ⅱ:implementation in the AMAPpara software and simulation of tree growth[J].Trees Structure and Function,2003,17(1):31-39.
    [41]Mitch Allen,Przemyslaw Prusinkiewicz,Theodore DeJong.Using L-systems for modeling source-sink interactions,architecture and physiology of growing trees:the L-PEACH model[J].New Phytologist,2005,166:869-880.
    [42]Mitch Allen,Przemyslaw Prusinkiewicz,Theodore DeJong.Using L-Systems for Modeling the Architecture and Physiology of Growing Trees:The L-PEACH Model[C].In Proceedings of the 4th International Workshop on Functional-Structural Plant Models,2005,220-225.
    [43]L.M(u|¨)ndermann,P.MacMurchy,J.Pivovarov,P.Prusinkiewicz.Modeling lobed leaves[C].Proceedings of Computer Graphics International-CGI2003,60-65.
    [44]Zhao X,de Reffye P,Barthelemy D,et al.Interactive Simulation of Plant Architecture Based on a Dual-Scale Automation Model[A].In:Bao-Gang Hu,Marc Jaeger Eds.Plant Growth Modeling and Applications[C].Beijing:Tsinghua University Press Beijing,China,2003,144-153.
    [45]展志刚,王一鸣,de Reflye等.冬小麦植株生长的形态构造模型研究[J].农业工程学报,2001,17(5):6-10.
    [46]Hu B G,de Reffye P.Plant growth modeling and visualization[A].Proceedings of Euro-China Co-operation Forum on the Information Society[C].Beijing China,2002,145-169.
    [47]赵星.忠于植物学的虚拟植物生长研究[博士学位论文].中国科技大学,2001.
    [48]展志岗.植物生长的结构-功能模型及其校准研究---以Corner型植物为例[博士学位论文].中国农业大学,2001.
    [49]耿瑞平,涂序彦.虚拟植物生长模型[J].计算机工程与应用,2004(5):6-8.
    [50]康孟珍.基于子结构的植物随机结构功能模型[博士学位论文].中科院自动化研究所,2003.
    [51]董乔雪,王一鸣,Jean F B等.番茄形态结构模型参数的多目标拟合估算方法研究[J].农业工程学报,2006,22(2):1-5.
    [52]丁维龙,基于虚拟植物生长模型的农业专家系统研究[J].浙江工业大学学报,2005,33(5):525-528.
    [53]李云峰,朱庆生,曹渝昆,何希平.一种基于图像的快速虚拟植物可视化重建[J].计算机应用研究,2005(11):253-257.
    [54]李云峰,朱庆生,古平,胡海清.一种基于图像的植物器官重建[J].计算机工程与应用,2006(1):218-221.
    [55]Radomir Mech,Przemyslaw Prusinkiewicz.Generating subdivision curves with L-systems on a GPU[M].SIGGRAPH 2003 Sketches and Applications.
    [56]徐盛,袁震东.树木成长过程的计算机仿真--人工生命的一个问题[J].东南大学学报(自然科学版).2003(9):190-193.
    [57]宋有洪,郭焱,李保国等.基于植株拓扑结构的生物量分配的玉米虚拟模型[J].生态学报,2003,23(11):2333-2341.
    [58]宋有洪,郭焱,李保国等.基于器官生物量构建植株形态的玉米虚拟模型[J].生态学报,2003,23(12):2579-2586.
    [59]米湘成,敖合军,邹应斌等.可视化技术及“模型-文档.视”结构在水稻生长模拟中的应用[J].农业工程学报,2003,19(4):164-167.
    [60]Room P M.Hanan J S,Prusinkiewicz P.Virtual plants:new perspectives for ecologists,pathologists and agricultural scientists[J].Trends in Plant Science,1996,1(1):33-38.
    [61]郭焱,李保国.虚拟植物的研究进展[J].科学通报,2001,46(4):273-280.
    [62]唐卫东,李萍萍.基于状态机的植物生长模型可视化研究[J].农业机械学报,2006,37(7):104-108.
