4H-SiC基紫外探测器减反射膜的设计、制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硅(SiC)材料由于具有宽禁带(4H-SiC为3.26eV)、高击穿电场、高热稳定性等优点,在紫外光电探测领域展现出了极大的潜力。各种结构的4H-SiC基紫外探测器(如肖特基、金属。半导体.金属(MSM)、p-i-n以及雪崩探测器等)在尾焰探测、臭氧层检测、短波通讯等方面展现出了良好的应用前景。
     为了提高探测器对入射光线的吸收效果,一般采用热氧化的方法在4H-SiC紫外探测器的入射表面上生长一层SiO_2薄膜,作为探测器的减反射膜和钝化层,以提高器件的量子效率和响应度。这层SiO_2薄膜虽然在抑制器件暗电流方面起到了良好的作用,但是在消除光学损耗方面却具有一些不可避免的缺点,主要是:对紫外线的反射率较高、薄膜和界面吸收较大和厚度不能精确控制。因此,为了消除这些缺陷,进一步提高4H-SiC基紫外探测器的量子效率,本文主要开展了4H-SiC基紫外探测器减反射膜的设计、制备以及应用工作,并取得了以下重要结果:
     1.根据薄膜的透明波段、消光系数、折射率、机械性能和化学稳定性,从几十种光学薄膜材料中挑选了Al_2O_3和SiO_2,作为4H-SiC基紫外探测器的减反射膜材料。考虑到薄膜的稳定性,设计将SiO_2膜置于Al_2O_3膜与4H-SiC基底之间,Al_2O_3作为外层膜淀积在SiO_2薄膜之上。应用矢量法和导纳匹配技术,对薄膜的厚度进行设计。考虑到薄膜实际制备中的误差,模拟了折射率、厚度等变化对薄膜反射率的影响。结果发现:厚度变化对薄膜反射率的影响最大,但折射率、消光系数和表面粗糙度等因素的影响也不能忽视。
     2.根据减反射膜的设计,应用电子束蒸发工艺在4H-SiC基底上淀积了总厚度为138nm的Al_2O_3/SiO_2薄膜。通过反射率测试发现,该薄膜在276nm具有0.25%的反射率极小值,是目前在4H-SiC基底上所能得到的最小值。由于有些4H-SiC探测器的制备需要高温退火,所以将制备好的Al_2O_3/SiO_2薄膜分别在550、950及1100℃的氮气中退火来检验薄膜特性。测试结果发现:反射率极小值随退火温度的升高有蓝移的趋势,反射率最小值有轻微的波动,但仍然保持在0.4%左右。检测发现这是由于薄膜厚度降低造成的。薄膜表面的粗糙度和颗粒均会随退火温度升高而增加,但退火后的薄膜粗糙度比退火前的小。尽管Al_2O_3/SiO_2薄膜在退火前后始终保持在无定形状态,但是薄膜和基底界面随退火温度的升高有互扩散现象,并且有铝硅酸盐和低值Si氧化物的生成。
     3.制备了具有Al_2O_3/SiO_2减反射膜的4H-SiC基MSM紫外探测器,以及具有热氧化SiO_2薄膜的4H-SiC同类型器件。测试结果表明Al_2O_3/SiO_2/4H-SiC器件的光电流是SiO_2/4H-SiC器件的两倍,但前者的暗电流与后者相比较大,在10V偏压下分别为7.5和0.5pA。Al_2O_3/SiO_2/4H-SiC器件在20V偏压下的响应度峰值位于在290nm处,达到0.12A/W,为SiO_2/4H-SiC器件的两倍。经计算,Al_2O_3/SiO_2/4H-SiC器件的内外量子效率峰值均在280nm波长,分别为50%和77%,是目前量子效率最高的4H-SiC基MSM探测器。经过对比发现,在240-300nm,Al_2O_3/SiO_2薄膜的反射率与器件的响应度吻合得很好。
     4.采用氧化和电子束蒸发两种淀积工艺制备的Al_2O_3/SiO_2减反射膜,应用到了4H-SiC基p-i-n紫外光电二极管上。经测试发现,由于Al_2O_3/SiO_2/4H-SiC器件钝化层的侧壁钻蚀,造成该器件的暗电流比热氧化的SiO_2/4H-SiC同类型器件大,在10V偏压下分别为3.9和0.1pA。不过,前者的在280nm光照下的电流却是后者的2.8倍,达到2.8nA。两种器件的响应度随反偏电压的增加均有很小的增益。在10V的偏压下,Al_2O_3/SiO_2/4H-SiC和SiO_2/4H-SiC器件的响应度峰值分别位于270和260nm,大小为49和32mA/W,对应外量子效率分别为23%和15%。经过分析发现:这两种器件的量子效率低是由于i层没有完全耗尽造成的。两种器件的响应度峰值与反射率最小值均吻合得很好。
Silicon carbide(SiC) has been performing considerable potential for ultraviolet(UV) photodetectors due to its properties such as wide band gap(3.26 eV for 4H-SiC),high break down electric field and high thermal stability.4H-SiC based UV photodetectors such as Schottky,metal-semiconductor-metal(MSM),p-i-n and avalanche have been presenting excellent performance for UV detection application in flame detection,ozone-hole sensing, short-range communication,etc.
