安息香和乳香化学成分及抗肿瘤活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安息香为安息香科植物越南安息香(Styrax tonkinensis)的树脂,为乔木,主要分布于东南亚泰国和越南等几个国家和地区。在中国,安息香(benzoin)主要用于祛痰。乳香为橄榄科植物卡氏乳香(Boswellia carterii)的树脂,乔木,分布于索马里和埃塞俄比亚,乳香(olibanum)用于治疗冠心病、心绞痛和溃疡。本文在综述了安息香属和乳香属植物化学成分和药理活性的基础上,对这两种树脂类药材进行了系统的化学成分和抗肿瘤活性研究。
     从安息香的95%乙醇提取液中,分离得到17个化合物。通过各种理化常数测定、波谱分析等方法,鉴定了其结构。它们分别是:6β-羟基-3-氧代-11α,12α-环氧齐墩果-28,13β-内酯(6β-hydroxy-3-oxo-11α,12α-epoxyolean-28,13β-olide,1),3β,6β-二羟基-11α,12α-环氧齐墩果-28,13β-内酯(3β,6β-dihydroxy-11α,12α-epoxyolean-28,13β-olide,2),3β,6β-二羟基-11-氧代-齐墩果-12-烯-28-酸(3β,6β-dihydroxy-11-oxo-olean-12-en-28-oic acid,3),3β-羟基-12-氧代-13Hα-齐墩果-28,19β-内酯(3β-hydroxy-12-oxo-13Hα-olean-28,19β-olide,4),19α-羟基-3-氧代齐墩果-12-烯-28-酸(19α-hydroxy-3-oxo-olean-12-en-28-oic acid,5),6β-羟基-3-氧代齐墩果-12-烯-28-酸(6β-hydroxy-3-oxo-olean-12-en-28-oic acid,6),苏门答腊树脂酸(sumaresinolic acid,7),泰国树脂酸(siaresinolic acid,8),齐墩果酸(oleanolic acid,9),trans-(四氢-2-(4-羟基-3-甲氧基苯基)-5-氧代呋喃-3-基)甲基苯甲酸酯[trans-(tetrahydro-2-(4-hydroxy-3-methoxyphenyl)-5-oxofuran-3-yl)methyl benzoate,10],3-(4-羟基-3-甲氧基苯基)-2-氧代丙基苯甲酸酯[3-(4-hydroxy-3-methoxyphenyl)-2-oxopropylbenzoate,11],4-((E)-3-乙氧基丙-1-烯基)-2-甲氧基苯酚[4-((E)-3-ethoxyprop-1-enyl)-2-methoxyphenol,12],苯甲酸(benzoic acid,13),香草醛(vanillin,14),去氢双香草醛(dehydrodivanillin,15),香草酸(vanillic acid,16),松柏醛(coniferyl aldehyde,17)。其中,化合物1,2,3,4,10,11为未见文献报道的新化合物;化合物12为一新的天然产物。
     利用多种色谱技术,从乳香的氯仿提取物中,分离得到22个化合物。通过各种理化常数测定、波谱分析等方法,鉴定了其中21个化合物的结构。它们分别是:α-香树素(α-amyrin,B1),β-乳香酸(β-boswellic acid,B2),乙酰11α-甲氧基-β-乳香酸(acetyl 11α-methoxy-β-boswellic acid,B3),11-羰基-β-乳香酸(11-keto-β-boswellic acid,B4),乙酰11-羰基-β-乳香酸(acetyl 11-keto-β-boswellic acid,B5),9,11-去氢-β-乳香酸(9,11-dehydro-β-boswellic acid,B6),乙酰β-乳香酸和乙酰α-乳香酸(acetylβ-boswellic acid和acetylα-boswellic acid,B7),α-乳香酸(α-boswellic acid,B8),9,11-去氢-α-乳香酸(9,11-dehydro-α-boswellic acid,B9),3β,20β-18Hα-乌苏烷二醇(3β,20β-18Hα-ursanediol,B10),乙酰α-榄香醇酸(acetylα-elemolic acid,B11),3β-羟基甘遂-8,24-二烯-21-酸(3β-hydroxytirucalla-8,24-dien-21-oic acid,B12),榄香酮酸(elemonic acid,B13),3-氧代-甘遂-7,9(11),24-三烯-21-酸[3-oxotirucalla-7,9(11),24-trien-21-oic acid,B14],3α-羟基甘遂-7,24-二烯-21-酸(3α-hydroxytirucalla-7,24-dien-21-oic acid,B15),3α-羟基甘遂-24-烯-21-酸(3α-hydroxytirucall-24-en-21-oic acid,B16),incensole(B17),acetyl incensole(B18),incensole-oxide(B19),acetyl incensole-oxide(B20),α-棕榈酸甘油酯(α-glyceryl palmitate,B21)。其中,化合物B10和B14为新化合物。
