水稻(Oryza sativa L.)钾高效营养的生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钾是植物生长三要素之一。随着农产品产量和品质的不断提高,作物对钾素的需要量也不断增加。然而,我国土壤普遍缺钾,尤其是在水稻生产体系中,约有70%以上的稻田处于钾素亏缺状态,土壤低钾胁迫已成为水稻高产优质的主要限制因素。水稻适应低钾胁迫的能力存在显著基因型差异,探讨水稻适应低钾的根际土壤化学、根系形态学、生理学和分子生物学机制,提出钾高效水稻基因型筛选和鉴定的性状指标,对于拓展植物营养学的研究领域,挖掘具有特异性能的水稻种质资源具有重要的理论价值和实践意义。本研究以大田试验筛选出的钾效率不同的水稻基因型为试验材料,研究了水稻适应低钾胁迫的大田响应以及根系的形态学及生理学特征;根系分泌物的组成特性以及对矿物钾的活化机制;通过研究水稻T-DNA插入突变体库中钾敏感和钝感突变体株系的差异,为今后水稻钾高效分子生物学研究打下基础。取得的主要研究结果如下:
     1.通过田间试验研究了不同供钾水平对8个水稻品种钾素吸收利用和稻谷产量的影响。研究结果表明,两种供钾水平下,水稻的稻谷产量、钾利用效率和各生育期地上部钾积累都存在显著的基因型差异。低钾胁迫显著降低水稻的稻谷产量和各生育期地上部钾积累量,显著提高水稻的钾利用效率。相关性分析表明,低钾胁迫下水稻生育前期(秧苗期+分蘖期)地上部钾积累量以及生育中期(抽穗期)地上部钾积累量与稻谷产量呈显著正相关;正常供钾条件下水稻生育前期地上部钾积累量与稻谷产量呈显著正相关。因此筛选和培育具有较高钾利用效率和在生育前期具有较强钾素积累特性的水稻基因型可能是缓解南方水稻土钾素严重缺乏的有效途径之一。
     2.在低钾条件下,水稻根重和根体积显著降低,但钾高效基因型的降幅小于钾低效基因型;适度低钾条件下,水稻根重和根体积呈增大趋势,且钾高效基因型的增幅大于钾低效基因型。但钾高效基因型根系总表面积、细根数大于钾低效基因型。钾高效水稻基因型根系吸收钾的K_m值、C_(min)值和β值都小于钾低效基因型,而I_(max)值在不同钾效率基因型间无规律性变化,说明水稻对低钾胁迫的适应性与根系对K~+的亲和力、生长介质中临界K~+浓度有关,而与水稻吸钾的最大速率无关。
     3.通过比较水稻钾低效基因型铜梁火种(TLHZ)和钾高效基因型HA-881043(HA)缺钾条件下的叶绿体结构和叶绿素荧光参数的差异,研究结果表明:净光合速率(Pn)和气孔导度(Gs)在低钾胁迫下降低,其中钾低效基因型比钾高效基因型降低的幅度要大,但胞间CO_2浓度(Ci)在两个基因型之间却是相反的趋势;这说明钾低效基因型的光合能力降低主要是由于抑制了光化学活性。叶绿素荧光测定结果表明:缺钾条件下,两水稻基因型的初始荧光(Fo)、可变荧光与最大荧光比(Fv/Fm)以及非光化学猝灭系数(NPQ)与对照相比均无显著性差异;两水稻基因型的可变荧光与最大荧光比(F_v/F_m)、光化学猝灭系数(qP)、实际光化学效率(φPSⅡ)以及光合电子传递速率(ETR)与对照相比均有所下降,其中钾低效基因型(TLHZ)的降幅更大。说明缺钾对水稻叶绿素荧光参数的影响与其钾敏感性密切相关,F_v/F_m、qP、φPSⅡ和ETR四个叶绿素荧光参数可作为耐缺钾水稻品种快速筛选的参考指标。TEM分析结果表明:在缺钾处理条件下,钾低效基因型(HA-881043)比钾高效基因型(TLHZ)叶绿体结构受到更严重的破坏。
     4.采用营养液培养试验研究了低钾(-K)、正常供钾(CK)条件下钾高效基因型HA-881043和钾低效基因型铜梁火种的根系K~+吸收动力学参数,抗氧化酶活性,根系显微结构及对钾的吸收、积累差异。试验结果表明,2个基因型在耐低钾胁迫能力方面存在显著性差异。相对于对照(正常供钾),在低钾(-K)时,高效基因型HA-881043植株根系生物量极显著高于低效基因型铜梁火种,其根系MDA、Pro、SOD活性,及根系活力也明显高于低效基因型铜梁火种,这一规律也在根系显微结构中体现出来。表明根系MDA、Pro、SOD等抗氧化酶活性及根系活力可以作为比较水稻品种在耐低钾胁迫能力方面差异的评价指标之一。
     5.通过水培试验,研究了两种不同钾效率水稻基因型在不同的供钾水平下根系分泌物的组成特征以及对矿物钾的释放能力差异。通过大田试验研究了不同的供钾条件下,两种水稻种植前后根际土壤中不同形态钾的亏缺程度。结果表明,根系分泌物对含钾矿物中的钾具有明显的释放作用,其中钾素利用高效型水稻根系分泌物的释钾能力高于低效型,且根系分泌物中有机酸含量与释钾量呈显著正相关。不同基因型有机酸的分泌能力大小是造成土壤钾吸收利用差异的重要机理之一。
     6.从以粳稻日本晴为受体构建的经农杆菌介导的T-DNA插入水稻突变体库中获得了2个突变体株系,通过缺钾(5mg/kg)营养液培养筛选发现,两个水稻突变体株系对钾的利用效率不同,表型上与亲本有显著差异。通过PCR检测和潮霉素抗性分析表明:两个株系及其后代钾高效和低效的T3代不同单株与T2代都缺失分子标记Hyg,证明其性状与T-DNA插入突变无关。分析不同突变体株系在低钾条件下的根系形态和生理学机制,表明高效突变体株系相对于野生型有更强的钾积累能力,具有更发达的根系和完整的显微结构;而低效突变体株系则不具有这些特征。
Potassium(K)plays a role in a wide range of functions in plants:photosynthesis,enzyme activation,protein synthesis,osmotic potential,and as a counterion to inorganic ions and organic biopolymers.Potassium deficiency in soils is widespread in China,especially in the paddy soils, where low K has become the major limiting factor for obtaining high yield.China is short of K fertilizer resources,so it is importance to understand the mechanisms of plant adaptation to low K. There existed large genotypic differences in K efficiency in lowland rice(Oryza sativa L.).The major objectives of this study were to investigate the characteristics of root morphology,K absorption kinetics,and root cell membrane tolerance to low K stress,to find out the plant trait for screening and identifying K-efficient rice genotypes,and understand the characteristics of rhizosphere processes of K in the paddy soils.The major results obtained were summarized as follows:
     1.A field trial was carried out to study the effect of different K supply levels on the grain yield, K uptake and utilization of eight rice cultivars.Results showed that there were significantly genotypic variations in rice grain yield,K utilization efficiency and shoot K accumulation at different growth stage under two different K supply.Compared with normal K supply,rice grain yield and shoot K accumulation were decreased,and K utilization efficiency was increased under low K supply.Correlation analysis showed that under low K supply rice grain yield was positively correlated with K utilization efficiency,shoot K accumulation at both early growth and mid-growth stages(p<0.05),and under normal K supply rice grain yield was positively correlated with K utilization efficiency and shoot K accumulation at early growth stage(p<0.05).Therefore,screening and breeding rice genotypes with higher K utilization efficiency and higher ability to accumulate K at grow th early stage would probably be one of alternatives to alleviate the K deficiency of paddy soil in south of China.
     2.Differential effects of K deficiency on chloroplast ultrastructure and chlorophyll fluorescence parameters were observed between the K-efficient(HA)and the K-inefficient(TLHZ) rice(Oryza sativa L.)genotypes.The net photosynthetic rate(Pn)and stomatal conductance(Gs) decreased at low K,but to a greater extent in TLHZ than in HA.Chlorophyll fluorescence measurements showed that PSⅡ-available photochemical efficiency(F_v/F_m),electron transport rate of PSⅡ(ETR),and photochemical quenching(qP)declined more significantly,whereas the non-photochemical quenching(NPQ)increased more in TLHZ than in HA-881043 under low K, indicating that the K-efficient genotype has greater ability to keep PS reaction center less damaged and maintain stronger photosynthetic ability with high resistance to photoinhibition under K deficiency.In addition,better preserved chloroplast ultrastructure was noted in HA-881043 than in TLHZ under K deficiency.The high efficient photochemical capacity in K -efficient genotypes may be a key factor for high K efficiency in rice.
     3.Disparity in the root morphology of six rice(Oryza sativa L.)genotypes varying in potassium(K)efficiency was studied with three K levels:5 mg L~(-1)(low),10 mg L~(-1)(moderate) and 40 mg L~(-1)(adequate)in hydroponic culture.Morphological parameters included root length, surface-area,volume,and count of lateral roots,as well as fine(<0.2 mm)and thick(>0.2 mm) roots.The results indicated that root growth of all genotypes was reduced under low K,but moderate K deficiency increased root length of the efficient genotypes.At deficient and moderate K levels,all the efficient rice genotypes developed more fine roots(<0.2 mm)than the inefficient ones.Both fine root and root surface area were found to be the best parameters to portray K stress in rice.In accordance with root morphology,higher relative K concentration was noted in shoots of the efficient genotypes when grown at moderate and deficient K levels,indicating that root morphology parameters are involved in root uptake for K and translocation it up to shoots. Potassium deficiency affected not only the root morphology,but also the root ultra-structure.The K_m,C_(min),andβvalues of K uptake by root of the efficient genotypes were both lower than those of the inefficient ones,whereas minimal differences were observed for the I_(max)values among different rice genotypes.The results indicated the K efficiency was relative to the root affinity for K~+,the minimal K~+ concentration in the culture medium(C_(min)),but not to the maximum K~+ uptake rate.The roots of high-efficient genotypes had stronger tolerance to K deficient stress for root membrane damage,and could maintain developed root architecture to adapt the low K in growth medium.And the results of field experiment were similar with hydroponic study.
     4.Differential changes of K fractions in the rhizosphere in field experiment and root exudates constitutes were investigated between the K-efficient and K-inefficient rice cultivars under low and adequate soil K supply.The results showed that considerable depletion of readily-available K and exchangeable K in rice rhizosphere occurred at both low and adequate K levels.At low K,the efficient cultivar(HA-881043)reduced more dramatically the rhizospheric concentrations of both readily-available K and exchangeable K than the inefficient cultivar(TLHZ),but the opposite trends were noted at adequate K supply.Both cultivars could deplete readily-released K in the rhizosphere.And similar difference was noted for pH of root exudates.Moreover,the root exudates of the K-efficient cultivars grown at low K contained higher organic acids and showed more effective in extracting K from philogopite.These results indicated the K efficiency in lowland rice resulted from more effective use of slowly-released K and mineral K in soil by means of induced root exudation of acids and/or organic acids at low K.
     5.We chose 200 isolated rice(Oryza sativa L.subsp.Japonica,cv.Ribenqing)mutants as material from the mutant system derived from gene transformation mediated via Agrobacterium tumefaciens.By different K treatment,we obtained the K-sensitive/tolerant mutant rice(STOW). Our results indicated that K accumulation of the K-tolerant mutant were higher than that of the wild type,so the capacity of transporting K to shoots might be greater in the mutant.Then the high/Iow -accumulation K-tolerant mutant was added a generation to analyze the amplification patterns of Homomycin gene in T3 plants of K-tolerant mutant.The results indicated that there was not the Hyg in T2 and T3 lines,so we concluded that different inheritable character of accumulating K in the mutant was not caused by T-DNA inserting.Our studies suggested that tolerant mutants had stronger root morphology to adapt to low K,but sensitive mutants had no these characters.
引文
Ahn SJ, Shin R, Schachtman DP . 2004. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K~+ uptake. Plant Physiol. 134: 1135-1145.
    