     Generally,the most widely used antireflection coating and passivation layer for 4H-SiC based photodetectors are native SiO_2 layer grown by heating 4H-SiC atmosphere in order to improve absorption of photodetectors.Nevertheless,the SiO_2 single layer suffers from high reflection,large absorption and inaccurate film thickness.Therefore,in this dissertation,UV antireflection coatings were designed,fabricated and applied in order to reduce optical losses and improve the quantum efficiency(QE) of 4H-SiC based photodetectors.The important results were obtained as follows:
     1.According to transparent range,extinction coefficient,refractive index,mechanical properties and chemical reliability,Al_2O_3 and SiO_2 films were selected in tens of optical film materials as antireflection coatings on 4H-SiC based UV photodetectors.SiO_2 film was designed between Al_2O_3 film and 4H-SiC substrate and Al_2O_3 film was deposited on SiO_2 film according to its reliability.The optical thicknesses of Al_2O_3 and SiO_2 film were designed according to the vector method and admittance matching technology.Errors of refractive index,thickness,etc were simulated to evaluate error effects on reflectance of Al_2O_3/SiO_2 films.Thickness error was the main factor.However,the effects of refractive index,extinction coefficient and surface roughness could not be ignored.
     2.Al_2O_3/SiO_2 films were deposited on 4H-SiC substrates by using electron-beam evaporation according to above film design.The minimum reflectance of the films was 0.25% at 276nm,which is the minimum attained so far.The Al_2O_3/SiO_2 films were annealed in N_2 at 550,950 and 1100℃,respectively,to examine film performance.The minimum reflectance shifted to shorter wavelength with the increase of annealing temperature due to reduction of film thickness.The surface grains appeared to get larger in size and the root mean square (RMS) roughness of the annealed films increased with the annealing temperature but was less than that of the as-deposited.Although the Al_2O_3/SiO_2 films kept amorphous,there were diffusion,Al-silicates and Si-suboxides at the interface between films and 4H-SiC substrate.
     3.4H-SiC based MSM UV photodetectors with Al_2O_3/SiO_2 films had been fabricated and compared with SiO_2/4H-SiC MSM detectors.The photocurrent of former was twice as large as the latter,while the dark current was also larger.The Al_2O_3/SiO_2/4H-SiC devices showed a peak responsivity of 0.12 A/W at 290 nm under 20 V,which was twice as much as that of MSM detectors.The internal and external QE of the Al_2O_3/SiO_2/4H-SiC devices were 50%and 77%at 280 nm respectively,which are the highest attained so far for 4H-SiC based MSM photodetectors.The responsivity of the Al_2O_3/SiO_2/4H-SiC devices agreed well with their surface reflectance in 240-300nm.
     4.The Al_2O_3/SiO_2 films prepared by oxidation and electron-beam evaporation were applied on 4H-SiC based p-i-n photodiodes.The dark current of the devices was 1 pA,which was larger than that of SiO_2/4H-SiC detectors due to undercut of mesa sidewall.But the photocurrent of the former was 2.8 nA,which 2.8 times as larger as that of the latter.There were slight gains in these two devices with the increase of backward bias voltage.The peak responsivities of Al_2O_3/SiO_2/4H-SiC and SiO_2/4H-SiC devices were 49 mA/W at 270 nm and 23 mA/W at 260 nm,respectively,corresponding to external QEs of 23%and 15%.The low external QEs were due to incomplete depletion in i layer.The peak responsivities of these two devices agreed well with their minimum surface reflectances.
引文
[1] M. Razeghi, and A. Rogalski. Semiconductor ultraviolet detectors [J]. Journal of Applied Physics, 1996, Vol.79(10): 7433-7473.
    
    [2] Z. Wu, X. Xin, F. Yan, et al. Demonstration of the first 4H-SiC metal-semiconductor-metal ultraviolet photodetector [J]. Silicon Carbide and Related Materials 2003, Pts 1 and 2, 2004, Vol.457-460: 1491-1494.
    
    [3] F. Yan, X. B. Xin, S. Aslam, et al. 4H-SiC UV photo detectors with large area and very high specific detectivity [J]. IEEE Journal of Quantum Electronics, 2004, Vol.40(9): 1315-1320.
    [4] X. Y. Guo, L. B. Rowland, G. T. Dunne, et al. Demonstration of ultraviolet separate absorption and multiplication 4H-SiC avalanche photodiodes [J]. IEEE Photonics Technology Letters, 2006, Vol.18(1-4): 136-138.