     对从安息香和乳香中分离得到的部分化合物的抗肿瘤活性进行了研究。安息香中分离得到的三萜类化合物1-9对HL-60细胞具有一定的生长抑制作用,IG_(50)值为8.9μM到99.4μM之间,其中化合物9活性最强;虽然化合物3(3β,6β-二羟基-11-氧代-齐墩果-12-烯-28-酸)细胞生长抑制作用最弱,但该化合物却是9个三萜中唯一一个具有分化诱导作用的化合物。乳香中分离得到的四环(B11、B13、B15)、五环三萜(B3、B4、B5、B6、B7、B9)及二萜(B18)在不同浓度下对白血病细胞HL-60都具有细胞生长抑制作用,IG_(50)值位于12.3μM到21.8μM之间。通过吖啶橙(AO)和溴化乙啶(EB)染色后的形态计数,对这些化合物的诱导HL-60细胞凋亡作用进行了考察,所有这些三萜对HL-60细胞都具有凋亡诱导作用。研究了对HL-60细胞具有较强生长抑制作用的化合物对PC-3细胞生长抑制活性,结果表明,化合物B3-5,B7和B11对PC-3细胞具有很强的生长抑制活性,IG_(50)为16.5到62.3μM之间。对三萜抑制HL-60细胞生长活性的构效关系进行了初步探讨。
     通过对乳香中甘遂烷型三萜的研究,结合文献检索,总结了甘遂烷型三萜的结构及波谱特征。
Styrax tonkinensis (Pier.) Craib (Styracaceae) is an arbor distributed in severalregions of South-East Asia. Its resin, benzoin, has been used as an expectorant inChina. Boswellia carterii Birdw (Burseraceae) is also an arbor distributed in Somaliaand Ethiopia. Its resin, olibanum, was used to treat aoronary disease, angina pectoris,and ulcer in China. Based on the review on the chemical constituents andpharmacological research of Styrax and Boswellia, the chemical constituents and theirantitumor activities of the two resins were researched.
     By means of many different chromatographic methods such as silica gel,Sephadex LH-20, reversed phase ODS column chromatography and preparative TLC,17 compounds were isolated from benzoin. By physico-chemical data and spectralmethods, all the compounds were identified as 6β-hydroxy-3-oxo-11α,12α-epoxyolean-28, 13β-olide (1), 3β, 6β-dihydroxy-11α, 12α-epoxyolean-28,13β-olide (2), 3β, 6β-dihydroxy-11-oxo-olean-12-en-28-oic acid (3), 3β-hydroxy-12-oxo-13Hα-olean-28, 19βolide (4), 19α-hydroxy-3-oxo-olean-12-en-28-oic acid(5), 6β-hydroxy-3-oxo-olean-12-en-28-oic acid (6), sumaresinolic acid (7),siaresinolic acid (8), oleanolic acid (9), trans-(tetrahydro-2-(4-hydroxy-3-meth0xyphenyl)-5-oxofuran-3-y1)methyl benzoate (10), 3-(4-hydroxy-3-methoxypheny1)-2-oxopropyl benzoate (11), 4-((E)-3-ethoxyprop-1-enyl)-2-methoxyphenol(12), benzoic acid (13), vanillin (14), dehydrodivanillin (15), vanillic acid (16) andconiferyl aldehyde (17). Among them, compounds 1-4, 10 and 11 were determined asnew compounds and compound 12 was a new natural product.