    Alahari A, Apte SK .2004.A novel potassium deficiency-induced stimulon in Anabaena torulosa. J. Biosci. 29:153-161.
    
    Arend M, Monshausen G, Wind C, Weisenseel MH, Fromm J. 2004. Effect of potassium deficiency on the plasma membrane H~+-ATPase of the wood ray parenchyma in poplar. Plant Cell Environ. 27:1288-1296.
    
    Armengaud P, Breitling R, Amtmann A.2004.The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol. 136:2556-2576.
    
    Babourina O, Hawkins B, Lew RR, Newman I, Shabala S. 2001. K~+ transport by Arabidopsis root hairs at low pH. Aust. J. Plant Physiol. 28:635-641.
    
    Baker, N.R., Rosenqvist, E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. exp. Bot. 55:1607-1621.
    
    Ball MC, Chow WS, Anderson JM. 1987. Salinity-induced potassium deficiency causes loss of functional photosystem 11 in leaves of the grey mangrove, Avicennia marina, through depletion of the atrazine-binding polypeptide. Aust. J. Plant Physiol. 14: 351-361.
    
    Banuelos MA, Garciadeblas B, Cubero B, Rodriguez-Navarro A. 2002. Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol. 130:784-795.
    
    Basset M Lepetit M Lepetit M.1995. Organization and expression of the gene coding for the potassium transport system AKT1 of Arabidopsis thaliana. Plant Molecular Biology. 29: 947-958.
    
    Basset M, Conejero G, Lepetit M, Fourcroy P, Sentenac H. 1995 .Organization and expression of the gene coding for the potassium transport system AKT1 of Arabidopsis thaliana. Plant Mol. Biol. 29:947-958.
    
    Bedford JJ, Schofield J, Yancey PH, Leader JP. 2002. The effects of hypoosmotic infusion on the composition of renal tissue of the Australian brush-tailed possum Trichosurus vulpecula. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 132: 645-652.
    
    Begg CBM., Kirk GJD, MacKenzie A F M, and Neue H.U. 1994. Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytol. 128: 469-477.
    
    Bei Q.1998. Functional expression and characterization of a plant K~+channel gene in a plant cell model. Plant Journal. 13: 857-865.
    
    Beilby MJ, Shepherd VA .2001. Modeling the current-voltage characteristics of charophyte membranes. III. K~+ state of Lamprothamnium. Aust. J. Plant Physiol. 28:541-550.
    
    Bhargava S. 2005.The role of potassium as an ionic signal in the regulation of cyanobacterium Nostoc muscorum response to salinity and osmotic stress. J. Basic Microbiol. 45: 171-181.
    
    Booth IR .1993. Regulation of gene expression during osmoregulation: the role of potassium glutamate as a secondary signal of osmotic stress. In "Alkali Cation Transport Systems in Prokaryotes" (EP Bakker ed), CRC Press, Boca Raton, pp. 309-331.
    
    Botrill DE, Possingham JV, Kriedemann PE 1970. The effect of nutrient deficiencies on photosynthesis and respiration in spinach.Plant and Soil. 32: 424-438.
    
    Brandt S, Fisahn J. 1998. Identification of a K~+ channel from potato leaves by functional expression in Xenopus oocytes. Plant Cell Physiol. 39: 600-606.
    
