水稻与稻瘟菌互作多基因遗传基础的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
揭示植物与病原菌互作的遗传基础是认识植物抗病和病原物致病机理,培育持久、广谱抗病作物品种的理论基础。植物与病原物的互作是一个复杂的生理生化过程,同时受植物和病原菌许多基因的控制。因此,必须同时对植物和病原菌的基因组进行分析,才能完整地理解其内部机理。本研究以稻瘟病为模式,应用最新发展出的将植物和病原菌作为一个整体的植物与病原菌互作QTL分析方法,并将QTL分析与现有的基因表达数据相结合,同时在水稻和稻瘟菌全基因组中寻找控制水稻和稻瘟菌互作的QTL或基因,初步揭示控制水稻和稻瘟菌互作的跨越水稻和稻瘟菌两个物种基因组的多基因体系。主要研究内容和结果如下:
     1、以稻瘟菌菌株Guy11和2539为亲本进行杂交,通过随机挑取单个子囊孢子,建立了一个包含229个后代菌株的群体。将该群体接种于水稻品种CO39,证实2539对CO39的无毒性是由无毒基因AVR1-CO39控制的。将该群体接种于另外14个对Guy11感病而对2539抗病的水稻品种上,发现有8个品种的抗病表现与CO39一致,推测2539对这些品种的无毒性也是由AVR1-CO39控制的;而另外6个品种的抗病表现也与CO39相似,推测其各自对应的无毒性与AVR1-CO39紧密连锁,分布在AVR1-CO39两侧约30kb的范围内。
     2、利用已公布的稻瘟菌全基因组序列,开发了446对SSR引物。426对引物能扩增出条带,其中314对在9个从水稻上分离到的稻瘟病菌株(包括实验菌株2539)中检测到多态,多态率达73.9%。每个SSR座位上检测到的等位基因数在2~9之间,平均为3.3。每对标记的多态信息含量(PIC)变化在0.20~0.89之间,平均为0.53。
     3、利用Guy11和2539杂交获得的遗传群体,构建了一张含有176个SSR标记的稻瘟菌遗传图谱。该图谱总长1247cM,相邻标记间平均距离为7.1cM,覆盖整个基因组的93%(约35.0Mb)。发现有26个(14.4%的)标记在1%显著水平上表现为偏分离,其中16个标记偏向亲本Guy11,10个标记偏向亲本2539。
     4、通过对稻瘟菌遗传图谱和物理图谱的比较,发现有5个标记在两种图谱中的位置不相吻合。有11个未知物理位置的标记被定位到遗传图谱上。稻瘟菌基因组中1cM的遗传距离平均相当于28kb。发现了一些重组冷点和重组热点。
     5、为方便读者利用我们开发的稻瘟菌SSR标记,建立了一个命名为MGM的在线数据库(http://ibi.zju.edu.cn/pgl/MGM/index.html)。该数据库提供了各个SSR标记的详细信息,包括SSR标记的物理位置、引物序列、重复基序、重复数、预期的PCR产物长度、退火温度以及在9个稻瘟病菌中检测到的等位基因数和PIC值。
     6、用121个不含AVR1-CO39的Guy11×2539的后代菌株对籼稻品种Acc8558和H359杂交产生的131个重组自交(RI)系进行随机接种,以相对病斑面积(RLA)和病级(DG)为指标,同时在水稻和稻瘟菌基因组中对控制水稻与稻瘟菌互作的QTL进行定位分析。在水稻和稻瘟菌中分别检测到3个和2个控制RLA的QTL,其中一个水稻QTL与一个稻瘟菌QTL间存在互作;在水稻和稻瘟菌中各检测到4个控制DG的QTL,其中水稻中有一对QTL存在上位性,稻瘟菌中有3对QTL存在上位性。
     7、根据已公布的水稻和稻瘟菌全基因组序列,将每个QTL的位置区间标注到物理图谱中,并与已公布的基因芯片和EST数据相比较,为4个水稻QTL找到5个候选基因;为5个稻瘟菌QTL找到9个候选基因。
Revealing the genetic basis of interaction between plant and pathogen would provide the theoretical foundation for understanding the mechanisms of plant resistance and pathogen pathogenesis and breeding crop varieties with durable and broad-spectrum resistance.Plant-pathogen interaction is a complicated biochemical and physiological process,in which many genes in plant and pathogen genomes are involved.Therefore,simultaneous analysis of plant and pathogen genomes is needed for full understanding of the internal mechanisms of plant-pathogen interaction.With rice blast as a model,this study aimed to reveal the across-species polygenic system controlling the interaction between rice and Magnaporthe grisea by scanning for related QTLs/genes in the rice and M.grisea genomes simulataneously,using the recently proposed QTL mapping method for plant-pathogen interaction,which takes the plant and pathogen as an integrated system,and combining QTL analysis with gene expression data.The main contents and results are as follows:
     1.A cross between two M.grisea strains,Guy11 and 2539,was performed and 229 progeny strains were obtained by randomly isolating ascospores.By inoculating this population on rice cultivar CO39,it was comfirmed that the avirulence of 2539 to CO39 was controlled by the avirulence gene AVR1-CO39.After inoculating this population on other 14 rice cultivars,it was found that 8 rice cultivars showed the same responses to the inoculations as CO39,suggesting that the avirulence of 2539 to these 8 cultivars should be also controlled by AVR1-CO39;the responses of the other 6 rice cultivars were also similar to CO39,suggesting that the avirulence of 2539 to these 6 cultivars might be controlled by different avirulence genes other than but closely linked to AVR1-CO39,and linkage analysis indicated that these gene are located around AVR1-CO39 within a range of 30kb.