     By means of many different chromatographic methods such as silica gel,Sephadex LH-20, reversed phase ODS column chromatography and preparative TLC,22 compounds were isolated from olibanum. 21 of them were authenticated byphysico-chemical data and spectral methods, and they wereα-amyrin (B1),β-boswellic acid (B2), acetyl 11α-methoxy-β-boswellic acid (B3), 11-keto-β-boswellic acid (B4), acetyl 11-keto-β-boswellic acid (BS), 9,11-dehydro-β-boswellic acid (B6), acetylβ-boswellic acid and acetylα-boswellic acid (B7),α-boswellic acid (BS), 9,11-dehydro-α-boswellic acid (B9), 3β20β-18Hα-ursanediol(B10), acetylα-elemolic acid (B11), 3β-hydroxytirucalla-8,24-dien-21-oic acid (B12),elemonic acid (B13), 3-oxotirucalla-7, 9(11), 24-trien-21-oic acid (B14), 3α- hydroxytirucalla-7, 24-dien-21-oic acid (B15), 3α-hydroxytirucall-24-en-21-oic acid(B16), incensole (B17), acetyl incensole (B18), incensole-oxide (B19), acetylincensole-oxide (B20) andα-glyceryl palmitate (B21). Among them, compounds B10and B14 were determined as new compounds.
     The antitumor activities of the triterpenes and diterpenes isolated from benzoinand olibanum were researched. By testing in human leukemia HL-60 cells, it wasfound that all triterpenoids 1-9 isolated from benzoin inhibited cell growth withdifferent activity. Compound 9 was the most potent with an IG_(50) of 8.9μM, whilecompound 3 was the least effective growth inhibitor with an IG_(50) of 99.4μM. The celldifferentiation ability of these triterpenoids was measured in HL-60 cells using NBTreduction assay. Only compound 3 showed differentiation induction in HL-60 cells atnon-toxic concentrations. Tetracyclic triterpenoids (B11, B13, B15), pentacyclictriterpenoids (B3, B4, B5, B6, B7, B9) and diterpenoid (B18) isolated from olibanumwere effective cell growth inhibitors with IG_(50)s ranged from 12.3μM to 21.8μM. Theapoptotic effects in HL-60 cells were also examined by morphological observationafter AO and EB staining. All these triterpenoids induced HL-60 cells undergoapoptosis in a dose-and time-dependent manner. Some triterpenes with stronger cellgrowth inhibition ability in HL-60 cells were selected to test their growth inhibitoryeffect in PC-3 cells. The data indicated that compounds B3-5, B7 and B11 hadinhibitory effect on growth of PC-3 cells, with the IG_(50)s ranged from 16.5 to 62.3μM.Based on the growth inhibition activity, the structure-activity relationship oftriterpenes was discussed.
     In term of the research on tirucallane-type triterpenoid isolated from olibanumadding to the related literatures, an overview on the spectral and structuralcharacteristics of tirucallane-type tfiterpenoid was taken.
引文
[1] 中国科学院中国植物志编委会主编.中国植物志.北京:科学出版社.1987,60(2),72.
    [2] Patricia M. Pauletti, Helder L. Teles, Dulce H. S. Silva, et al. Revista Brasileira de farmacognosia, 2006, 16(4): 576-590.
    [3] 江苏新医学院编.中药大辞典(上).上海:上海科学技术出版社,1993,995.
    [4] Qi-lin Li, Bo-gang Li, Hua-yi Qi, et al. Four new benzofuran from seeds of Styrax perkinsiae. Planta Medica, 2005, 71 (9): 847-851
    [5] Takeshi Kinoshita, Yasuhiro Haga, Shintaro Narimatsu. New nor-neolignan glycosides from Styrax obassia. Heterocyclic, 2005, 65 (6): 1471-1480
    [6] Hider L.Teles, Jefferson P. Hemedy, Patricia M. Pauletti, et al. Cytotoxic lignans from the stems of Styrax camporun. Natural Product Research, 2005, 19 (4): 319-323.
    [7] Mi-ran Kim, Hyung-in Moon, Jin-ho Chung, et al. Matrix metalloproteinase-1 inhibitor from the stem bark of Styrax japonica S. et Z. Chem. Pharm. Bull 2004, 52 (12): 1466-1469.
    [8] Byung-sun Min, Sei-ryang Oh. Anti-complement activity of norlignans and terpenes from the stem bark of Styrax japonica. Planta Medica, 2004, 70 (12): 1210-1215.