    [63]Hu B G,Zhao X,Yan H P,etal.Plant Growth Modeling and Visualization-Review and Perspective[J].Acta Automatica Sinica,2001,27(4):567-584.
    [64]Yan H P,Barczi J F,de Reffye P,et al.Fast algorithms of plant computation based on substructure instances[C].International Conferences in Central Europe on Computer Graphics,Visualization and Computer Vision,2002,3(10):145-153.
    [65]Prusinkiewicz P,Lindenmayer A.The Algorithmic Beauty of Plants[M].New York:Springer-Verlag,1990.
    [66]Viennot X G,Eyrolles G.Combinatorial analysis of ramified patterns and computer imagery of trees[J].Computer graphics,1989,23(3):31-39.
    [67]Hammel M S,Prusinkiewicz P,Wyvill B.Modeling compound leaves using implicit contours[C].Proceeding of Computer Graphics International'92,Tokyo,1992.
    [68]Weber J,Penn J.Creation and rendering of realistic trees[C].Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Los Angeles,California,1995.
    [69]周云龙.植物生物学[M].北京:高等教育出版社,2004.
    [70]张彩琴,杨持.植物生长模拟与数学模型研究[J].内蒙古大学学报(自然科学版),2006, 37(4):435-440.
    [71]刘颖慧,贾海坤,高琼.植物同化物分配及其模型研究综述[J].生态学报,2006,26(6):1981-1992.
    [72]李保国,张宝贵.植物生长模型、模拟和可视化及其应用新进展[J].国际学术动态,2004(4):30-31.
    [73]刘国香,白日新,李锦涛等.中国古典园林三维造型研究[J].计算机辅助设计与图形学学报,1994,6(1):8-14.
    [74]Rados.aw Mateusz Karwowski.Improving the Process of Plant Modeling:The L+C Modeling Language[Ph.D.thesis].CALGARY,ALBERTA September,2002.
    [75]Brendan Lane.Models of Plant Communities for Image Synthesis[M.Sc.thesis],June 2002.
    [76]Przemyslaw Prusinkiewicz,Lars Miindermann,Radoslaw Karwowski.The Use of Positional Information in the Modeling of Plants[C].Proceedings of SIGGRAPH 2001,289-300.
    [77]Julia Taylor-Hell.Biomechanics in Botanical Trees[M.Sc.thesis].University of Calgary,September 2005.
    [78]Przemyslaw Prusinkiewicz,Jim Hanan,Radomir Mech.An L-system-based plant modeling language[C].In:M.Nagl,A.Schuerr and M.Muench(Eds):Applications of graph transformations with industrial relevance.Proceedings of the International workshop AGTIVE99,Kerkrade,The Netherlands,September 1999.Lecture Notes in Computer Science 1779,Springer,Berlin,2000,395-410.
    [79]R.Karwowski,P.Prusinkiewicz.Design and implementation of the L+C modeling language[J].Electronic Notes in Theoretical Computer Science,2003,86(2):19-35.
    [80]P.Federl,P.Prusinkiewicz.Finite element model of fracture formation on growing surfaces[C].In M.Bubak,G van Albada,P.Sloot and J.Dongarra(Eds.):Proceedings of Computational Science.ICCS 2004(Krakow,Poland,June 6-9,2004),Part Ⅱ,Lecture Notes in Computer Science 3037,Springer,Berlin,138-145.
    [81]Brendan Lane,Przemyslaw Prusinkiewicz.Generating spatial distributions for multilevel models of plantcommunities[C].Proceedings of Graphics Interface 2002(Calgary,Alberta,May 27-29,2002),69-80.
    [82]Catherine Jirasek,Przemyslaw Prusinkiewicz,Bruno Moulia.Integrating biomechanics into developmental plant models expressed using L-systems[J].Plant biomechanics,2000,615-624.
    [83]P.Prusinkiewicz,F.Samavati,C.Smith,R.Karwowski.L-system description of subdivision curves[J].International Journal of Shape Modeling,2003,9(1):41-59.