    Bruggemann L, Dietrich P, Dreyer I, Hedrich R. 1999. Pronounced differences between the native K~+ channels and KAT1 and KST1 alpha-subunit homomers of guard cells. Planta. 207: 370-376.
    Buchsenschutz K, Marten I, Becker D, Philippar K, Ache P, Hedrich R .2005. Differential expression of K(+) channels between guard cells and subsidiary cells within the maize stomatal complex. Planta. 7:1-15.
    Bucking H, Heyser W. 2000. Subcellular compartmentation of elements in non-mycorrhizal roots of Pinus sylvestris: an X-ray microanalytical study. II .The distribution of calcium, potassium and sodium. New Phytologisty. 145: 321-331.
    Bucking H, Kuhn AJ, Schroder WH, Heyser W. 2002 .The fungal sheath of ectomycorrhizal pine roots: an apoplastic barrier for the entry of calcium, magnesium, and potassium into the root cortex? J. Exp. Bot. 53:1659-1669.
    Cakmak I, Engels C 1999. Role of mineral nutrients in photosynthesis and yield formation. In: Rengel Z (ed) Mineral Nutrition of Crops. Haworth Press, New York, 141-168.
    Cao Y, Kelly W B, Kelly W B.1995. Multiple genes, tissue specificity, and expression-dependent modulation contribute to the functional diversity of potassium channels in Arabidopsis thaliana. PLANT PHYSIOLOGY. 109:1093-1106.
    Cao Z H, Su Y H, Su Y H. 1998. Nutrient distribution at root-soil interface of different genotypes of plant, Montpellier.
    Cathey GW, Elmore CD, McMichael BL .1981. Some physiological responses of cotton leaves to foliar applications of potassium 3,4-dichloroisothiazole-5-carboxylate and S,S,S-tributyl phosphotrithioate. Physiol. Plant. 51:140-144.
    CLAASSEN N, S A Barber. 1974. A method for characterizing the relation between nutrient concentration and flux into roots of intact plants.Plant Physiology. 54: 564-568.
    Costa A, Carpaneto A, Varotto S, Formentin E, Marin O, Barizza E, Terzi M, Gambale F, Lo Schiavo F. 2004 .Potassium and carrot embryogenesis: are K~+ channels necessary for development? Plant Mol. Biol. 54: 837-852.
    Cox AE, Joern BC, and Roth CB. 1996. Non-exchangeable ammonium and potassium determination in soils with a modified sodium tetraphenylboron method. Soil Sci. Soc. Am. J. 60:114-120.
    Cuin TA, Miller AJ, Laurie SA, Leigh RA. 2003. Potassium activities in cell compartments of salt-grown barley leaves. J. Exp. Bot. 54: 657-661.
    Czempinski K, Zimmermann S, Ehrhardt T, Muller-Rober B. 1997. New structure and function in plant K~+ channels: KCO1, an outward rectifier with a steep Ca~(2+) dependency. EMBO J. 16: 2565-2575.
    Daram P, Urbach S, Gaymard F, Sentenac H, Cherel I. 1997 .Tetramerization of the AKT1 plant potassium channel involves its C-terminal cytoplasmic domain. EMBO J. 16:3455-3463.
    Deeken R, Geiger D, Fromm J, Koroleva O, Ache P, Langenfeld-Heyser R, Sauer N, May ST, Hedrich R .2002 .Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216: 334-344.
    Deeken R, Ivashikina N, Czirjak T, Philippar K, Becker D, Ache P, Hedrich R. 2003 .Tumour development in Arabidopsis thaliana involves the Shaker-like K~+ channels AKT1 and AKT2/3. Plant 134:778-787.
    Dennison KL, Robertson WR, Lewis BD, Hirsch RE, Sussman MR, Spalding EP. 2001. Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiol. 127:1012-1019.
    Dessougi H, Claassen N, Steingrobe B. 2002 .Potassium efficiency mechanisms of wheat, barley, and sugar beet grown on a K fixing soil under controlled conditions. J. Plant Nutr. Soil Sci. 165: 732-737.
    Diatloff.1998. Site directed mutagenesis reduces the Na~+ affinity of HKT1, an Na~+ energized high affinity K~+ transporter. FEBS Letters. 432: 31-36.
    Diatloff E, Geiger D, Shang L, Hedrich R, Roberts SK. 2004. Differential regulation of K~+ channels in Arabidopsis epidermal and stelar root cells. Plant Cell Environ. 27: 980-990.
    Dobermann A, Sta PC, Cassman KG.1996.Fertilizer input, nutrient balance, and soil nutrient supplying power in intensive irrigated rice systems. I. Potassium uptake and K balance. Nutrient Cycling Agroecosyst. 46: 1-10.
    Dobermann A., Cassman K.G., Mamaril C.P., Sheehy J.E.1998.Management of phosphorus, potassium, and sulfur in intensive irrigated lowland rice. Field Crops Res. 56:113-138.
    Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R .1998 .The structure of the potassium channel: molecular basis of K~+ conduction and selectivity. Science. 280:69-77.
    Dreyer I, Becker D, Bregante M, Gambale F, Lehnen M, Palme K, Hedrich R. 1998. Single mutations strongly alter the K~+-selective pore of the K(in) channel KAT1. FEBS Lett. 430: 370-376.
    Ehrhatdt T, Muller-Rober B, Muller-Rober B.1997. Association of plant K~+ in channels is mediated by conserved C-termini and does not affect subunit assembly, FEBS Letters, 409, 166-170.
    Eldstrom J, Doerksen KW, Steele DF, Fedida D .2002 .N-terminal PDZ-binding domain in Kvl potassium channels. FEBS Lett. 531: 529-537.
    Elumalai RP, Nagpal P, Reed JW .2002 .A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell 14: 119-131.
    Epstein E, Elzam O E.1963.Resolution of dual mechanisms of potassium absorption by barley roots, Proceedings of the National Academy of sciences (USA), 49,684-692.
    Escassi L, Aguilera J, Figueroa FL, Fernandez JA. 2002. Potassium drives daily reversible thallus enlargement in the marine red alga Porphyra leucosticta (Rhodophyta). Planta 214:759-766.
    Evans NH .2003. Modulation of guard cell plasma membrane potassium currents by methyl jasmonate. Plant Physiol. 131:8-11.
    Fairbairn DJ, Liu W, Schachtman DP, Gomez-Gallego S, Day SR, Teasdale RD. 2000 .Characterisation of two distinct HKT1-like potassium transporters from Eucalyptus camaldulensis. Plant Mol. Biol. 43:515-525.
    Farr E, Vaidanathan LV, Nye PH.1969. Measurement of ionic concentration gradients in soil near roots. Soil Science 107:385-391.
    Feng-Qin Zhang, You-Shao Wang, Zhi-Ping Lou et al, 2006. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere.
    Frank Van Belleghem, Ann Cuypers, Brahim Semane et al. 2007. Subcellular localization of cadmium in roots and leaves of Arabidopsis thaliana. New Phytologist 173:495-508.
    FU H.1998. AtKUPl: A dual affinity K~+ transporter from Arabidopsis, PLANT CELL, 10,63-67.
    Fuchs I, Stolzle S, Ivashikina N, Hedrich R. 2005 .Rice K~+ uptake channel OsAKTl is sensitive to salt stress. Planta 221: 212-221.
    Garciadeblas B, Benito B, Rodriguez-Navarro A .2002. Molecular cloning and functional expression in bacteria of the potassium transporters CnHAKl and CnHAK2 of the seagrass Cymodocea nodosa. Plant Mol. Biol. 50: 623-633.
    Gassmann W, Schroeder J I, Schroeder J I.1996. Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1, Plant Journal, 10,869-882.
    Gauthier MJ, Flatau GN, Le Rudulier D, Clement RL, Combarro Combarro MP .1991 .Intracellular accumulation of potassium and glutamate specifically enhances survival of Escherichia coli in seawater. Appl. Environ. Microbiol. 57:272-276.
    Gaymard F, Lacombe B, Lacombe B.1998.Identification and distruption of a plant Shaker-like outward channel involved in K~+ release into the xylem sap, Cell, 94, 647-655.
    Gierth M, Maser P, Schroeder JI. 2005 .The potassium transporter AtHAK5 functions in K(+) deprivation-induced high-affinity K(+) uptake and AKT1 K(+) channel contribution to K(+) uptake kinetics in Arabidopsis roots. Plant Physiol. 137: 1105-1114.
    Goldstein SA, Wang KW, Ilan N, Pausch MH .1998. Sequence and function of the two P domain potassium channels: implications of an emerging superfamily. J. Mol. Med. 76:13-20.
    Golldack D, Quigley F, Michalowski CB, Kamasani UR, Bohnert HJ. 2003. Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKTl-type potassium channel transcripts differently. Plant Mol. Biol. 51:71-81.
    Golldack D, Quigley F, Quigley F.1997. Salt stress-dependent expression of a HKTl-type high affinity potassium transporter in rice, PLANT PHYSIOLOGY. 114: 529-539.
    