    [9] Byung-sun Min, Min-kytm Na, Sei-ryang Oh, et al. New furofuran and butyrolactone lignans with antioxidant activity from the stem bark of Styrax japonica. J. Nat. Prod 2004, 67: 1980-1984.
    [10] Yurdanur Yayla Akgul, Huseyin Anil. Benzofuran from seeds of Styrax officinalis. Fitoterapia, 2003, 74 (7-8): 743-745.
    [11] Yurdanur Yayla Akgul, Huseyin Anil. Benzofurans and another constituent from the seeds of Styrax officinalis. Phytochemistyry, 2003, 63 (8): 939-943.
    [12] Yong-kwan Kwon, Soo-un Kim. Phytochemical studies on seeds of Styrax japonica Sieb. et Zucc. Agricultural Chemistry and Biotechnology, 2002, 45 (1): 28-30.
    [13] Masahide Takanashi, Yasuomi Takizawa. New egonol glycoside having D-xylose from immature seeds of Styrax obassia Sieb. et. Zucc. Journal of Oleo Science, 2002, 51 (6): 423-426.
    [14] P. Mendonca Pauletti, A. R. Araujo, M. C. M. Young, et al. Nor-lignans from the leaves of Styrax ferrugineus with antibacterial and antifungal activity. Phytochemistry, 2000, 55(6): 597-601.
    [15] Masahide Takanashi, Yasuomi Takizawa. New benzofurans related to egonol from immature seeds of Styrax obassia. Phytochemistry, 1988, 27(4): 1224-6
    [16] Masahide Takanashi, Yasuomi Takizawa, Tatsuo Mitsuhashi. 5-(3- Hydroxypropyl)-2-(3,4-methylenedioxyphenyl)benzofuran. New benzofuran from Styrax obassia. Chemistry Letters, 1974, (8): 869-71.
    [17] Ruth Segal, Liana Milo-goldzweig, Simone Sokoloff, et al. New benzofuran from the seeds of Styrax officinalis. Journal of the Chemical Society, Section C: Organic. 1967, (22): 2402-4.
    [18] A. Ulubelen, Y. Saiki, H. Lotter, et al. Chemical components of Styrax officinalis L. I. The structure of a new lignan styraxin. Planta Medica, 1978, 34 (4): 403-7.
    [19] Hyung-in Moon, Mi-ran Kim, Eun-ran Woo, et al. Triterpenoid from Styrax japonica Sieb. et Zucc and its effects on the expression of matrix metalloproteinases-1 and type 1 procollagen caused by ultraviolet irradiated cultured primary human skin fibroblasts. Boil Pharm. Bull 2005, 28 (10): 2003-2006
    [20] Feng Wang, Huiming Hua, Yuehu Pei, et al. Triterpenoids from the resin of Styrax tonkinensis and their antiproliferative and differentiation effects in human leukemia HL-60 cells. J. Nat. Prod, 2006, 69:807-810
    [21] Yurdanur Yayla, Ozgen Alankus-caliskan, Huseyin Anil. Saponins from Styrax officinalis. Fitoterapia, 2002, 73 (4): 320-326.
    [22] Kazuko Yoshikawa, Hiromichi Hirai, Masami Tanaka, and Shigenobu Arihara. Antisweet natural products. XV. Structures of jegosaponins A-D from Styrax japonica Sieb. et Zucc. Chem. Pharm. Bull. 2000, 48 (7): 1093-1096.
    [23] Huseyin Anil, Fac. Sci, Ege Univ, et al. 21-Benzoylbarringtogenol C, a sapogenin from Styrax officinalis. Phytochemistry, 1979, 18 (10): 1760-1
    [24] Francesca Modugno, Erika Ribechini, Maria Perla Colombini. Aromatic resin characterization by gas chromatography-mass spectrometry raw and archaeological materials. Journal of Chromatography A, 2006, 1134: 298-304.
    [25] Ghaleb Tayoub, Isabelle Schwob. Essential oil composition of leaf, flower and stem Styrax (Styrax officinalis L.) from south-eastern France. Flavour and Fragrance Journal, 2006, 21 (5): 809-812.
    [26] Feng Wang, Hui-Ming Hua, Xiao Bian, et al. Two new aromatic compounds from the resin of Styrax tonkinensis (Pier.) Craib. Journal of Asian Natural Products Research. 2006, 8 (1-2): 137-141.