    [84]P.Federl,P.Prusinkiewicz.Solving differential equations in developmental models of multicellular structures expressed using L-systems[C].In M.Bubak,G van Albada,P.Sloot and J.Dongarra(Eds.):Proceedings of Computational Science.ICCS 2004(Krakow,Poland,June 6-9,2004),Part Ⅱ,Lecture Notes in Computer Science 3037,Springer,Berlin,65-72.
    [85]Radomir Mech,Przemyslaw Prusinkiewicz.Visual Models of Plants Interacting with Their Environment[C].Proceedings of SIGGRAPH 96(New Orleans,Louisiana,August 4-9,1996).In Computer Graphics Proceedings,Annual Conference Series,1996,ACM SIGGRAPH,397-410.
    [86]Mark Hammel,Przemyslaw Prusinkiewicz.Visualization of developmental processes by extrusion in space-time[C].In Proceeding of Graphics Interface 96,246-258.
    [87]Martin Fuhrer.Hairs,Textures,Shades.Improving the Realism of Plant Models Generated with L-Systems[M.Sc.thesis].CALGARY,ALBERTA August,2005.
    [88]张树兵,王建中.基于L系统的植物建模方法改进[J].中国图象图形学报,2002,7(5):457-460.
    [89]陈昭炯.基于L-系统的植物结构形态模拟方法[J].计算机辅助设计与图形学学报,2000,12(8):571-574.
    [90]Zhao X.Interactive Simulation of Plant Architecture Based on a Dual-Scale Automation Model[C].In:Hu B G.Plant Growth Modeling and Applications.Beijing:Tsinghua University Press Beijing,China,2003:144-153.
    [91]赵星,de Reffye P.熊范纶等.虚拟植物生长的双尺度自动机模型[J].计算机学报,2001,24(6):608-615.
    [92]赵星,PhilippedeReffye,熊范纶,胡包钢,康孟珍.基于双尺度自动机模型的植物花序模拟[J].计算机学报,2002,25(11):116-124.
    [93]de Reffye P,Houllier F.Modelling plant growth and architecture:some recent advances and applications to agronomy and forestry[J].CurrentScience,1997,73(11):984-992.
    [94]Heuret P,Barthélémy D,Guédon Y,etal.Synchronisation of growth,branching and flowering processes in the South America tropical tree Cecropia obtuse(Cecropiaceae)[J].American Journal of Botany,2002,89(7):1180-1187.
    [95]P.Prusinkiewicz.Modeling plant growth and development[J].Current Opinion in Plant Biology,2004,7(1):79-83.
    [96]Brendan Lane.Models of Plant Communities for Image Synthesis[M.Sc.thesis].CALGARY,ALBERTA,June 2002.
    [97]de Reffye P,Edelin C.Franqon J,et al.Plant models faithful to botanical structure and development[J].Computer Graphics,1988,22(4):151-158.
    [98]Przemyslaw Prusinkiewicz.Simulation Modeling of Plants and Plant Ecosystems[J].Communications of the ACM,2000,43(7):84-93.
    [99]Jim Hanan,Przemyslaw Prusinkiewicz,Myron Zalucki,and David Skirvin.Simulation of insect movement with respect to plant architecture and morphogenesis[J].Computers and Electronics in Agriculture 2002,35:256-269.
    [100]Radoslaw Karwowski,Przemyslaw Prusinkiewicz.The L-system-based plant-modeling environment L-studion 4.0[C].In Proceedings of the 4th International Workshop on unctional-Structural Plant Models,2004,403-405.
    [101]Georg Thieme Verlag,Stuttgart.Integrating biomechanics into developmental plant models expressed using L-systems[C].In:H.-Ch.Spatz and T.Speck(Eds.):Plant biomechanics 2000.Proceedings of the 3rd Plant Biomechanics Conference,Freiburg-Badenweiler,August 27 to September 2,2000.615-624.