    Grabov A, Blatt MR. 1999 .A steep dependence of inward-rectifying potassium channels on cytosolic free calcium concentration increase evoked by hyperpolarization in guard cells. Plant Physiol. 119:277-288.
    
    Graham R D, Ulrich A. 1972. Potassium deficiency-induced changes in stomatal behavior, leaf water potentials, and root system permeability in Betavul garis. Plant Physiol. 49:105-109.
    
    Gruwel ML .2001. Considerations in measuring potassium efflux from plant cells using ~(87)Rb magnetic resonance. Mol. Membr. Biol. 18:291-294.
    
    H.Hogh-Jensen, M.B.Pedersen. 2003. Morphological Plasticity by Crop Plants and Their Potassium Use Efficiency. JOURNALOFPLANTNUTRITION. 26 (5):969-984.
    
    Hartje S, Zimmermann S, Klonus D, Mueller-Roeber B. 2000. Functional characterisation of LKT1, a K~+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K~+ channel SKT1 after expression in Xenopus oocytes. Planta210: 723-731.
    
    Harz TK, Miyao G, Mullen RJ, Cahn MD, Valencia J, Brittan KL. 1999. Potassium requirements for maximum yield fruit quality of processing tomato. Journal American Society Science, 124(2): 199-204.
    
    Hassel B, Sonnewald U. 2002. Effects of potassium and glutamine on metabolism of glucose in astrocytes. Neurochem. Res. 27:167-171.
    
    Hayes DE, Smith FA, Walker NA. 2001. High-affinity potassium transport into wheat roots involves sodium - a role for HKT1? Aust. J. Plant Physiol. 28:643-652.
    
    HE Rui-Feng, DING Yi, YU Jin-Hong et al. 2001. Study on Leaf Ultrastrucrure of the Thermo-sensitive Chlorophyll Deficient Mutant in Rice. Jourual of Wuhau Botauical Research. 19(1):1-5.
    
    Heidrum D, Helga W, Heike H, et al. 1996. Changes in D1-protein turnover and recovery of photosystem II activity precede accumulation of chlorophyll in plants after release from mineral stress. Planta, 199:34-42.
    
    Helmke P A and Sparks D L.1996. Lithium, sodium, potassium, rubidium, and cesium. In: Sparks D.L. (Ed.), Methods of Soil Analysis Part 3 - Chemical Methods. Soil Sci. Soc. Amer., Madison, WI,pp 551-574.
    
    Hinsinger P, Jaillard B .1993 .Root-induced release of interlayer potassium and vermiculization of philogopite as related to potasium-depletion in the rhizosphere of ryegrass. J. Soil Sci. 44, 525-534.
    
    Hirsch R E, Spalding E P.1998.Spalding E P, A role for the AKT1 potassium channel in plant nutrition, SCIENCE, 280,918-921.
    Hirsch RE, Lewis BD, Spalding EP, Sussman MR 1998. A role for the AKT1 potassium channel in plant nutrition. Science 280:918-921.
    
    Hollerer-Beitz G, Heinemann SH .1998. Influence of detergents on the function of cloned potassium channels. Receptors Channels 5: 61-78.
    
    Hong Liao, Huiyan Wan, Jon Shaff et al. 2006. Phosphorus and Aluminum Interactions in Soybean in Relation to Aluminum Tolerance .Exudation of Specific Organic Acids from Different Regions of the Intact Root System, Plant Physiology, 141:674-684.
    
    Hoth S, Dreyer I, Dietrich P, Becker D, Muller-Rober B, Hedrich R. 1997. Molecular basis of plant-specific acid activation of K~+ uptake channels. Proc. Natl. Acad. Sci. U.S.A. 94: 4806-4810.
    
    Hoth S, Hedrich R. 1999. Susceptibility of the guard-cell K(+)-uptake channel KST1 to Zn(2+) requires histidine residues in the S3-S4 linker and in the channel pore. Planta 209: 543-546.
    
    Hua BG, Mercier RW, Leng Q, Berkowitz GA .2003. Plants do it differently. A new basis for potassium/sodium selectivity in the pore of an ion channel. Plant Physiol. 132:1353-1361.
    