    [27] H. -I. Moon, J. Lee, J. H. Chung. The effect of erythrodiol-3-acetate on the expressions of matrix metalloproteinase-1 and type-1 procollagen caused by ultraviolet irradiated cultured primary old aged human skin fibroblasts. Phytomedicine 2006, 13 (9-10): 707-711.
    [28] Elfriede Marianne Bacchi, Jayme Antonio Aboin Sertie, Nelson Villa, et al. Antiulcer action and toxicity of Styrax camporum and Caesalpinia ferrea. Planta Medica, 1998, 61: 204-207.
    [1] Y. R. Sun, Y. F. Sun. The chemical structure of liquidambaric lactone. Acta Pharm. Sinica. 1996, 31: 437-440.
    [2] A. Ikuta, K. Kamiya, T. Satake. Saiki, Y. A novel terpenoid from Paeonia albiflora. Phytochemistry 1995, 38 (5): 1203-1207.
    [3] Kayoko Amimoto, Kazuko Yoshikawa, and Shigenobu Arihara. Triterpenoid saponins of aquifoliaceous plants. Chem. Pharm. Bull., 1993, 41(1): 77-80.
    [4] Nargis Akhtar and Abdul Malik. Oleanene type triterpenes from Plumeria rubra. Phytochemistry, 1993, 32(6): 1523-1525.
    [5] Shashi B. Mahato and Asish P. Kundu. ~(13)C NMR spectra of pentacyclic triterpenoids-a complication and some salient features. Phytochemistry, 1994, 37(6): 1517-1575.
    [6] Antonio Zanarotti. Synthesis and reactivity of vinyl quinine methides. J. Org. Chem, 1985, 50:941-945
    [7] David R. Lide, G. W. A. Milne. Hand book of data on common organic compound (Volume Ⅰ). US: Library of Congress Cataloging-in-Publication Data, CRC PRESS, 1995, 2472
    [8] 于德泉,杨峻山.分析化学手册 第七分册(第二版).北京:化学工业出版社,1999,70.
    [9] David R. Lide, G W. A. Milne. Hand book of data on common organic compound (Volume Ⅰ). US: Library of Congress Cataloging-in-Publication Data, CRC PRESS, 1995, 573.
    [10] David R. Lide G. W. A. Milne. Hand book of data on common organic compound (Volume Ⅰ). US: Library of Congress Cataloging-in-Publication Data, CRC PRESS, 1995, 571.
    [11] David R. Lide, G. W. A. Milne. Hand book of data on common organic compound (Volume Ⅰ). US: Library of Congress Cataloging-in-Publication Data, CRC PRESS, 1995, 2625.
    [12] Sadtler Research Laboratories, INC. Sadtler Standard Carbon-13 NMR spectra, 1980, 9077.
    [13] J. Jakupovic, C. Zdero. Sesquiterpene glycosides and other constituents from Osteospermum species. Phytochemistry, 1983, 22(3): 782-3.
    [1] Toshihiro Akihisa, Keiichi Tabata, Norihiro Banno, et al. Cancer chemopreventive effects and cytotoxic activities of the triterpene acids from the resin of Boswellia carteri. Biological & Pharmaceutical Bulletin, 2006, 29(9): 1976-1979.
    [2] Norihiro Banno, Toshihiro Akihisa, Ken Yasukawa, et al. Anti-inflammatory activities of the triterpene acids from the resin of Boswellia carteri. Japan Journal of Ethnopharmacology, 2006, 107(2): 249-253.
    [3] Gottumukkala V. Subbaraju, Pratha Sridhar, Sasubilli Ramakrishna, et al. Isolation and HPLC estimation of six boswellic acids from Boswellia serrata extract. Asian Journal of Chemistry, 2004, 16(3-4): 1824-1832.
    [4] F. A. Badria, M. Abu-Karam, B. R. Mikhaeil, et al. Anti-herpes activity of isolated compounds from frankincense. Biosciences, Biotechnology Research Asia, 2003, 1 (1): 1-10.
    [5] Farid A. Badria, Botros R. Mikhaeil, Galal T. Maatooq, et al. Immunomodulatory triterpenoids from the oleogum resin of Boswellia carterii Birdwood. Zeitschrift fuer Naturforschung, C: Journal of Biosciences, 2003, 58(7-8): 505-516.