    [102]Oliver Deussen,Pat Hanrahan,Bernd Lintermann,Radomir Mech,Matt Pharr,Przemyslaw Prusinkiewicz.Realistic modeling and rendering of plant ecosystems[C].Proceedings of SIGGRAPH 98.(Orlando,Florida,July19-24,1998).In Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,1998,275-286.
    [103]王圣瑞,年跃刚,侯文华等.人工湿地植物的选择[J].湖泊科学,2004,16(1):91-96.
    [104]成水平,吴振斌,况琪军.人工湿地植物研究[J].湖泊科学,2002,14(2):179-184.
    [105]曲颖,李自珍,李文龙.湿地植物生长模型的改进及其动态的计算机模拟分析[J].西北植物学报,2004,24(3):418-423.
    [106]倪纪恒,罗卫红,李永秀等.温室番茄发育模拟模型研究[J].中国农业科学,2005,38(6):1219-1225.
    [107]徐刚,郭世荣,张昌伟.温室礼品西瓜生育动态模拟模型[J].江苏农业科学,2004(6):96-98.
    [108]侯加林,王一鸣,徐云等.番茄生长发育非线性模拟模型[J].农业机械学报,2006,37(3):80-84.
    [109]徐刚,郭世荣,张昌伟等.基于生长模型的温室小型西瓜栽培管理专家系统(ESWCM)的研究和建立[J].农业工程学报,2006,22(4):157-161.
    [110]徐刚,张昌伟,李德翠等.温室长季节栽培番茄发育动态模拟模型的研究[J].农业工程学报,2005(12):243-246.
    [111]Blaise F,Barczi J F,Jaeger M,etal.Simulation of The Growth of Plants Modeling of Metamorphosis and Spatial Interactions in the Architecture and Development of Plants[M].New York:Springer-Verlag,1998.
    [112]Bene(?) B.Skylight approximation for simulation of plant development[C].Proceedings of the IEEE Symposium on Information Visualization,1998.
    [113]Greene N.Voxel space automation:modeling with stochastic growth processes in voxel space[J].Computer Graphics,1989,23(3):175-184.
    [114]Soler C,Sillion F.Hierarchical instantiation for radiosity[C].In:B Peroche,H Rushmeier eds.Rendering Techniques'00.New York:NY,Springer,2000.
    [115]Chiba N,Ohshida K.Visual simulation of leaf arrangement and autumn colours[J].The Journal of Visualization and Computer Animation,1996,7:79-93.
    [116]于强,王天铎,孙菽芬等.玉米株型与冠层光合作用的数学模拟研究[J].作物学报,1998,24(3):272-279.
    [117]李萍萍,夏志军,胡永光.利用delphi开发温室黄瓜生长动态模拟系统[J].江苏大学学报(自然科学版),2003,24(4):13-16.
    [118]成文联,柳海鹰,王世冬.生物量与其影响因素之间关系的研究[J].内蒙古大学学报(自然科学版),2000,31(3):285-288.
    [119]刘璇,孙忠富,吴祖玉.植物生长发育形态模拟技术的研究现状及发展趋势[J].农业网络信息,2005(2):8-11.
    [120]侯加林,王一鸣,展志刚.基于改进型非线性最小二乘法的作物模型隐含参数估计[J].农业机械学报,2005,36(5):75-79.
    [121]李晓梅,黄朝晖.科学计算可视化导论[M].长沙:国防科技大学出版社,1996.
    [122]刘秀海,肖伯祥,郑文刚等.玉米虚拟生长研究综述[J].玉米科学,2006,14(2):164-167.
    [123]Guédon Y,Barthélémy D,Caraglio Y,etal.Pattern analysis in branching and axillary flowering sequences[J].Journal of Theoretical Biology,2001,212:481-529.
    [124]Pavol Federl.Modeling Fracture Formation on Growing Surfaces[Ph.D.thesis],September 2002.
    [125]Mario Costa Sousa,Przemyslaw Prusinkiewicz.A few good lines:Suggestive drawing of 3D models[C].Proceedings of Eurographics:Computer Graphics Forum,2003,22(3):381-390.