    HuberSC. 1984. Biochemical basis for effects of K~+ deficiency on assimilate export rate and accumulation of soluble sugars in soybean leaves. Plant Physiol, 76:424-430.
    Humble G D, Raschke K. 1971. Stomatal opening quantitatively related to potassium transport. Plant Physiol, 48:447-453.
    Hurst AC, Meckel T, Tayefeh S, Thiel G, Homann U .2004 .Trafficking of the plant potassium inward rectifier KAT1 in guard cell protoplasts of Vicia faba. Plant J. 37:391-397.
    Hylander LD Ae N, Hatta T, Sugiyama M .1999. Exploitation of K near roots of cotton, maize, upland rice, and soybean grown in an Ultisol. Plant Soil 208,33-41.
    Ichida A M. 1997. Expression of a Cs~+-resistant guard cell K~+ channel confers Cs~+-resistent,light-induced stomatal opening in transgenic Arabidopsis, PLANT CELL, 9, 1843-1857.
    Ichida AM, Schroeder JI .1996 .Increased resistance to extracellular cation block by mutation of the pore domain of the Arabidopsis inward-rectifying K~+ channel KAT1. J. Membr. Biol. 151:53-62.
    Ivashikina N, Hedrich R. 2005. K+ currents through SV-type vacuolar channels are sensitive to elevated luminal sodium levels. Plant J. 41: 606-614.
    JENSEN P, L Erdei, I M Moller. 1987. K~+ uptake in plant roots: Experimental approach and influx models [J]. Physiol Plantarum, 70:743-748.
    Jiang F, Li C, Jeschke WD, Zhang F .2001 .Effect of top excision and replacement by 1-naphthylacetic acid on partition and flow of potassium in tobacco plants. J. Exp. Bot. 52: 2143-2150.
    Jiang Xu, Hao-Dong Li, Li-Qing Chen et al. 2006. A Protein Kinase, Interacting with Two Calcineurin B-like Proteins, Regulates K~+ Transporter AKT1 in Arabidopsis. Celll, 25, 1347-1360.
    JIN Jing, ZHU Cheng, ZHANG Hong-xin et al., 2004. Preliminary study on a gravity-insensitive rice mutant. Journal of Zhejiang University SCIENCE, 5(2): 144-148.
    Jou Y, Chou PH, He M, Hung Y, Yen HE .2004 .Tissue-specific expression and functional complementation of a yeast potassium-uptake mutant by a salt-induced ice plant gene mcSKDl. Plant Mol. Biol. 54: 881-893.
    Kauffman MD and Bouldin DR.1967. Relationship of exchangeable and non-exchangeable potassium in soil advance to cation-exchange resins and plant roots. Soil Sci. 104,145-150.
    Kiss L, Immke D, LoTurco J, Korn SJ. 1998 .The interaction of Na~+ and K~+ in voltage-gated potassium channels. Evidence for cation binding sites of different affinity. J. Gen. Physiol. 111:195-206.
    Kiss L, Korn SJ .1998 .Modulation of C-type inactivation by K~+ at the potassium channel selectivity filter. Biophys. J. 74:1840-1849.
    Kochian L V.1988.Potassium in transport roots, Adv Bot Res, 15,93-178.
    Krause GH and Weis E 1991. Chlorophyll fluorescence and photosynthesis: The basics. Ann Rev Plant Physiol Plant Mol Biol 42:313-349
    Kronzucker HJ, Szczerba MW, Britto DT. 2003 .Cytosolic potassium homeostasis revisited: ~(42)K-tracer analysis in Hordeum vulgare L. reveals set-point variations in [K+]. Planta 217: 540-546.
    Kuchenbuch R, Junk A. 1984. Influence of potassium supply on the availability of potassium in the rhizosphere of rape (Brassica-napus). Zeishrift Pflanzeneynahrung und Bodenkund 147, 435-448.
    Kumpf RA, Dougherty DA .1993. A mechanism for ion selectivity in potassium channels: computational studies of cation-pi interactions. Science 261:1708-1710.
    Kwak JM, Murata Y, Baizabal-Aguirre VM, Merrill J, Wang M, Kemper A, Hawke SD, Tallman G, Schroeder JI .2001. Dominant negative guard cell K(+) channel mutants reduce inward-rectifying K(+) currents and light-induced stomatal opening in Arabidopsis. Plant Physiol. 127: 473-485.
    L.Giari, M.Manera, E.Simoni et al. 2006. Cellular alterations in different organs of European sea bass Dicentrarchus labrax (L.) exposed to cadmium. Chemosphere.
    Lagarde D, Lepetit M, Lepetit M.1996. Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K~+ nutrition, Plant Journal, 9,195-203.
    Langer K, Ache P, Geiger D, Stinzing A, Arend M, Wind C, Regan S, Fromm J, Hedrich R .2002 .Poplar potassium transporters capable of controlling K~+ homeostasis and Independent xylogenesis. Plant J. 32:997-1009.
    Langer K, Levchenko V, Fromm J, Geiger D, Steinmeyer R, Lautner S, Ache P, Hedrich R. 2004. The poplar K~+ channel KPT1 is associated with K~+ uptake during stomatal opening and bud development. Plant J. 37: 828-838.
    Lee S , Moon J S , Ko T2S , et al. 2003. Overexpression of A rabi dopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol., 131:656-663.
    LI Fu-zhen, JIN Song-heng, HU Guo-cheng et al, 2005. Isolation and physiological characteristics of a premature senescence mutant in rice (Oryza sativa L.). Journal of Zhejiang University SCIENCE. 6B (8):803-811.
    LI Han-bing, HUYu-xi, BAI Ke-zhi et al, 2002. Comparison of chloroplast ultrastrucrure and 77K fluorescence emissions pectra between awns and flag leaves in wheat. Journal of Chinese Electron Microscopy Society, (4):97-101.
    Li J, Lee YR, Assmann SM .1998 .Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. Plant Physiol. 116: 785-795.
    Liu GD, Liu GL .1995. On challenges in short supply of potassium resources in China. China Agricultural Sci. 28,25-32.
    Liu K, Fu H, Bei Q, Luan S .2000 .Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol. 124:1315-1326.
    Lu LQ. 1998. Principles of Soil and Plant Nutrition and Fertilization. Chemical Industry Pulishers, Beijing, China.
    Maaathusis F J M, Smith F A. 1996. The physiological revelance of Na~+-couple K~+ transport, PLANT PHYSIOLGY, 112,1609-1616.
    Maathuis FJ, Sanders D. 1994. Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 91:9272-9276.
    Maathuis FJ, Sanders D. 1996. Characterization of csi52, a Cs~+ resistant mutant of Arabidopsis thaliana altered in K~+ transport. Plant J. 10: 579-589.
    Maathusis F J M. 1993. Energiztion of potassium uptake in roots of Arabidopsis thaliana, Planta, 191,302-307.
    Maatthusis F J M, Schroeder J I.1997. Roles of higher plant K~+channels. PLANT PHYSIOLOGY, 114,1141-1149.
    Maatthusis F J M. 1996. Machenisms of potassium absorption by higher plants root. Physiology Plant, 96,158-168.
    Marschner H, Cakmak I.1989. High light intensity enhances chlorosis and necrosis in leaves of zinc-, potassium- and magnesium-deficient bean (Phaseolus vulgaris) plants. J Plant Physiol. 134:308-315.
    Marschner H. 1995. Mineral nutrition of high plants, 2nd edn. London, San Diego, New York, Boston, Sydney, Tokyo, Toronto: Academic press.
    Matoh T, Watanabe J, Takahishi E .1987 .Sodium, potassium, chloride, and betaine concentrations in isolated vacuoles from salt grown Atriplex gmelini leaves. Plant Physiol. 84:173-177.