    [5] D. Walker, E. Monroy, P. Kung, et al. High-speed, low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN [J]. Applied Physics Letters, 1999, Vol.74(5): 762-764.
    [6] J. Li, Z. Y. Fan, R. Dahal, et al. 200 nm deep ultraviolet photodetectors based on A1N [J]. Applied Physics Letters, 2006, Vol.89(21): 213510.
    [7] H. Ishikura, T. Abe, N. Fukuda, et al. Stable avalanche-photodiode operation of ZnSe-based p(+)-n structure blue-ultraviolet photodetectors [J]. Applied Physics Letters, 2000, Vol.76(8): 1069-1071.
    [8] N. W. Emanetoglu, J. Zhu, Y. Chen, et al. Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire [J]. Applied Physics Letters, 2004, Vol.85(17): 3702-3704.
    [9] H. L. Xue, X. Z. Kong, Z. R. Liu, et al. TiO2 based metal-semiconductor-metal ultraviolet photodetectors [J]. Applied Physics Letters, 2007, Vol.90(20): 201118.
    [10] M. Y. Liao, and Y. Koide. High-performance metal-semiconductor-metal deep-ultraviolet photodetectors based on homoepitaxial diamond thin film [J]. Applied Physics Letters, 2006, Vol.89(11): 113509.
    
    [11] E. Monroy, F. Omnes, and F. Calle. Wide-bandgap semiconductor ultraviolet photodetectors [J]. Semiconductor Science and Technology, 2003, Vol. 18(4): R33-R51.
    
    [12] M. Razeghi. Short-wavelength solar-blind detectors - Status, prospects, and markets [J]. Proceedings of the IEEE,2002,Vol.90(6):1006-1014.
    [13]P.G.Neudeck.Electrical impact of SiC structural crystal defects on high electric field devices[J].Silicon Carbide and Related Materials-1999 Pts,1 & 2,2000,Vol.338-3:1161-1166.
    [14]Y.K.Su,Y.Z.Chiou,C.S.Chang,et al.4H-SiC metal-semiconductor-metal ultraviolet photodetectors with Ni/ITO electrodes[J].Solid-State Electronics,2002,Vol.46(12):2237-2240.
    [15]Y.Z.Chiou.DC and noise characteristics of 4H-SiC metal-semiconductor-metal ultraviolet photodetectors[J].Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,2004,Vol.43(5A):2432-2434.
    [16]杨伟锋,蔡加法,张峰,刘著光,吕英,吴正云.一维阵列MsM 4H-SiC紫外光电探测器的研制[J].半导体学报,2008,Vol.29(3):570-573.
    [17]J.Hu,X.B.Xin,J.H.Zhao,et al.Highly sensitive visible-blind extreme ultraviolet Ni/4H-SiC Schottky photodiodes with large detection area[J].Optics Letters,2006,Vol.31(11):1591-1593.
    [18]A.Sciuto,F.Roccaforte,S.Di Franco,et al.High responsivity 4H-SiC Schottky UV photodiodes based on the pinch-off surface effect[J].Applied Physics Letters,2006,Vol.89(8):081111.
    [19]王良均.Au/4H-SiC半透明肖特基UV光电二极管的研制[D].厦门:厦门大学,2006.
    [20]J.T.Torvik,J.I.Pankove,and B.J.Van Zeghbroeck.Comparison of GaN and 6H-SiC p-i-n photodetectors with excellent ultraviolet sensitivity and selectivity[J].IEEE Transactions on Electron Devices,1999,Vol.46(7):1326-1331.
    [21]X.F.Liu,G.S.Sun,J.M.Li,et al.Visible blind p(+)-pi-n(-)-n(+) ultraviolet photodetectors based on 4H-siC homoepilayers[J].Microelectronics Journal,2006,Vol.37(11):1396-1398.
    [22]X.P.Chen,H.L.Zhu,J.F.Cai,et al.High-performance 4H-SiC-based ultraviolet p-i-n photodetector [J].Journal of Applied Physics,2007,Vol.102(2):024505.
    [23]F.Yan,Y.Luo,J.H.Zhao,et al.4H-SiC visible blind UV avalanche photodiode[J].Electronics Letters,1999,Vol.35(11):929-930.
    [24]F.Yan,C.Qin,J.H.Zhao,et al.Low-noise visible-blind UV avalanche photodiodes with edge teriminated by 2 degrees positive bevel[J].Electronics Letters,2002,Vol.38(7):335-336.
    [25]F.Yan,C.Qin,J.H.Zhao,et al.Demonstration of 4H-SiC avalanche photodiodes linear array[J].Solid-State Electronics,2003,Vol.47(2):241-245.
    [26]X.Y.Guo,A.Beck,B.Yang,et al.Low dark current 4H-SiC avalanche photodiodes[J].Electronics Letters,2003,Vol.39(23):1673-1674.