    [126]王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1997.
    [127]Pavol Federl.Modeling Fracture Formation on Growing Surfaces[Ph.D.dissertation].CALGARY,ALBERTA,September 2002.
    [128]Martin Fuhrer,Henrik Wann Jensen,Przemyslaw Prusinkiewicz.Modeling Hairy Plants[C].In Proceedings of Pacific Graphics 2004,217-226.
    [129]P.Prusinkiewicz.Self-similarity in plants:Integrating mathematical and biological perspectives[C].In M.Novak(Ed.):Thinking in Patterns.Fractals and Related Phenomena in Nature.World Scientific,Singapore,2004,103-118.
    [130]石春林,金之庆,葛道阔.植物可视化研究进展[J].江苏农业科学,2004(6):11-14.
    [131]马新明,杨娟,熊淑萍等.植物虚拟研究现状及展望[J].作物研究,2003,17(3):148-151.
    [132]刘斌,糜元根.推理过程的可视化研究[J].计算机工程与应用,2001(7):140-143.
    [133]Ferraro P,Godin C,Prusinkiewicz P.Toward a quantification of self-similarity in plants[J].Fractals,2005,13(2):91-109.
    [134]M(U|¨)ndermann L,Erasmus Y,Lane B,etal.Quantitative Modeling of Arabidopsis Development[J].Plant Physiology,2005,139:960-968.
    [135]Pascal Ferraro,Christophe Godin,Przemyslaw Prusinkiewicz.A structural method for assessing self-similarity in plants[C].In Proceedings of the 4th International Workshop on Functional-Structural Plant Models,2005,56-60.
    [136]Adam Runions,Martin Fuhrer,Brendan Lane,Pavol Federl,Anne-Ga(e|¨)lle Rolland-Lagan,Przemyslaw Prusinkiewicz.Modeling and visualization of leaf venation patterns[J].ACM Transactions on Graphics,2005,24(3):702-711.
    [137]Pascal Ferraro,Christophe Godin,Przemyslaw Prusinkiewicz.Toward a quantification of self-similarity in plants[J].Fractals,2005,13(2):91-109.
    [138]P.Prusinkiewicz.Art and science for life:Designing and growing virtual plants with L-systems[C].In C.Davidson and T.Fernandez(Eds:) Nursery Crops:Development,Evaluation,Production and Use:Proceedings of the ⅩⅩⅥ International Horticultural Congress.Acta Horticulturae,2004,630:15-28.
    [139]Pascal Ferraro,Christophe Godin,and Przemyslaw Prusinkiewicz.A structural method for assessing self-similarity in plants[C].In Proceedings of the 4th International Workshop on Functional-Structural Plant Models,56-60.
    [140]邓旭阳,周淑秋,郭新宇.玉米根系几何造型研究[J].工程图学学报,2004(4):62-66.
    [141]丁维龙,熊范纶,张友华.基于构件的植物三维结构模拟模型[J].小型微型计算机系统,2004,25(9):1624-1627.
    [142]丁维龙,程志君.基于构造模型的植物形态建模[J].工程图学学报,2005(3):29-33.
    [143]唐卫东,李萍萍,卢章平.基于Open-L系统的植物结构功能模型研究[J].计算机应用研究,2007,24(3):94-96.
    [144]DIN G Weilong,XION G Fanlun.Design and Real ization of Reusable Components for Plant Modeling[J].中国科学技术大学学报,2003,33(6):743-748.
    [145]许少雄.现代时空论[M].广州:广东科技出版社,1993.
    [146]于长官.现代控制理论[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [147]耿瑞平,涂序彦.虚拟植物枝条生长与形态生成模型研究[J].计算机工程与应用,2004(7):4-6.
    [148]Brendan Lane and Przemyslaw Prusinkiewicz.Generating spatial distributions for multilevel models of plant communities[C].Proceedings of Graphics Interface 2002(Calgary,Alberta,May 27-29,2002),69-80.