    [6] Jinyun Zhou, Rui Cui. Chemical components of Boswellia carterii. Yaoxue Xuebao, 2002, 37(8): 633-635.
    [7] Klaus Belsner, Berthold Buchele, Udo Werz, et al. Structural analysis of pentacyclic triterpenes from the gum resin of Boswellia serrata by NMR spectroscopy. Magnetic Resonance in Chemistry, 2003, 41(2): 115-122.
    [8] Babita Mahajan, S. C.Taneja, V. K. Sethi, et al. Two triterpenoids from Boswellia serrata gum resin. Phytochemistry, 1995, 39(2): 453-5.
    [9] Ernesto Attorusso, Ciro Santacroce, Cabdi F. Xaasan. 4(23)-Dihydrorobudc acid from the resin (incense) of Boswellia carterii. Phytochemistry, 1983, 22(12): 2868-9.
    [10] Mrs. R. S. Pardhy, S. C. Bhattacharyya. β-Boswellic acid, acetyl-β-boswellic acid, acetyl-11-keto-β-boswellic acid and 11-keto-β-boswellic acid, four pentacyclic triterpene acids from the resin of Boswellia serrata Roxb. Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry, 1978, 16B(3): 176-8.
    [11] Berthold Buechele, Waltraud Zugmaier, Aidee Estrada, et al. Characterization of 3a-acetyl-11-keto-α-boswellic acid, a pentacyclic triterpenoid inducing apoptosis in vitro and in vivo. Planta Medica, 2006, 72(14): 1285-1289.
    [12] Gerald Culioli, Carole Mathe, Paul Archier, et al. A lupane triterpene from frankincense (Boswellia sp., Burseraceae). Phytochemistry, 2003, 62(4): 537-541.
    [13] Jin Yun Zhou, Rui Cui. A new lupine from the resin of Boswellia carerii. Chinese Chemical Letters, 2002, 13(1): 65-66.
    [14] G. Proletti, G. Strappaghetti and S. Corsano. Triterpenes of Boswellia frereana. Planta Medica, 1981, 41(4): 417-417.
    [15] R. S. Pardhy and S. C. Bhattacharyya. Tetracyclic triterpene acids from the resin of Boswellia serrata Roxb. India Journal of Chemistry, 1978, 16B: 174-175.
    [16] S. Corsano and R. Nicoletti. The structure of incensole. Tetrahedron, 1967, 23: 1977-1984.
    [17] R. S. Pardhy and S. C. Bhattacharyya. Structure of serratol, a new diterpene cembranoid alcohol from Boswellia serrata Roxb. Indian Journal of Chemistry, 1978, 16B: 171-173
    [18] M. L. Forcellesa, R. Nicoletti, and U. petrossi. The structure of isoincensole-oxide. Tetrahedron, 1972, 28:325-331.
    [19] Singh G. B., Atal C. K. Pharmacology of an extract of salai guggal ex-Boswellia serrata, a new non-steroidal anti-inflammatory agent. Agent Actions, 1986, 18 (3-4): 407.
    [20] Ammon H. P., Mack T, Singh G. B, et al. Inhibition of leukotriene B4 formation in rat peritoneal neutrophils by an ethanolic extract of the gum resin exudate of Boswellia serrata. Planta Medica, 1991, 57 (3): 203-207.
    [21] Sharma M. L., Khajuria A, Kaul A, et al. Effect of salal guggal ex-Boswellia serrata on cellular and humoral immune responses and leucocyte migration. Agent Actions, 1988, 24 (1-2): 161-164.
    [22] Jing Y. K, Nakajo S, Xia L. J, at al. Boswellic acid acetate induces differentiation ang apoptosis in leukaemia cell lines. Leukemia Res, 1999, 23 (1):43.
    [23] Shao Y, Ho C. T, Chin C. K, et al. Inhibitory activity of boswellic acids from Boswellia serrata against human leukaemia HL-60 cells in culture. Planta Medica, 1998, 64 (4): 328.
    [24] Glaser T, Winter S, Groscurth P, et al. Boswellic acids and malignant glioma: induction of apoptosis but no modulation of drug sensitivity. Brit J Cancer, 1999, 80 (5~6): 756
    [25] Hoernlein R P, Orlikowsky T, Zehrer C, et al. Acetyl-11-Keto-β-boswellic acid induces apoptosis in HL-60 and CCRF-CEM cells and inhibits topoisomerase I. ar Pharmacol Exp Ther, 1999, 288 (2): 613.