    [27]X.Y.Guo,A.L.Beck,X.W.Li,et al.Study of reverse dark current in 4H-SiC avalanche photodiodes [J].IEEE Journal of Quantum Electronics,2005,Vol.41(4):562-567.
    [28]X.G.Bai,X.Y.Guo,D.C.Mcintosh,et al.High detection sensitivity of ultraviolet 4H-SiC avalanche photodiodes[J].IEEE Journal of Quantum Electronics,2007,Vol.43(11-12):1159-1162.
    [29]朱会丽,陈厦平,吴正云.吸收层与倍增层分离的4H-SiC雪崩光电探测器[J].半导体学报,2007,Vol.28(2):284-288.
    [30]F.Yan,J.H.Zhao,and G.H.Olsen.Demonstration of the first 4H-SiC avalanche photodiodes[J].Solid-State Electronics,2000,Vol.44(2):341-346.
    [31]F.Zhang,H.L.Zhu,W.F.Yang,et al.Al_2O_3/SiO_2 films prepared by electron-beam evaporation as UV antireflection coatings on 4H-SiC[J].Applied Surface Science,2008,Vol.254(10):3045-3048.
    [32]F.Zhang,W.F.Yang,H.L.Huang,et al.High-performance 4H-SiC based metal-semiconductor-metal ultraviolet photodetectors with Al_2O_3/SiO_2 films[J].Applied Physics Letters,2008,Vol.92(25):251102.
    [33]F.Amy,P.Soukiassian,Y.K.Hwu,et al.Si-rich 6H- and 4H-SiC(0001) 3x3 surface oxidation and initial SiO2/SiC interface formation from 25 to 650 degrees C[J].Physical Review B,2002,Vol.65(16):165323.
    [34]C.Virojanadara,and L.I.Johansson.Photoemission study of Si-rich 4H-SiC surfaces and initial SiO2/SiC interface formation[J].Physical Review B,2005,Vol.71(19):195335.
    [35]M.Schurmann,S.Dreiner,U.Berges,et al.Structure of the interface between ultrathin SiO2 films and 4H-SiC(0001)[J].Physical Review B,2006,Vol.74(3):035309.
    [36]杨克勤,陈厦平,杨伟锋,孔令民,蔡加法,林雪娇,吴正云.不同退火温度下金属/4H-SiC Schottky势垒高度的研究[J].量子电子学报,2005,Vol.22(2):251-254.
    [37]杨伟锋,杨克勤,陈厦平,张峰,王良均,吴正云.Cu/,Ni/4H-SiC Schottky势垒的退火研究[J].半导体学报,2005,Vol.26(z1):277-280.
    [38]朱会丽,陈厦平,吴正云.用于4H-SiC雪崩光电探测器P型欧姆接触的研究[J].量子电子学报,2007,Vol.24(6):743-747.
    [1]M.E.Levinshtein,S.L.Rumyantsev,and M.S.Shur.Properties of Advanced Semiconductor Materials [M].Wiley New York,2001:129-210.
    [2]E.Monroy,F.Omnes,and F.Calle.Wide-bandgap semiconductor ultraviolet photodetectors[J].Semiconductor Science and Technology,2003,Vol.18(4):R33-R51.
    [3]郝跃,彭军等.碳化硅宽带隙半导体技术[M].科学出版社,2000:1-30.
    [4]李晋闽.SiC材料及器件研制的进展[J].物理,2000,Vol.29(8):481-487.
    [5]W.F.Knippenberg.Philips Research Reports[R],1963,Vol.18(3):161-274
    [6]J.Drowart,G.D.Maria,and M.G.Ingram.Thermodynamic Study of SiC Utilizing a Mass Spectrometer[J].Journal of Chemical Physics,1958,Vol.29(5):1015-1021.
    [7]张荣等.蓝光半导体碳化硅—材料、器件和工艺[J].固体电子学研究与进展,1996,Vol.16:94-102.
    [8]Xiangyi Guo.High Performance Ultraviolet 4H-SiC Avalanche Photodiodes[D].USA:The University of Texas atAustin,2005:11-12.
    [9]C.Persson,and U.Lindefelt.Relativistic band structure calculation of cubic and hexagonal SiC polytypes[J].Journal of Applied Physics,1997,Vol.82(11):5496-5508.
    [10]S.M.Sze,and K.K.Ng.Physics of Semiconductor Devices,Third Edition[M].John Wiley & Sons Inc.Press,2007:664.
    [11]沈学础.半导体光谱和光学性质,第二版[M].科学出版社,2002:17.
    [12]W.R.L.Lambrecht,B.Segall,W.Suttrop,et al.Optical reflectivity of 3C and 4H-SC polytypes:Theory and experiment[J].Applied Physics Letters,1993,Vol.63(20):2747-2749.
    [13]P.T.B.Shaffer.Refractive Index,Dispersion,and Birefringence of Silicon Carbide Polytypes[J].Applied Optics,1971,Vol.10(5):1034-1036.