    [149]P.Prusinkiewicz.Art and science for life:Designing and growing virtual plants with L-systems[J].Acta Horticulturae,2004,630:15-28.
    [150]Atsushi Kume,Yoshio Ino.A Growth Simulation of Evergreen Broad-leaved Shrubs based on Shoot Allometry,Critical Shoot Sizes for Flowering and Photosynthetic Production[J].Plant Research,2001,1141:67-74.
    [151]孙敏,马蔼乃,毛善君.3DGIS中树的表达与可视化研究[J].计算机辅助设计与图形学学报,2001,13(10):901-905.
    [152]Daizo Tsutsumi,Ken'ichiro Kosugi,Takahisa Mizuyama.Effect of Hydrotropism on Root System Development in Soybean(Glycine max):Growth Experiments and a Model Simulation[J].Plant Growth Regulation,2003,21(4)441-458.
    [153]钱玮,路巍,韦穗.植物形态的控制矩阵法[J].中国图象图形学报,1999,4(4):336-339.
    [154]Thierry Fourcaud,Frédéric Blaise,Patrick Lac,Patrick Castéra,Philippe de Reffye.Numerical modelling of shape regulation and growth stresses in trees Ⅱ Implementation in the AMAPpara software and simulation of tree growth[J].Trees-Structure and Function,2003,17(1):31-39.
    [155]Vanessa M.Dunbabin,Art J.Diggle,Zdenko Rengel.Simulation of field data by a basic three-dimensional model of interactive root growth[J].Plant and Soil,2002,239(1):39-54.
    [156]Roberte.Keane,Mike Austin,Christopher Field.Tree Mortality in Gap Models Application to Climate Change[J].Climatic Change,2001,51:509-540.
    [157]李承森,王宇飞,孙启高.植物对环境的响应--定量重建古气候的研究进展[J].植物学通报,2003,20(4):430-438.
    [158]顾祝军,曾志远.虚拟现实技术在我国农业现代化中的应用[J].农机化研究,2005(1):12-14.
    [159]钟章成,曾波.植物种群生态研究进展[J].西南师范大学学报(自然科学版),2001,26(2):230-236.
    [160]郭延,臣韦,群孙建.自然场景中植物模型的构造和真实感绘制[J].中国科技信息,2005(10):14-15.
    [161]刘志彦,陈北光,谢正生.植物生态型分类研究进展[J].生态科学,2004,23(4):365-369.
    [162]Ai Sakamoto1,Hiromichi Fukui.Development and application of a livable environment evaluation support system using Web GIS[J].Geographical Systems,2004,6:175-195.
    [163]Yi-Ping Phoebe Chen,Robert M.Colomb.Database Technologies for L-System Simulations in Virtual Plant Applications on Bioinformatics[J].Knowledge and Information Systems,2003,5:288-314.
    [164]宋万寿,赖建伟.基于粒子系统方法的焰火及树木模拟[J].计算机辅助设计与图形学学报,1996,8(4):254-258.
    [165]Pavol Federl,Przemyslaw Prusinkiewicz.Solving Differential Equations in Developmental Models of Multicellular Structures Expressed Using L-systems[J].Lecture Notes in Computer Science,2004,3037:65-72.
    [166]董乔雪,王一鸣.温室计算机分布式自动控制系统的开发[J].农业工程学报,2002,18(4):94-97.
    [167]Sandy Dickson,Peter Kolesik.Visualisation of mycorrhizal fungal structures and quantification of their surface area and volume using laser scanning confocal microscopy[J].Mycorrhiza,1999,9:205-213.
    [168]Ulrik Brandes,Tim Dwyer,Falk Schreiber.Visualizing Related Metabolic Pathways in Two and a Half Dimensions[J].Lecture Notes in Computer Science.2004.2912:111-122.
    [169]毛卫强,耿卫东,潘云鹤.基于特征综合的植物建模方法[J].计算机辅助设计与图形学 学报,2000,12(8):595-600.