    [26] 柳昕,齐振华.乳香提取物诱导Jurkat细胞凋亡的实验研究.湖南医科大学学报,2000,25(3):241-244.
    [27] 牛锡民,汪利强.榆白方对动物妊娠的终止作用.中成药.1989,11(7):32-34
    [28] Reddy G. K., Chandrakasan G., Dhar S. C., et al. Studies on the metabolism of glycosaminoglycans under the influence of new herbal anti-inflammatory agents. Biochem & Pharmacol. 1989, 38 (20): 3527-3534.
    [1] G. S. Susunaga, A. C. Siani, M. G.Pizzolatti, et al. Triterpenes from the resin of Protium heptaphyllum. Fitoterapia 2001, 72:709-711.
    [2] Laxminarain Misra, Hartmut Laatsch. Triterpenoids, essential oil and photo-oxidative 28→13-lactonization of oleanolic acid from Lantana camara. Phytochemistry, 2000, 54: 969-974.
    [3] T. Akihisa, Y. Mizushina, M. Ukiya, et al. Biosci. Biotechnol. Biochem. 2004, 68: 448-450.
    [4] Y. H. Liu, P. Abreu. Tirucallane triterpenes from the roots of Ozoroa insignis. Phytochemistry, 2006, 1309-1315.
    [5] Shashi B. Mahato and Asish P. Kundu. ~(13)C NMR spectra of pentacyclic triterpenoids-A complilation and some salient features. Phytochemistry, 1994, 37 (6): 1517-1575.
    [6] Gerad Culioli, Carole Mathe, Paul Archier, et al. A lupine triterpene from frankincense. Phytochemistry, 2003, 537-541.
    [7] 周金云,崔锐.乳香的化学成分.药学学报,2002,37(8),633-635.
    [8] Stephan Schweizer, Alexander F. W. von Brocke, Sven E. Boden, et al. Workupdependent formation of 5-lipoxygenase inhibitory boswellic acid analogues. J. Nat. Prod 2000, 63: 1058-1061.
    [9] Berthold Buchele, Waltraud Zugmaie, Thomas Simmer. Analysis of pentacyclic triterpenic acids from frankincense gum resins and related phytopharmaceuticals by high-performance liquid chromatography. Identification of lupeolic acid, a novel pentacyclic triterpene. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences 2003, 791(1-2): 21-30.
    [10] Takaaki Tai, Tetsuro Shingu, Tohru Kikuchi, et al. Isolation of lanostane-type triterpene acids having an acetoxyl group from sclerotia of Poria cocos. Phytochemisry, 1995, 40(1): 225-231.
    [11] R. S. Pardhy and S. C. Bhattacharyya. Tetracyclic triterpene acids from the resin of Boswellia serrata Roxb. India Journal of Chemistry, 1978, 16B: 174-175.
    [12] Yonghong Liu, Pedro Abreu. Tirucallane triterpenes from the roots of Qzoroa insignis. Phytochemistry 2006, 67:1309-1315.
    [13] Shivanand D. Jolad, Joseph J. Hoffmann, Karl H. Schram, et al. Constituents of Trichilia hispida (Meliaceae). 4. Hispidols A and B, two new tirucallane triterpenoids. J. Org. Chem. 1981, 46, 4085-4088.
    [14] M. L. Forcellesa, R. Nicoletti, and U. petrossi. The structure of isoincensole-oxide. Tetrahedron, 1972, 28, 325-331.
    [15] S. Corsano and R. Nicoletti. The structure of incensole. Tetrahedron, 1967, 23, 1977-1984.
    [1] Mamta Mishra, Y. N. Shukla, Sushil Kumar. Recent advances in the chemistry of euphane and tirucallane triterpenoids. Journal of Medicinal and Aromatic Plant Sciences. 2001, 23 (4): 677-686.