    [14]S.G.Sridhara,R.P.Devaty,and W.J.Choyke.Absorption coefficient of 4H silicon carbide from 3900to 3250 angstrom[J].Journal of Applied Physics,1998,Vol.84(5):2963-2964.
    [15]M.Ruff,H.Mitlehner,and R.Helbig.SiC Devices:Physics and Numerical Simulation[J].IEEE Transaction on Electron Devices,1994,Vol.41(6):1040-1054.
    [16]J.B.Casady,and R.W.Johnson.Status of silicon carbide(SiC) as a wide-bandgap semiconductor for high-temperature applications:A review[J].Solid-state electronics,1996,Vol.39(10):1409-1422.
    [17]刘恩科,朱秉升,罗晋生.半导体物理学,第六版[M].电子工业出版社,2003:108-110.
    [18]施敏著,赵鹤鸣等译.半导体器件物理与工艺[M].苏州大学出版社,2002:48-51.
    [19]N.D.Arora,J.R.Hauser,and D.J.Roulston.Electron and hole mobilities in silicon as a function of concentration and temperature[J].IEEE Transaction on Electron Devices,1982,Vol.29(2):292-295.
    [20]Shatter,W.J.,H.S.Kong,G.H.Negley,et al.Hall effect and CV measurements on epitaxial 6H- and 4H-SiC[C].Silicon Carbide and Related Materials,1994,NO.137:155-159.
    [21]I.A.Khan,and J.A.Cooper.Measurement of high field electron transport in silicon carbide[J].Silicon Carbide,Iii-Nitrides and Related Materials,Pts 1 and 2,1998,Vol.264-2:509-512.
    [22]A.O.Konstantinov,Q.Wahab,N.Nordell,et al.Ionization rates and critical fields in 4H silicon carbide[J].Applied Physics Letters,1997,Vol.71(1):90-92.
    [23]R.N.Hall.Electron-Hole Recombination in Germanium[J].Physical Review,1952,Vol.87(2):387.
    [24]W.Shockley,and W.T.Read.Statistics of the Recombinations of Holes and Electrons[J].Physical Review,1952,Vol.87(5):835-842.
    [25]A.Galeskas,J.LSiCros,V.Grivickas,et al.Proceedings of the 7th International Conference on SiC,Ⅲ-Nitrides and Related Materials[C].Sweden,Stockholm,1997:533-536.
    [26]P.G.Neudeck,C.Fazi.Proceedings of the 7th International Conference on SiC,Ⅲ-Nitrides and Related Materials[C].Sweden,Stockholm,1997:1037-1040.
    [1]H.K.1 pulker.Characterization of optical thin films[J].Applied Optics,1979,Vol.18(12):1969-1977.
    [2]X.P.Chen,H.L.Zhu,J.F.Cai,et al.High-performance 4H-SiC-based ultraviolet p-i-n photodetector [J].Journal of Applied Physics,2007,Vol.102(2):024505.
    [3]钟迪生.真空镀膜—光学材料的选择与应用[M].辽宁大学出版社,2001:169-288.
    [4]H.A.Macleod.Thin-Film Optical Filters,third edition[M].Institute of Physics,2001:12-156.
    [5]唐晋发,顾培夫,刘旭等.现代光学薄膜技术[M].浙江大学出版社,2006:288-353.
    [6]梁鹿亭.半导体器件表面钝化技术[M].科学出版社,1979:467-536.
    [7]厦门大学物理系半导体物理教研室编.半导体器件工艺原理[M].人民教育出版社,1977:418-425.
    [8]F.Zhang,W.F.Yang,A.S.Pang,et al.Annealing effects on the optical and structural properties of Al_2O_3/SiO_2 films as UV antireflection coatings on 4H-SiC substrates[J].Applied Surface Science,2008,Vol.254(20):6410-6415.
    [9]林永昌,卢维强.光学薄膜原理[M].国防工业出版社,1990:23-55.
    [10]张峰,黄火林,吴正云.280nm紫外双层减反射膜的研究[C].第十三届全国凝聚态物质光学性质学术会议论文(摘要)集,2006,164.
    [11]黄火林,张峰,吴正云.4H-SiC基底Al_2O_3/SiO_2双层减反射膜的设计和制备[J].光学学报,近期发表.
    [1]唐晋发,顾培夫,刘旭等.现代光学薄膜技术[M].浙江大学出版社,2006:211-212.
    [2]钟迪生.真空镀膜—光学材料的选择与应用[M].辽宁大学出版社,2001:205-208.
    [3]郑伟涛.薄膜材料与薄膜技术[M].化学工业出版社,2004:52-55
    [4]F.Zhang,H.L.Zhu,W.F.Yang,et al.Al_2O_3/SiO_2 films prepared by electron-beam evaporation as UV antireflection coatings on 4H-SiC[J].Applied Surface Science,2008,Vol.254(10):3045-3048.