     2.Based on the released genome sequence data of M.grisea,we designed primers for 446 simple sequence repeat(SSR)loci.426 pairs of primers could obtain amplification products,of which 314 pairs showed polymorphisms among 9 M. grisea strains isolated from rice(including a laboratory strain 2539).The polymorphism percentage is 73.9%.The number of alleles of each SSR marker ranged 2~9 with an average of 3.3.The polymorphic information content(PIC)of each marker ranged 0.20~0.89 with an average of 0.530.
     3.Using the progeny population of Guy11×2539,a genetic map of M.grisea consisting of 176 SSR markers was constructed.The map covers a total length of 1247 cM with an average distance of 7.1 cM between adjacent markers,equivalent to a physical length of about 35.0 Mb or 93%of the genome.Among these SSR markers, 26(14.4%)markers showed the genetic segregation distortion at the 1%significance level.Among them,16 markers deviated toward Guy11 and 10 markers deviated toward 2539.
     4.Comparison between the genetic map and the physical map indicated that the positions of five markers were not consistent in the two maps.Eleven markers with unknown physical positions were mapped in the genetic map.In the M.grisea genome,1cM is approximately equivalent to 28kb on average.Some recombination hot spots and cold spots were identified.
     5.For the convenience of readers to utilize the SSR markers developed in this study,we have established a web-based database named MGM,which is accessible at website http://ibi.zju.edu.cn/pgl/MGM/index.html.Detailed information of each SSR is provided,including position,primers,repeat motif,expected PCR product length, anneal temperature,number of alleles detected in the nine M.grisea isolates and PIC value.
     6.One hundred and twenty-one progeny strains of Guy11×2539 not carrying AVR1-CO39 were used to randomly inoculate 131 recombinant inbred lines(RILs) derived from a cross between two indica rice cultivars,Acc8558 and H359.With relative lesion area(RLA)and disease grade(DG)as index,QTL mapping was performed for rice-M,grisea interaction in both the rice and the M.grisea genomes simultenously.Three and two QTLs underlying RLA were detected in the rice genome and the M.grisea genome,respectively,of which a QTL of rice was found to interact with a QTL of M.grisea.Four QTLs each conferring DG were found in the rice genome and the M.grisea genome,respectively.Epistatic effects were detected between one pair of QTLs in rice and three pairs of QTLs in M.grisea.
     7.The positional interval of each QTL in the physical map of rice and M.grisea was identified according to their released genome sequences,and was compared with the microarray and EST data.Five candidate genes were found for 4 rice QTLs and 9 candidate genes were found for 5 M.grisea QTLs.
引文
陈万权,QTL作图在植物数量抗病性遗传研究中的应用,植物病理学报,1999,1:8-14
    董继新,董海涛,吴玉良,用PCR-差异筛选的方法分离和克隆水稻受稻瘟病菌(Magnaporthe grisea)诱导的cDNA片段,中国农业科学,1999,32(3):8-13.
    董丽英,徐兴芬,水稻抗稻瘟病基因研究进展,云南农业科技,2007,3:25-26.