    Maxwell, K., Johnson, G.N. 2000 Chlorophyll fluorescence - a practical guide. J. exp. Bot. 51: 659-668.
    Moritsuka N, Yanai J, Kosaki T. 2004 Possible processes releasing nonexchangeable potassium from the rhizosphere of maize. Plant Soil 258, 261-268.
    Moshelion M, Moran N .2001. Potassium-efflux channels in extensor and flexor cells of the motor organ of Samanea saman are not Identical. Effects of cytosolic calcium. Plant Physiol. 125: 1142-1150.
    Muller-Rober B, Ehrhardt T, Ehrhardt T.1997.Properties of a cloned Arabidopsis outward rectifying K~+ channel, KCO1, indicate a role in Ca~(2+) mediated signal transduction, Presented at Int.Corf.Arabidopsis Res.8th,Madison,Wis.
    Muller-Rober B, Provart N, Provart N, Cloning and lectrophysiological analysis of KST1: An inward rectifying K~+ channel expressed in potato guard cells, EMBO Journal, 14, 2409-2416.
    Munson R D. Potassium in Agriculture [M].(Translated by FAN Qin-zhen, ZHENG Wen-qin).Beijing:SciencePress, 1994.(in Chinese)
    Munson R.D. (ed). 1985. Potassium in agriculture. ASA, Madison, WI.
    Nakamura R L, Hirsch R E, Hirsch R E.1995. Expression of an Arabidopsis potassium channel gene in guard cells, PLANT PHYSIOLOGY, 109,371-374.
    Nakamura RL, McKendree WL Jr, Hirsch RE, Sedbrook JC, Gaber RF, Sussman MR .1995 .Expression of an Arabidopsis potassium channel gene in guard cells. Plant Physiol. 109:371-374.
    Osaki M, Shinano T, Tadano T. 1993. Effect of Nitrogen, Phosphorus, or Potassium Deficiency on the Accumulation of Ribulose-1, 5-Bisphosphate Carboxylase/ Oxygenase and Chlorophyll in Several Field Crops. Soil Sci. Plant Nutr, 139(3):417-425.
    Osawa H, Matsumoto H. 2002 .Aluminium triggers malate-independent potassium release via ion channels from the root apex in wheat. Planta 215:405-412.
    Peasles D E, Moss D N. 1996. Photosynthcsis in K~+ and Mg~+ deficient maize leaves. Soil Sci,
    2(1):1-8.
    Peasles D E, Moss D N. 1996. Photosynthesis in K~+ and Mg~(2+) deficient maize leaves. Soil Sci, 30:220-223.
    Pei Z, Allen G J, Allen G J.1998.A transient outward rectifying K~+ channel current down-regulated by cytosolic Ca~(2+) in Arabidopsis thaliana guard cell, Proceedings of the National Academy of Sciences(USA), 95,6548-6553.
    PENG Hai-huan, WENG Xiao-yan, XU Hong-xia et al. 2006. Effects of Potassium Deficiency on Photosynthesis and Photo-Protection Mechanisms in Rice Plants. Chinese J Rice Sci, 20(6): 621-625.
    Peoples T R, Koch D W. 1979. Role of potassium in carbon dioxide assimilation in Medicago sativaL. Plant Physiol, 63: 878-881.
    Peoples T R, Koch D W. 1979. Roles of potassium in carbon dioxide assimilation in M edicago sativ L. Plant Physiol, 63:878-881.
    Peuke AD, Jeschke WD, Hartung W .2002. Flows of elements, ions and abscisic acid in Ricinus communis and site of nitrate reduction under potassium limitation. J. Exp. Bot. 53:241-250.
    Pilot G, Gaymard F, Mouline K, Cherel I, Sentenac H. 2003 .Regulated expression of Arabidopsis shaker K~+ channel genes involved in K~+ uptake and distribution in the plant. Plant Mol. Biol.
    51:773-787.
    Portillo F, Mulet JM, Serrano R. 2005 .A role for the non-phosphorylated form of yeast Snfl: tolerance to toxic cations and activation of potassium transport. FEBS Lett. 579: 512-516.
    Pottosin II, Martinez-Estevez M, Dobrovinskaya OR, Muniz J .2003. Potassium-selective channel in the red beet vacuolar membrane. J. Exp. Bot. 54: 663-667.
    Reed RH, Rowell P, Stewart WDP .1981. Characterization of the transport of potassium ions in the cyanobacterium Anabaena variabilis Kutz. Eur. J. Biochem. 116: 323-330.
    Reed RH, Rowell P, Stewart WDP .1981. Uptake of potassium and rubidium ions by the cyanobacterium Anabaena variabilis. FEMS Microbiol. Lett. 11: 233-236.
    Romer W, Schenk H. 1998. Influence of genotype on phosphate uptake and utilization efficiencies in spring barley [J]. European Journal of Agronomy. 8: 215-224.
    Rubio F, Gassmann W, Gassmann W.1999.Genetic selection of mutations in the high affinity K~+ transporter HKT1 that define ructions of a loc site for reduced Na~+ permeability and increased Na tolerance, Journal of Biological Chemistry,274(11): 6839-6847.
    Rubio F, Gassmann W, Schroeder JI .1995. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270: 1660-1663.
    Santa-Maria G E.1997.The HKT1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter, PLANT CELL, 9(12): 2281-2289.
    Santa-Maria GE, Danna CH, Czibener C .2000 .High-affinity potassium transport in barley roots. Ammonium-sensitive and -insensitive pathways. Plant Physiol. 123:297-306.
    Santa-Maria GE, Rubio F, Dubcovsky J, Rodriguez-Navarro A. 1997 .The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9: 2281-2289.
    SCHACHTMAN D P, Lucas W J, Lucas W J. 1992. Expression of an inward-rectiifying potassium channel by Arabidopsis KAT1 Cdna, Science, 258,1654-1658.
    SCHACHTMAN D P, Schroeder J I, Schroeder J I.1997. Molecular and functional characterization of a novel low-affinity cation transporter (LCT1) in higher plants, Proceedings of the National Academy of Sciences (USA), 94:11079-11084.
    SCHACHTMAN D P. 1994. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. NATURE. 370:655-658.
    Schachtman D, Liu W .1999. Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci. 4:281-287.
    Schachtman DP, Schroeder JI .1994 .Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370: 655-658.
    Schenk MK, Barber SA .1980. Potassium and phosphorus uptake by corn genotypes grown in the field as influenced by root characteristics. Plant Soil 54:65-76.
    Sentenac H, Minet M, Minet M. 1992. Cloning and expression in yeast of a plant potassium ion transport system, science, 256:663-665.
    Shabala S. 2003 .Regulation of potassium transport in leaves: from molecular to tissue level. Ann. Bot. (Lond.) 92:627-634.
    Sharp RE, Hsiao TC, Silk WH. 1990. Growth of the maize primary root at low water potentials. II. Role of growth and deposition of hexose and potassium in osmotic adjustment. Plant Physiol. 93; 1337-1346.
    Shi JW, Bao SD, Shi RH .1994 .Release of soil interlayer potassium under depletion condition and soil potassium fixation after depletion. Acta Pedologica Sinica 31(1): 42-49.
    Shi W M, Fujiwara T, Fujiwara T. 1997. Transfer of potassium channel gene into tobacco,Proceedings of the 13th international plant nutrition colloquium, Tokyo, 195-196.
    Shi WM, Wang XC, Yan WD. 2004. Distribution patterns of available P and K in rape rhizosphere in relation to genotypic difference SO PLANT AND SOIL 261,11-16.
    Smart C J, Prince J P. 1996.The molecular basis of potassium nutrition in plants, Plant and Soil 187,81-89.