    [5]F.Zhang,W.F.Yang,A,S.Pang,et al.Annealing effects on the optical and structural properties of Al_2O_3/SiO_2 films as UV antireflection coatings on 4H-SiC substrates[J].Applied Surface Science,2008,Vol.254(20):6410-6415.
    [7]H.A.Macleod.Thin-Film Optical Filters,third edition[M].Institute of Physics,2001:12-156.
    [8]F.E.Ghodsi,M.Mafakheri,and A.Novinrooz.Effect of annealing temperature on the optical and structural properties of dip-coated Al_2O_3 thin films prepared by sol-gel route[J].Surface Review and Letters,2005,Vol.12(5-6):793-797.
    [9]J.R.Laroche,F.Ren,R.Lothian,et al.Thermal stability and etching characteristics of electron beam deposited SiO and SiO2[J].Journal of Vacuum Science & Technology B,2000,Vol.18(1):283-287.
    [10]W.J.Liu,X.J.Guo,and C.H.Chien.The study of optical and microstructural evolution of Ta2O5 and SiO2 thin films by plasma ion assisted deposition method[J].Surface & Coatings Technology,2005,Vol.196(1-3):69-75.
    [11]L.Zhang,H.C.Jiang,C.Liu,et al.Annealing of Al_2O_3 thin films prepared by atomic layer deposition [J].Journal of Physics D-Applied Physics,2007,Vol.40(12):3707-3713.
    [12]M.Sochacki,and J.Szmidt.Dielectric films fabricated in plasma as passivation of 4H-SiC Schottky diodes[J].Thin Solid Films,2004,Vol.446(1):106-110.
    [13]G.G.Jernigan,R.E.Stahibush,M.K.Das,et al.Interfacial differences between SiO2 grown on 6H-SiC and on Si(100)[J].Applied Physics Letters,1999,Vol.74(10):1448-1450.
    [14]Y.Hijikata,H.Yaguchi,M.Yoshikawa,et al.Composition analysis of SiO2/SiC interfaces by electron spectroscopic measurements using slope-shaped oxide films[J].Applied Surface Science,2001,Vol.184(1-4):161-166.
    [15]F.Amy,P.Soukiassian,Y.K.Hwu,et al.Si-rich 6H- and 4H-SiC(0001) 3x3 surface oxidation and initial SiO2/SiC interface formation from 25 to 650 degrees C [J]. Physical Review B, 2002, Vol.65(16): 165323.
    [16] C. Virojanadara, and L. I. Johansson. Photoemission study of Si-rich 4H-SiC surfaces and initial SiO2/SiC interface formation [J]. Physical Review B, 2005, Vol.71(19): 195335.
    [17] M. Schumann, S. Dreiner, U. Berges, et al. Structure of the interface between ultrathin SiO2 films and 4H-SiC(0001) [J]. Physical Review B, 2006, Vol.74(3): 035309.
    [18] J. M. Knaup, P. Deak, T. Frauenheim, et al. Theoretical study of the mechanism of dry oxidation of 4H-SiC [J]. Physical Review B, 2005, Vol.71(23): 235321.
    [19] M. J. Cho, H. B. Park, J. Park, et al. Thermal annealing effects on the structural and electrical properties of HfO_2/Al_2O_3 gate dielectric stacks grown by atomic layer deposition on Si substrates [J]. Journal of Applied Physics, 2003, Vol.94(4): 2563-2571.
    [20] J.F. Moulder, W.F. Stickle, P.E. Sobol, et al. Handbook of X-ray Photoelectron Spectroscopy [M], Physical Electronics, Inc. Press, 1995.
    [1]史常忻.金属—半导体—金属光电探测器[M].上海交通大学出版社,2000:12-15.
    [2]T.Sugeta,T.Urisu,S.Sakata,et al.Metal-Semiconductor-Metal Photodetector for High-Speed Optoelectronic Circuits[J].Japanese Journal of Applied Physics,1980,Vol.19(Supplement 19-1):459-464.
    [3]S.M.Sze,and K.K.Ng.Physics of Semiconductor Devices,Third Edition[M].John Wiley & Sons Inc.Press,2007:714.
    [4]S.M.Sze,D.J.Coleman,Jr.,et al.Current transport in metal-semiconductor-metal(MSM) structures [J].Solid-State Electronics,1971,Vol.14(12):1209-1218.
    [5]K.Nakajima,T.Iida,K.Sugimoto,et al.Properties and design theory of ultrafast GaAs metal-semiconductor-metal photodetector with symmetrical Schottky contacts[J].IEEE Transaction on Electron Devices,1990,Vol.37(1):31-35.
    [6]F.Zhang,W.F.Yang,H.L.Huang,et al.High-performance 4H-SiC based metal-semiconductor-metal ultraviolet photodetectors with Al_2O_3/SiO_2 films[J].Applied Physics Letters,2008,Vol.92(25):251102.