    冯淑杰,王玲,马俊红,林菲,潘庆华,稻瘟病菌无毒基因AvrPi7的遗传及物理作图,科学通报,2007,52(3):283-290.
    韩德俊,曹莉,陈耀峰,李振岐,植物抗病基因与病原菌无毒基因互作的分子基础,遗传学报,2005,32:1319-1326.
    雷财林,王久林,毛世宏,朱立煌,凌忠专,籼稻品种窄叶青8号抗稻瘟病基因分析,遗传学报,1997,24(1):36-41.
    李常银,杨谦,王晓飞,孙野青,抗稻瘟病新基因pi-hit-1的克隆与功能研究,高技术通讯,2004,10:21-26.
    李成云,罗朝喜,李进斌,沈瑛,伊势一男,稻瘟病菌无毒基因的分子标记,中国农业科学,2000,33(3):49-53.
    李宏宇,鲁国东,王宗华,稻瘟菌无毒基因研究进展,中国生物工程杂志,2003,23(6):27-35.
    李仕贵,马玉清,王玉平,王文明,周开达,朱立煌,籼稻品种地谷抗稻瘟病基因的遗传分析和定位,自然科学进展,2000,10(1):44-48.
    林菲,李进斌,李成云,王玲,潘庆华,利用RAPD分子标记定位2个水稻稻瘟病菌非致病性基因,中国农业科学,2002,35(9):1079-1084.
    刘俊峰,张国珍,马秋娟,彭友良,一个与稻瘟病菌无毒基因AVR-Pik~m连锁的SCAR标记的分离,植物病理学报,2003,33(2):151-155.
    刘仁虎,孟金陵,MapDraw,在Excel中绘制遗传连锁图的宏,遗传,2003,25(3):317-321.
    鲁国东,彭云良,郑武等.稻瘟病研究进展,见:鲁国东等编.稻瘟病文摘补遗.厦门:厦门大学出版社,2003.
    王宝华,鲁国东,李海明,林艳,王宗华,稻瘟病菌交配型PCR鉴定体系的建立,农业生物技术学报,2004,12(2):183-187.
    王宝华,鲁国东,林伟明,王宗华,稻瘟病菌无毒基因Avr-Pil、Avr-Pi2和Avr-Pi4a的遗传分析及其分子标记,遗传学报,2002,29(9):820-826.
    王洪凯,林福呈,李德葆,稻瘟病菌致病相关基因研究进展,菌物系统,2002,21(3):459-464.
    王艳丽,Claudia Kaye,Amandine Bordat,Henri Adreit,Joelle Millazzo,郑小波,沈瑛,Dider Tharreau,稻瘟病菌株CH63和TH16杂交组合的遗传图谱构建及无毒基因定位,中国水稻科学,2005,19(2):160-166.
    王忠华,贾育林,Robert G.Fjellstrom,水稻抗稻瘟病基因Pi-ta育Pi-ta2之间的关系,浙江万里学院学报,2004,17(2):89-92.
    吴建利,柴荣耀,樊叶杨,李德葆,郑康乐,Hei Leung,庄杰云,抗稻瘟病水稻材料谷梅2号中主效抗稻瘟病基因的成簇分布,中国水稻科学,2004,18(6):567-569.
    萧浪涛,李东晖,蔺万煌,洪彬,洪亚辉,一种测定稻米垩白性状的客观方法,中国水稻科学,2001,15(3):206-208.
    许绍斌,陶玉芬,杨昭庆,褚嘉祐,简单快速的DNA银染和胶保存方法,遗传,2002,24(3):335-336.
    杨宇,陈瑞阳.水稻基因组测序的研究进展,遗传,2001,23(6):580-582.
    张建福,凌忠专,王国英,谢华安,利用SSR标记定位粳稻云引抗稻瘟病基因,分子植物育种,2006,4(3):359-364.
    张建福,王国英,谢华安,凌忠专,粳稻云引抗稻瘟病基因的遗传分析及其定位,农业生物技术学报,2003,11(3):241-244.
    郑康乐.水稻基因组研究进展,水稻稻米,2003,1:5-6.
    朱立煌,凌忠专,用分子标记定位一个未知的抗稻瘟病基因,中国科学:B辑,1994,24(10):1048-1052.
    Aarts N,Metz M,Holub E,Staskawicz B J,Daniels M J,Parker JE.Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis.Proc.Natl.Acad.Sci.USA,1998,95:10306-10311.