    [170]Thierry Castel,Yves Caraglio,Andre' Beaudoin,Fre'de'ric Borne.Using SIR-C SAR Data and the AMAP Model for Forest Attributes Retrieval and 3-D Stand Simulation[J].Remote Sensing of Environment 2001,75:279-290.
    [171]Bian Runqiang,Phoebe Chen,Kevin Burrage.Derivation of L-system Models from Measurements of Biological Branching Structures Using Genetic Algorithms[J].Lecture Notes in Computer Science,2002,2358:514-524.
    [172]Ole Kniemeyer,Gerhard H.Buck-Sodin,Wmfried Kurth.Representation of Genotype and Phenotype in a Coherent Framework Based on Extended L-Systems[J].Lecture Notes in Computer Science,2003,2801:625-634.
    [173]P.Melin,O.Castillo.A new method for adaptive model-based control of non-linear dynamic plants using a neuro-fuzzy-fractal approach[J].Soft Computing,2001,5(2):171-177.
    [174]潘云鹤,毛卫强.基于交互变形的树木三维建模研究[J].计算机辅助设计与图形学学报,2001,13(11):1035-1042.
    [175]M.Rossi,P.G.Araujo,E.M.de Jesus,A.M.Varani,M.-A.Van Sluys.Comparative analysis of Mutator-like transposases in sugarcane[J].Molecular Genetics and Genomics,2004,272(2):194-203.
    [176]Przemyslaw Prusinkiewicz.Modeling plant growth and development[J].Current Opinion in Plant Biology,2004,7:79-83.
    [177]康孟珍,PhilippedeReffye,胡包钢,赵星.快速构造植物几何结构的子结构算法[J].中国图象图形学报,2004,9(1):79-86.
    [178]赵婷婷,郭继东.模拟自然景观的分形方法[J].工程图学学报,2002(2):113-119.
    [179]Przemyslaw Prusinkiewicz,Anne-Gaellc Rolland-Lagan.Modeling plant morphogenesis[J].Current Opinion in Plant Biology,2006,9:83-88.
    [180]Claude Lattaud.Long-Term Competition for Light in Plant Simulation[J].Springer-Verlag Berlin Heidelberg,2003,144-145.
    [181]李萍萍,唐卫东,卢章平.基于构造体系的植物生长定量化研究[J].农业机械学报,2007,38(5):126-130.
    [182]William Van Haevre,Philippe Bekaert.A simple but effective algorithm to model the competition of virtual plants for light and space[J].WSCG,2003,11(3):464-471.
    [183]王莉莉,赵沁平.一种通用的植物逼真几何建模方法[J].中国图象图形学报,2003,8(8):932-937.
    [184]唐卫东,李萍萍,卢章平.基于二生长机的芦苇形态模型可视化研究[J].计算机应用,2006,26(5):1220-1222.
    [185]R.S.Smith,S.Guyomarc'h,T.Mandel,D.Reinhardt,C.Kuhlemeier,P.Prusinkiewicz.A plausible model of phyllotaxis[C].Proceedings of the National Academy of Sciences 2006.103(5):1301-1306.
    [186]B.de Jager,J.Banens.VISOR Vast Independence System Optimization Routine[J].Algorithmica,2001,30:630-644.
    [187]顾寄南,毛罕平,李萍萍.温室系统综合动态模型的研究[J].农业工程学报,2001,17(4):79-82.
    [188]Julia Taylor-Hell.Biomechanics in Botanical Trees[M.Sc.thesis].University of Calgary,September 2005.
    [189]P.Prusinkiewicz.Self-similarity in plants:Integrating mathematical and biological perspectives[J].World Scientific,Singapore,2004,103-118.
    [190]Marc Ebner.Evolution and Growth of Virtual Plants[J].Lecture Notes in Computer Science,2003,2801:228-237.
    [191]C.Smith,P.Prusinkiewicz,F.Samavati.Relational specification of subdivision algorithms[J].Applications of Graph Transformations with Industrial Relevance(AGTIVE 2003):Lecture Notes in Computer Science,3062:313-327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700