    [7]厦门大学物理系半导体物理教研室编.半导体器件工艺原理[M].人民教育出版社,1977:54-55.
    [8]X.P.Chen,H.L.Zhu,J.F.Cai,et al.High-performance 4H-SiC-based ultraviolet p-i-n photodetector [J].Journal of Applied Physics,2007,Vol.102(2):024505.
    [9]F.Zhang,H.L.Zhu,W.F.Yang,et al.Al_2O_3/SiO_2 films prepared by electron-beam evaporation as UV antireflection coatings on 4H-SiC[J].Applied Surface Science,2008,Vol.254(10):3045-3048.
    [10]施敏著,赵鹤鸣等译.半导体器件物理与工艺[M].苏州大学出版社,2002:391-404.
    [11]Michael Quirk and Julian Serda著,韩郑生等译.半导体制造技术[M].电子工业出版社,2004:314-316.
    [12]杨伟峰.一维阵列的MSM 4H-SiC紫外光电探测器的研制[D].厦门:厦门大学,2005:48-51.
    [13]陈厦平.p-i-n结构4H-SiC紫外光电二极管单管及一维阵列的研制[D].厦门:厦门大学,2007:62-63.
    [14]梁鹿亭.半导体器件表面钝化技术[M].科学出版社,1979:153-154;468-472.
    [15]陈颖.基于虚拟仪器架构的紫外光电探测器自动化测试与分析系统[D].厦门:厦门大学,2007: 22-24.
    [16]A.Sciuto,F.Roccaforte,S.Di Franco,et al.Photocurrent gain in 4H-SiC interdigit Schottky UV detectors with a thermally grown oxide layer[J].Applied Physics Letters,2007,Vol.90(22):-.
    [17]X.Guo,A.Beck,B.Yang,et al.Low dark current 4H-SiC avalanche photodiodes[J].Electronics Letters,2003,Vol.39(23):1673-1674.
    [18]X.Y.Guo,A.L.Beck,X.W.Li,et al.Study of reverse dark current in 4H-SiC avalanche photodiodes [J].IEEE Journal of Quantum Electronics,2005,Vol.41(4):562-567.
    [19]S.G.Sridhara,R.P.Devaty,and W.J.Choyke.Absorption coefficient of 4H silicon carbide from 3900to 3250 angstrom[J].Journal of Applied Physics,1998,Vol.84(5):2963-2964.
    [20]B.K.Ng,J.P.R.David,R.C.Tozer,et al.Performance of thin 4H-SiC UV avalanche photodiodes[J].IEE Proceedings-Optoelectronics,2003,Vol.150(2):187-190.
    [21]F.Amy,P.Soukiassian,Y.K.Hwu,et al.Si-rich 6H- and 4H-SiC(0001) 3x3 surface oxidation and initial SiO2/SiC interface formation from 25 to 650 degrees C[J].Physical Review B,2002,Vol.65(16):165323.
    [22]C.Virojanadara,and L.I.Johansson.Photoemission study of Si-rich 4H-SiC surfaces and initial SiO2/SiC interface formation[J].Physical Review B,2005,Vol.71(19):195335.
    [23]M.Schurmann,S.Dreiner,U.Berges,et al.Structure of the interface between ultrathin SiO2 films and 4H-SiC(0001)[J].Physical Review B,2006,Vol.74(3):035309.
    [24]F.Yan,X.B.Xin,S.Aslam,et al.4H-SiC UV photo detectors with large area and very high specific detectivity[J].IEEE Journal of Quantum Electronics,2004,Vol.40(9):1315-1320.
    [25]F.Zhang,W.F.Yang,A.S.Pang,et al.Annealing effects on the optical and structural properties of Al_2O_3/SiO_2 films as UV antireflection coatings on 4H-SiC substrates[J].Applied Surface Science,2008,Vol.254(20):6410-6415.
    [26]唐晋发,顾培夫,刘旭等.现代光学薄膜技术[M].浙江大学出版社,2006:325-330.
    [1]S.M.Sze,and K.K.Ng.Physics of Semiconductor Devices,Third Edition[M].John Wiley & Sons Inc.Press,2007:664-679.
    [2]余金中.半导体光电子技术[M].化学工业出版社,2003:109-110.
    [3]X.P.Chen,H.L.Zhu,J.F.Cai,et al.High-performance 4H-SiC-based ultraviolet p-i-n photodetector [J].Journal of Applied Physics,2007,Vol.102(2):024505.
    [4]X.G.Bai,X.Y.Guo,D.C.Mcintosh,et al.High detection sensitivity of ultraviolet 4H-SiC avalanche photodiodes[J].IEEE Journal of Quantum Electronics,2007,Vol.43(11-12):1159-1162.
    [5]施敏著,赵鹤鸣等译.半导体器件物理与工艺[M].苏州大学出版社,2002:304-305;420-421.