    Adreit H,Santoso,Andriantsimialona D,Utami DW,Notteghem JL,Lebrun MH,Tharreau D.Microsatellite markers for population studies of the rice blast fungus,Magnaporthe grisea.Molecular Ecology Notes,2007,4,667-670.
    Agrawal GK, Jwa NS, Iwahashi H, Rakwal R. Importance of ascorbate peroxidases OsAPXl and 0sAPX2 in the rice pathogen response pathways and growth and reproduction revealed by their transcriptional profiling. Gene, 2003, 322:93-103.
    Ahn SN, Kim YK, Hong HC, Han SS, Kwon SJ, Choi HC, Moon HP, McCouch SR. Molecular mapping of a new gene for resistance to rice blast {Pyricularia grisea Sacc). Euphytica, 2000, 116,17-22.
    Anderson JA, Churchill GA, Autrique JE, Sorrells ME, Tanksley SD. Optimizing parental selection for genetic linkage maps. Genome 1993,36,181-186.
    Axtell MJ, Staskawicz BJ. Initiation of RPS2, specified disease resistance in Arabidopsis is coupled to the AvrRpt2 directed elimination of RIN4. Cell, 2003, 112: 369-377.
    Balhadere PV, Talbot NJ. PDE] encodes a P-ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell, 2001, 13: 1987-2004.
    Barve MP, Haware MP, Sainani MN, Ranjekar PK, Gupta VS. Potential of microsatellites to distinguish four races of Fusarium oxysporum f. sp. ciceri prevalent in India. Theor Appl Genet, 2001,102:138-147.
    Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrum MH, Tharreau D. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor Appl Genet, 2003, 107: 1139-1147.
    Betts MF, Tucker SL, Galadima NG, Meng Y, Patel G, Li L, Donofrio N, Floyd A, Nolin S, Brown D, Mandel MA, Mitchell TK, Xu JR, Dean RA, Farman ML, Orbach MJ. Development of a high throughout transformation system for insertional mutagenesis in Magnaporthe grisea. Fungal Genetics and Biology, 2001, 44: 1035-1049.
    Bohner HU, Fudal I, Dioh W, Tharreau D, Notteghem JL, Lebrun MH. A putative polyketide synthase/peptide synthetase form Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell, 2004,16:2499-2513.
    Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet., 1980, 32, 314-331.
    Brondani C, Brondani RPV, Garrido LR, Ferreira ME. Development of microsatellite markers for the genetic analysis of Magnaporthe grisea. Genetics and Molecular Biology, 2000, 23: 753-762.
    Bryan GT, W u KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Donaldson G, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 2000, 12: 2033-2046.
    Cao H, Li X, Dong X. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA. 1998, 95: 6531-6536.
    Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SE, Second G, McCouch SR, Tanksley SD. Saturated molecular map of rice genome based on an inter-specific backcross population. Genetics, 1994, 138:1251-1274.
    Chauhan RS, Farman ML, Zhang HB, Leong SA. Genetic and physical mapping of a rice blast resistane locus, Pi-CO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Mol Genet Genomics, 2002, 267:603-612.
    Chen DH, Vina M, Inukai T, Mackill DJ, Ronald PC, Nelson RJ. Molecular mapping of the blast resistance gene, Pi44(t), in a line derived from a durably resistant rice cultivar, Theor Appl Genet, 1999, 98: 1046-1053.
    Chen H, Wang S, Xing Y, Xu C, Hayes P, Zhang Q. Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Pro Natl Acad Sci USA. 2003, 100: 2544-2549.
    Chen QH, Wang YC, Zheng XB. Genetic analysis and molecular mapping of the avirulence gene PRE1, a gene for host-species specificity in the blast fungus Magnaporthe grisea. Genome, 2006,49:873-881.
    Chen S, Wang L, Que Z, Pan R, Pan Q. Genetic and physical mapping of Pi37(t), a new gene conferring resistance to rice blast in the famous cultivar St.No. 1. Theor Appl Genet, 2005, 111: 1563-1570.
    Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Lin G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L. A B-lectin receptor kinase gene conferring rice blast resistance. The Plant Journal, 2006, 46: 794-804.
    Chen X, Temnykh S, Xu Y, Cho YG, McCouch SR. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L ). Theor Appl Genet, 1997, 95: 553-567.
    Chern MS, Fitzgerald HA, Yadav RC, Canlas PE, Dong X, Ronald PC. Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J, 2001, 27:101-113.