    Smirnova G, Oktyabrsky.1995. Betaine modulates intracellular thiol and potassium levels in Escherichia coli in medium with high osmolarity and alkaline pH. Arch. Microbiol. 163: 76-78.
    Spalding E P. 1999.Potassium uptake supporting plant growth in the absence of AKT1 channel activity: Inhibition by ammonium and stimulation by sodium, Journal of General Physiology, 113,909-918.
    Starkus JG, Kuschel L, Rayner MD, Heinemann SH. 1998. Macroscopic Na+ currents in the "Nonconducting" Shaker potassium channel mutant W434F. J. Gen. Physiol. 112: 85-93.
    Steingrobe B, Claassen N .2000. Potassium dynamics in the rhizosphere and K efficiency of crops. J. Plant Nutr. Soil Sci. 163,101-106.
    Stiles KA, McClintick A, Van Volkenburgh E. 2003. A developmental gradient in the mechanism of K~+ uptake during light-stimulated leaf growth in Nicotiana tabacum L. Planta 217: 587-596.
    Su H, Golldack D, Katsuhara M, Zhao C, Bohnert HJ. 2001 .Expression and stress-dependent induction of potassium channel transcripts in the common ice plant. Plant Physiol. 125: 604-614.
    Suelter CH. 1985.Role of potassium in enzyme catalysis in: potassium in agriculture, 336-349.
    Suh S, Moran N, Lee Y.2000. Blue light activates potassium-efflux channels in flexor cells from Samanea saman motor organs via two mechanisms. Plant Physiol. 123: 833-844.
    SUN Jun-wei, HUANC Ying-ying, XU Kun et al.2006. Effect of low potassium levels on photosynthetic activities in different position leaves of potassium insensitive rice plants. Acta Agriculturae Zhejiangensis, 18(5): 354-358.
    Sutherland L, Cairney J, Elmore MJ, Booth IR, Higgins CF. 1986. Osmotic regulation of transcription: induction of the proU betaine transport gene is dependent on accumulation of intracellular potassium. J. Bacteriol. 168: 805-814.
    Sutton F, Paul SS, Wang XQ, Assmann SM .2000 .Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes. Plant Physiol. 124:223-230.
    Tai KK, Goldstein SA .1998 .The conduction pore of a cardiac potassium channel. Nature 391: 605-608.
    Tan XX, Xu DQ , Shen YK. 1998. Both spillover and light absorption cross-section changes are involved in the regulation of excitation energy distribution between the two photosystems during state transitions in wheat leaf. Photosynthesis Research 56: 95-102.
    Tang H X, Berkowitz G A, Berkowitz G A.1995.Physical association of KAB1 with plant K~+ channel a subunits, PLANT CELL, 8,1545-1553.
    Tang H X, Berkowitz G A, Berkowitz G A. 1995.Evidence that plant K~+ channel proteins have two different types of subunits, PLANT PHYSIOLOGY,109,327-330.
    Teo Y H, Beyrouty C A, Gbur E E. 1992. Nitrogen, phosphorus, and potassium influx kinetic parameters of three rice cultivars[J]. Journal of Plant Nutrition, 15:435-444.
    Thiel G.1997. Operation of K~+-channel in stomatal movement, Trends in plant science, 2,339-345.
    Ting-Qiang LI, Xiao-E YANG, Zhen-Li HE et al. 2005. Root Morphology and Zn~(2+) Uptake Kinetics of the Zn~(2+) Hyperaccumulator of Sedum alfredii Hance, Journal of Integrative Plant Biology, 47 (8): 927-934.
    TjeerdJ.Bouma, KaiL.Nielsen, BasKoutstaal. 2000. Sample preparation and scanning protocol for computerized analysis of root length and diameter. Plant and Soil, 218:185-196.
    Uozumi N, Gassmann W, Cao Y, Schroeder JI .1995. Identification of strong modifications in cation selectivity in an Arabidopsis inward rectifying potassium channel by mutant selection in yeast. J. Biol. Chem. 270:24276-24281.
    Uozumi N, Nakamura T, Schroeder JI, Muto S. 1998. Determination of transmembrane topology of an inward-rectifying potassium channel from Arabidopsis thaliana based on functional expression in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 95: 9773-9778.
    Vallejo AJ, Peralta ML, Santa-Maria GE .2005 .Expression of potassium-transporter coding genes, and kinetics of rubidium uptake, along a longitudinal root axis. Plant Cell Environ. 28: 850-862.
    Very AA, Sentenac H. 2003. Molecular mechanisms and regulation of K~+ transport in higher plants. Annu. Rev. Plant Biol. 54: 575-603.
    Vesk M, Possingham JV, Mercer FV. 1966. The effect of mineral deficiencies on the structure of the leaf cells of tomato, spinach and maize. Aust J. Bot. 14:1-18.
    Wang JG, Zhang FS, Cao YP, Zhang XL .2000.a Effect of plant types on release of mineral potassium from gneiss. Nutrient Cycling in Agroecosyst. 56, 37-44.
    Wang JG, Zhang FS, Zhang XL, Cao YP.2000.b Release of potassium from K-bearing minerals: Effect of plant roots under P deficiency. Nutrient Cycling in Agroecosyst. 56,45-52.
    Wang TB, Gassmann W, Rubio F, Schroeder JI, Glass AD .1998. Rapid up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium. Plant Physiol. 118: 651-659.
    Wang W, Hebert SC, Giebisch G. 1997. Renal K~+ channels: structure and function. Annu. Rev. Physiol. 59: 413-436.
    Wang YH, Garvin DF, Kochian LV .2002 .Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots, evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol. 130:1361-1370.
    Warne TR, Hickok LG, Sams CE, Vogelien DL. 1999. Sodium/potassium selectivity and pleiotropy in stl2, a highly salt-tolerant mutation of Ceratopteris richardii. Plant Cell Environ. 22:1027-1034.
    Watson MB, Malmberg RL. 1996 .Regulation of Arabidopsis thaliana (L.) Heynh arginine decarboxylase by potassium deficiency stress. Plant Physiol. 111: 1077-1083.
    Watson R, Pritchard J, Malone M .2001. Direct measurement of sodium and potassium in the transpiration stream of salt-excluding and non-excluding varieties of wheat. J. Exp. Bot. 52: 1873-1881.
    WENG Bo-Qi, HUANG Dong-Feng, XIONG De-Zhong et al. 2004. Effects of selenium on plant growth, enzyme activity and blade cell submicrostructure of Chamaecrista rotundifolia. EcologicaSinica, 24(12):2810-2817.
    Wihardjakan A, Kirk GJD, Abdulrachman S, Mamaril CP .1999. Potassium balances in rainfed lowland rice on a light-textured soil. Field Crops Res. 64,237-247.
    X.E. Yang, J.X. Liu, W.M. Wang, et al. 2003.Genotypic differences and some associated plant traits in potassium internal use efficiency of lowland rice (Oryza sativa L). Nutrient Cycling in Agroecosystems.67: 273-282.
    Yamashita T, Hikasa S. 1988. Changes in Photosynthesis and Content of Ribulose Bisphosphate Carnoxylase and other cellular constituents depending on the level of Potassium supplied to Mulberry (M orusalba L). Soil Sci, Plant Nutr, 34(4):627-631.
    Yan D, Ikeda TP, Shauger AE, Kustu S. 1996. Glutamate is required to maintain the steady-state potassium pool in Salmonella typhimurium. Proc. Natl. Acad. Sci. U.S.A. 93: 6527-6531.