    [6]W.T.Tsang著,杜宝勋等译.半导体光检测器[M].电子工业出版社,清华大学出版社,1992:201-203;269-272.
    [7]齐丕智等.光敏感器件及其应用[M].科学出版社,1987:197-202.
    [8]K.8ohnaka,M.Kubo,and J.Shibata.A low dark current InGaAs/InP p-i-n photodiode with covered mesa structure[J].IEEE Transactions on Electron Devices,1987,Vol.ED-34(2):199-204.
    [9]刘恩科,朱秉升,罗晋生.半导体物理学,第六版[M].电子工业出版社,2003:74-77;219-220.
    [10]L.P.Sadwick,C.W.kim,K.L.Tan,et al.Schottky Barrier Heights of n-type and p-type Al_(0.48)In_(0.52)As[J].IEEE Electron Device Letters,1991,Vol.12(11):626-628.
    [11]施敏.现代半导体器件物理[M].科学出版社,2001:89-90.
    [12]X.Y.Guo,A.L.Beck,X.W.Li,et al.Study of reverse dark current in 4H-SiC avalanche photodiodes [J].IEEE Journal of Quantum Electronics,2005,Vol.41(4):562-567.
    [13]W.W.G(a|¨)rtner.Depletion-Layer Photoeffects in Semiconductors[J].Physical Review,1959,Vol.116(1):84-87.
    [14]史常忻.金属—半导体—金属光电探测器[M].上海交通大学出版社,2000:28-29.
    [15]F.T.Arecchi,and E.O.Schulz-Dubois.Laser Handbook[M].North-Holland,Amsterdam,1972:725-835.
    [16]安毓英,曾晓东.光电探测原理[M].西安电子科技大学出版社,2004:30-31.
    [17]杨小丽.光电子技术基础[M].北京邮电大学,2005:206-207.
    [18]Michael Quirk and Julian Serda著,韩郑生等译.半导体制造技术[M].电子工业出版社,2004:411-412.
    [19]L.H.Cao,B.H.Li,and J.H.Zhao.Etching of SiC using inductively coupled plasma[J].Journal of the Electrochemical Society,1998,Vol.145(10):3609-3612.
    [20]J.H.Xia,Rusli,S.F.Choy,et al.The role of oxygen in electron cyclotron resonance etching of silicon carbide[J].Microelectronic Engineering,2006,Vol.83(1):9-11.
    [21]G.S.Chung,and C.M.Ohn.Magnetron reactive ion etching of polycrystalline 3C-SiC thin films[J].Journal of the Korean Physical Society,2007,Vol.51(5):1673-1678.
    [22]吕英.ICP刻蚀SiC机制及表面损伤的研究[D].厦门:厦门大学,2008:21-58.
    [23]A.Sciuto,F.Roccaforte,S.Di Franco,et al.Photocurrent gain in 4H-SiC interdigit Schottky UV detectors with a thermally grown oxide layer[J].Applied Physics Letters,2007,Vol.90(22):223507.
    [24]Z.C.Feng,and J.H.Zhao.Silicon carbide:materials,processing,and devices[M].Talor & Francis Books Inc.Press,2004:180-190;204-217.
    [25]Sang-Kwon Lee.Processing and Characterization of silicon carbide(6H-and 4H-SiC) contacts for high power and high temperature device applications[D].KTH,Royal Institute of Technology,2002.
    [26]F.A.Mohammad,Y.Cao,K.C.Chang,and L.M.Porter.Comparison of Pt-based Ohmic contacts with Ti-Al Ohmic contacts for p-type SiC[J].Japanese Journal of Applied Physics,2005,Vol.44(8):5933-5938.
    [27]H.Vang,M.Lazar,P.Brosselard,et al.Ni-Al ohmic contact to p-type 4H-SiC[J].Superlattices and Microstructures,2006,Vol.40:626-631.
    [28]L.Kolaklieva,R.Kakanakov,G.Lepoeva,et al.Au/Ti/Al Contacts to SiC for Power Applications:Electrical,Chemical and Thermal Properties[J].Proc.24th International Conference on Microelectronics,2004,Vol.2:421-424.
    [29]S.K.Lee,C.M.Zetterling,E.Danielsson,et al.Electrical characterization of TiC ohmic contacts to aluminum ion implanted 4H-silicon carbide[J].Applied Physics Letters,2000,Vol.77(10):1478-1480.
    [30]X.Guo,A.Beck,B.Yang,et al.Low dark current 4H-SiC avalanche photodiodes[J].Electronics Letters,2003,Vol.39(23):1673-1674.
    [31]F.Zhang,W.F.Yang,H.L.Huang,et al.High-performance 4H-SiC based metal-semiconductor-metal ultraviolet photodetectors with Al_2O_3/SiO_2 films[J].Applied Physics Letters,2008,Vol.92(25):251102.
    [32] M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur. Properties of Advanced Semiconductor Materials [M]. Wiley New York, 2001: 129-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700