    [2] Toshihiro Akihisa, Yumiko Kimura, Wilhelmus C. M. C. Kokke, et al. Tirucalla-5, 24-dien-3β-ol [(13α,14β,17α,20S)-lanosta-5,24-dien-3β-ol] and three other △~5-unsaturated tirucallanes from the roots of Bryonia dioica Jacq.: the first naturally occurring C-10 methylated tetracyclic triterpene alcohols with a △~5-monounsaturated skeleton. J. Chem. Soc., Perkin Trans. 1996, (19): 2379-2384.
    [3] Kozhiparambil K. Purushothaman, Kalyani Duraiswamy, Joseph D. Connolly, et al. Triterpenoids from Walsura piscidia. Phytochemisry, 1985, 24 (10): 2349-2354.
    [4] Shivanand D. Jolad, Joseph J. Hoffmann, Karl H. Schram, et al. Constituents of Trichilia hispida (Meliaceae). 4. Hispidols A and B, two new tirucallane triterpenoids. J. Org. Chem., 1981, 46: 4085-4088.
    [5] Khalit Mohamad, Marie-therese Martin, Marc Litaudon, et al. Tiraucallane triterpens from Dysoxylum macranthum. Phytochemistry, 1999, 52: 1461-1468.
    [6] Xiao-Dong Luo, Shao-Hua Wu, Yun-Biao M, et al. Tirucallane tdterpenoids from Dysoxylum hainanense. Phytochemistry, 2000, 54: 801-805.
    [7] Hongmei Liu, Jorg heilmann, Topul Rali, et al. New tirucallane-type triterpenes from Dysoxylum variabile. J. Nat. Prod. 2001, 64:159-163.
    [8] Mitsuko Makino, Tomohiro Motegi, Yasuo Fujimoto. Tirucallane-type triterpenes from Juliania adstringens. Phytochemistry, 2004, 65:891-896.
    [9] Sumieya N. J. Grosvenor, Keisha Mascoll, Stewart Mclean, et al. Tirucallane, apotorucallane, and octanorapotirucallane tfiterpenes of Simarouba amara. J. Nat. Prod, 2006, 69: 1315-1318.
    [10] Vijaya Kumar, N. M. Mohammed Niyaz, D. B. Mahinda Wickramaratne, et al. Tirucallane derivatives from Paramignya monophylla fruits. Phytochemistry, 1991, 30 (4): 1231-1233.
    [11] Abayomi T. Orisadipe, Akinbobola A. Adesomoju, Michele D'Ambrosio, et al. Tirucallane triterpenes from the leaf of Entandrophragma angolense. Phytochemistry, 2005, 66: 2324-2328.
    [12] Li-Yan Wang, Nai-Li Wang, Xin-Sheng Yao, et al. Euphane and tirucallane triterpenes from the roots of Euphorbia kansui and their in vitro effects on the cell division of xenopus. J. Nat. Prod., 2003: 66, 630-633
    [13] Yeh Schun, Geoffrey A. Cordell, Philip J. Cox, et al. Wallenone, A C_(32) triterpenoid from the leaves of Gyrnops walla. Phytochemistry, 1986, 25 (3): 753-755.
    [14] Tsutomu Nakanishi, Akira Inada, and David Lavie. A new tirucallane-type triterpenoid derivative, lipomelianol from fruits of Melia toosendan Sieb. et Zucc. Chem. Pharm. Bull., 1986, 34 (1): 100-104.
    [15] Abdelilah Benosman, Pascal Richomme, Thierry Sevenet, et al. Tirucallane triterpenes form the stem bark of Aglaia leucophylla. Phytochemisry, 1995, 40 (5): 1485-1487.
    [16] Motohiko Ukiya, Toshihiro Akihisa, Harukuni Tokuda, et al. Sunpollenol and five other rearranged. 3,4-seco-tirucallane-type triterpenoids from sunflower pollen and their inhibitory effects on Epstein-barr virus activation. J. Nat. Prod, 2003, 66: 1476-1479
    [17] Wei Ni, Yan Hua, Rong-Wei Teng, et al. New tirucallane-type triterpenoid saponins form Sapindus mukorossi Gaetn. Journal of Asian Natural Products Rresearch, 2004, 6 (3): 205-209.
    [18] Hui-chi Huang, Wei-jern Tsai, Susan L. Morris-Natschke, et al. Sapinmusaponins F-J, bioactive tirucallane-type saponins from the galls of Sapindus mukorossi. J. Nat. Prod, 2006, 69: 763-767.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700