    Yan W D, Liao H Q, Liao H Q. 1997. Study on mechanism of soil potassium bioavailability I.Genotypic difference of potassium-enrichment capability in plants and distribution of potassium in plant rhizosphere. Pedersphere, 7,165-170.
    Yang Lijun, Zhang Wei, Li Jianyu et al. 2005. Analysis for Inheritance, Ultrastructure and SDS-PAGE of the Albino Mutant Transgenic Rice. Seed, 24(9): 12-15.
    Yang XE, Li H, Kirk GJD, Dobbermann A .2005. Room-induced changes of potassium in the rhizosphere of lowland rice. Commun. Soil Sci. Plant Analy. 36,1947-1963.
    Yang XE, Liu JX, Wang WM, et al.2004 .Potassium internal use efficiency relative to growth vigor, potassium distribution, and carbohydrate allocation in rice genotypes. J. Plant Nutri. 27 (5), 837-852.
    Yang XE, Liu JX, Wang WM, Li H, Luo AC, Ye ZQ, and Yang YA. 2003. Genotypic differences and some associated plant traits in potassium internal use efficiency of lowland rice (Oryza sativa L.). Nutrient Cycling in Agroecosyst. 67,273-282
    Yang XE, Romheld V, Marschner H .1994. Effects of bicarbonate on root growth and organic acid accumulation in Zn-efficient and Zn-inefficient rice cultivars. Plant Soil. 147,1-7.
    Yang XE, Romheld V, Marschner H, Baligar VC, Martens DC. 1997 .Shoot photosynthesis and root growth of hybrid rice and conventional rice cultivar as affected by N and K levels in the rhizosphere. Pedosphere 7,35-42.
    Yang ZM, Zhou WZ, Bao SD. 1999. Comprehensive evaluation on potassium supplying potential of main soils in China. Acta Pedologica Sinica, 36(3), 377-385.
    Yao W, Berkowitz G A, Berkowitz G A .1997. Molecular cloning and characterization of the first plant K(Na)/ protton antiporter, PLANT PHYSIOLOGY, 114,200-215.
    Yonghong Xie, Shuqing An, Bofeng Wu, 2005. Density-dependent root morphology and root distribution in the submerged plant Vallisneria natans, Environmental and Experimental Botany, 115,405-415.
    Zhang JL,George E.2002.Changes in the extractability of cations(Ca,Mg and K)in the rhizosphere soil of Norway spruce(Picea abies)roots.Plant Soil,243,209-217.
    ZHANG Zhiyong,WANG Gang wei,TIAN Xiaoli et al.2005.Preliminary Study of K~+ Uptake Kinetics of Cotton(GossypiumhirsutumL.)and its Application.Cotton Science.17(3):165-170.
    ZHAO Xue-giang,,RE Xiao-lei,Li You-tian et al.2006.Study on potassium uptake kinetics by different genotype wheat.Plant Nutrition and Fertilizer Science.12(3):307-312.
    ZHOU Hongwei,SHI Guoxin,DU Kaihe et al.2003.Toxic effects of Cd~(2+)pollution on the biochemical and physiological characters and ultrastmcture of Allcmanthera plsiloxeroides.CHINESE JOURNAL OF APPLIED ECOLOGY,14(9):1581-1584.
    Zhu JK,Liu J,Xiong L.1998.Genetic analysis of salt tolerance in Arabidopsis.Evidence for a critical role of potassium nutrition.Plant Cell 10:1181-1191.
    Zimmermann S,Talke I,Ehrhardt T,Nast G,Muller-Rober B.1998.Characterization of SKTI,an inwardly rectifying potassium channel from potato,by heterologous expression in insect cells.Plant Physiol.116:879-890.
    安林异,倪晋山,李共富,1995.耐低钾水稻的钾营养特性[J].植物生理通讯,31(4):257-259.
    曹爱琴,廖红,严小龙,2002.低磷土壤条件下菜豆根构型的适应性变化与磷效率,土壤学报,39(2):276-282.
    曹爱琴,廖红,严小龙,2001.缺磷诱导菜豆根构型变化的一种简易测定方法,植物营养与肥料学报,7(1):113-116.
    陈际型,1997.钾素营养对水稻根系生长和养分吸收的影响,土壤学报,34(2):182-188.
    胡承孝,王运华,1996.不同小麦品种施钾效应的差异.Ⅰ.生物学产量和钾积累[J].华中农业大学学报.15(3):243-248.
    黄建中,饶立华,陆定志,1991.钾营养对杂交稻叶片发育期间光合作用的影响,植物生理学通讯,27(2):91-94.
    蒋德安,饶立华,彭佐权,1988.低钾条件下水稻的光合特性,植物生理学报,14(1):50-55.
    蒋德安,翁晓燕,陆庆等,1996.钾营养对水稻光合速率(Pn),Hill反应及SOD活力日变化的影响,植物生理学报,22(1):87-93.
    吉田昌一.1975.水稻生理学实验手册[K].北京:科学出版社.57-63.
    吉艳芝,陈立新,2003.施肥对落叶松人工林土壤磷有效性的影响,水土保持学报,17(2):41-43.
    贾月慧,黄建国,1999.小麦不同品种氮钾效率的研究差异,北京农学院学报,14(4):11-14.
    贾彦博,杨肖娥,刘建祥.2005,植物根系对养分缺乏和毒害的适应及其与养分吸收效率的关系,土壤通报,36(4):610-616.
    贾彦博,杨肖娥,王为木.2005,不同供钾水平下水稻钾素吸收利用与产量的基因型差异,水土保持学报,20(2):64-67.
    金静,朱诚,傅亚萍等,2003.水稻种子萌动期抗低温逆境突变的筛选,浙江大学学报(农业与生命科学版),29(2):207-209.
    李廷轩,马国瑞,张锡洲等,2005.籽粒苋不同富钾基因型根系分泌物中有机酸和氨基酸的变化特点,植物营养与肥料学报,11(5):647-653.
    李廷轩,马国瑞,王昌全等,2003.籽粒苋根际土壤及根系分泌物对矿物态钾的活化作用,土壤通报.34(2):48-51.
    李廷轩,马国瑞,2004.籽粒苋富钾基因型的根系形态和生理特性,作物学报,30(11):1145-1151.
    李廷轩,马国瑞,张锡洲,2006.富钾基因型籽粒苋主要根系分泌物及其对土壤矿物态钾的活化作用,应用生态学报,17(3):368-372.
    李德华,向春雷,姜益泉等,2005.低磷胁迫下水稻不同品种根系有机酸分泌的差异,中国农学通报,21(11):186-188.
    李永夫,罗安程,王为木等,2005.耐低磷水稻基因型筛选指标的研究,应用生态学报,16(1):119-124.
    李永夫,罗安程,魏兴华等,2006.水稻利用难溶性磷酸盐的基因型差异及其与根系分泌物活化特性的关系,中国水稻科学,20(5):493-498.
    李永夫,罗安程,黄继德等,2006.不同磷效率水稻基因型根系形态和生理特性的研究,浙江大学学报(农业与生命科学版),32(6):658-664.
    李海波,夏铭,吴平,2001.低磷胁迫对水稻苗期侧根生长及养分吸收的影响,植物学报,43(11):1154-1160.
    林冬,朱诚,孙宗修,2006.镉敏感水稻突变体在镉胁迫下活性氧代谢的变化,环境科学,27(3):561-566.
    廖红,严小龙,2001.菜豆根形态特征的基因型差异与磷效率,植物学报,43(11):1161-1166.
    林咸永,孙羲,1995.不同水稻品种对钾的吸收及其对钾肥的反应,土壤学报,32(1):77-8q
    刘国栋,刘更另.1995.论缓解我国钾资源短缺问题的新对策,中国农业科学,28(1):25-32.
    刘国栋,刘更另.2002.籼稻耐低钾基因型的筛选,作物学报,28(2):161-168.
    刘建祥,杨肖娥,杨玉爱,等.2003.低钾胁迫下水稻钾高效基因型若干生长特性和营养特性的研究,植物营养与肥料学报,9(2):190-195.
    刘建祥,杨肖娥,吴良欢等.2001.低钾胁迫对水稻叶片光合功能的影响及其基因型差异,作物学报,27(6):1000-1006.
    刘建祥,杨肖娥.2000.水稻钾营养基因型差异与生产的关系,植物生理学通讯,36(4):384-389.
    陆庆,蒋德安,翁晓燕等,1999.钾营养对不同水稻基因型物质生产和光合作用的效应[J].浙江农业大学学报,25(3):267-270.
    马淑英,黄阳成,杨小贺,武维华,1999.高浓度钾对杜氏盐藻叶绿体超微结构的影响,植物学报,41(12):1342-1344.
    南京农业大学主编,土壤农化分析,1986,北京:农业出版社.
    彭克勤,彭志红,萧浪涛等,2003.水稻耐低钾变异后代的根系生理研究[J].中国农学通报.19(5):64-66.
    彭志红,彭克勤,胡家金等,2002.富钾植物DNA导入水稻变异后代苗期耐低钾种质的筛选,湖南农业大学学报(自然科学版),28(6):463-466.
    彭海欢,翁晓燕,徐红霞等,2006.缺钾胁迫对水稻光合特性及光合防御机制的影响,中国水稻科学,20(6):621-625.
    孙骏威,黄莹莹,徐坤等,2006.低钾对钾迟钝型水稻不同叶位叶片光合活性的影响,浙江农业学报,18(5):354-358.
    唐劲驰漕敏建,2005.2个大豆基因型钾效率的比较研究,华南农业大学学报,26(1):7-10.
    涂书新,郭智芬,孙锦荷,1999.富钾植物籽粒苋根系分泌物及其矿物释钾作用的研究,核农学报,13(5):305-311.
    王为木,2003.水稻适应土壤低钾营养胁迫的机理研究,博士论文,浙江大学.
    王为木,杨肖娥,魏幼璋等,2005.水稻不同基因型吸收利用土壤钾素的差异,浙江大学学报(农业与生命科学版),31(1):52-58.
    王为木,杨肖娥,李华等,2003.低钾胁迫对两个耐钾能力不同水稻品种养分吸收和分配的影响,中国水稻科学,17(1):52-56.
    王伟,曹敏建,王晓光等,2005.低钾胁迫对不同钾营养效应型大豆保护酶系统的影响.大豆科学,24(2):100-104.
    王艳,米国华,陈范骏等,2003.玉米氮素吸收的基因型差异及其与根系形态的相关性,生态学报,23(2):297-302.
    吴平,倪俊健,罗安程等,1997.应用分子标记研究水稻耐低钾胁迫数量性状位点,植物营养与肥料学报,3(3):209-217.
    饶立华,薛建明,蒋德安等,1990.钾营养对杂交稻光合作用动态及产量形成的效应。中国水稻科学,4(3):106-112.
    项虹艳,丁洪,郑金贵等,2004.耐低钾水稻品种的筛选,江西农业大学学报.26(3):338-34.
    严小龙,1995.植物营养现状的遗传学改良:进展与展望,华南农业大学学报.13(4):121-128.
    郁晓敏,方萍,向成斌.拟南芥低氮耐性突变体的初步筛选,2004.植物营养与肥料学报,10(4):441-443.
    袁玲,2003.外生菌根吸收和活化利用土壤矿物钾的研究,博士论文,中国农业大学.
    赵明,沈宏,严小龙,2002.不同菜豆基因型根系对难溶性磷的活化吸收,植物营养与肥料学报,8(4):435-440.
    赵淑清,林春,杨小贺等,2001.拟南芥耐低钾突变体的筛选及遗传分析,植物学报,43(1):105-107.
    郑炳松,蒋德安,翁晓燕等,2001.钾营养对水稻剑叶光合作用关键酶活性的影响,浙江大学学报(农业与生命科学版),27(5):489-494.
    周冀衡,李永平,杨虹琦等,2005.不同基因型烟草根系分泌物对难溶性磷钾的活化效应,湖南农业大学学报(自然科学版),31(3):276-280.
    周明,涂书新,孙锦荷等,2005.富钾植物籽粒苋(Amaranthus spp.)对土壤矿物钾的吸收利用研究,核农学报,19(4):291-296.
    邹春琴,李振声,李继云,2001.小麦对钾高效吸收的根系形态学和生理学特征,植物营养与肥料学报,7(1):36-43.
    朱建华,耿明建,曹享云等,2001.硼对棉花不同品种根系吸收活力、根系分泌物和伤流液组分的影响,棉花学报,13(3):142-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700