    Cho YG, Ishii T, Tenmykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S. Diversity of microsatellites derived from genomic libraries and GeneBank sequences in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100: 713-722.
    Choi W, Dean RA. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell, 1997, 9: 1973-1983.
    Clergeot PH, Gourgues M, Cots J, Laurans F, Latorse MP, Pepin R, Tharreau D, Notteghem JL, Lebrun MH. PLS1, a gene encobing a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea, Proc Natl Acad Sci USA, 2001, 98: 6963-6968.
    Crute IR, Pink DAC. Genetics and utilization of pathogen resistance in plants. Plant Cell, 1996, 8: 1745-1755.
    Crute R. The elucidation and exploitation of gene-for-gene recognition. Plant Pathology, 1998, 47:107-113.
    Dangl JL, Dietrich RA., Richberg MH. Death don't have no mercy: Cell death programs in plant-microbe interactions. Plant Cell, 1996, 8:1793-1807.
    Dangl JL, Jones JDG. Plant Pathogens and integrated responses to infection. Nature, 2001, 411:826-833.
    Davis CR, Kempainen RR, Srodes MS, Mcclung CR. Correlation of the physical and genetic maps of the centromeric region of the right arm of linkage group III of Neurospora crassa, Genetics, 1994,136, 1297-1306.
    Dean RA, Nicholas JT, Daniel JE, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H, Read ND, Lee YH, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun MH, Bohnert H, Coughlan S, Butler J, Calvo S, Ma LJ, Nicol R, Prucell S, Nusbaum C, Galagan JE, Birren BW. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005, 434, 980-986.
    Dean RA. Signal pathways and appressorium morphogenesis. Annu. Rev. Phytopathol, 1997, 35: 211-234.
    Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J. A central role of Salicylic acid in plant disease resistance. Science, 1994, 266: 1247-1249.
    Deslandes L, Olivier J, Peeters N, Dong XF, Khounlotham MH, Boucher C, Somssich I, Genin S, Marco Y, Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA, 2003, 100: 8024-8029.
    Deslandes L, Olivier J, Theulieres F, Hirsch J, Dong XF, Peter BE, Beynon J, Marco Y. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci USA, 2002, 99: 2404-2409.
    DeZwaan TM, Carroll AM, Valent B. Magnaporthe grisea Pthllp is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell, 1999, 11:2013-2030.
    Dioh W, Tharreau D, Notteghem JL, Orbach M, Lebrum MH. Mapping of avirulence genes in the rice blast fungus, Magnaporthe grisea, with RFLP and RAPD markers. MPMI, 2000, 13:217-227.
    Dixon KP, Xu JR, Smirnoff N, Talbot NJ. Independent signaling pathways regulate cellular trugor during hyperosmotic stress and appresssorium-mediated plant infection by Magnaporthe grisea. Plant Cell, 1999, 11: 2045-2058.
    Dobinson KF, Harris RE, Hamer JE. Grasshopper, a long terminal repeat retroelement in the phytopathogenic fungus Magnaporthe grisea. MPMI, 1993, 6:114-126.
    Eckardt NA. Mechanism of Pto-mediated disease resistance: Structural analysis provides a new model. Plant Cell, 2004, 16: 2543-2545.
    Farman ML, Eto Y, Nakao T, Tosa Y, Nakayashiki H, Mayama S, Leong SA. Analysis of the structure of the AVR1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea. MPMI, 2002b, 15:6-16.
    Farman ML, Leong SA. Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: discrepancy between the physical and genetic maps. Genetics, 1998, 150: 1049-1058.
    Farman ML, Leong SA. Genetic and Physical Mapping of Telomeres in the Rice Blast Fungus, Mapporthe grisea. Genetics, 1995, 140: 479-492.
    Farman ML, Taura S, Leong SA. The Magnaporthe grisea DNA fingerprinting probe MGR586 contains the 3'end of an inverted repeat transposon. Moe Gen Genet, 1996a,251: 675-681.
    Farman ML, Tosa Y, Nitta N, Leong SA. MAGGY, a retrotransposon in the genome of the rice blast fungus Magnaporthe grisea. Mol Gen Genet, 1996b, 251: 665-674.
    Farman ML. Meiotic deletion at the BUFl locus of the fungus Magnaporthe grisea is controlled by interaction with the homologous chromosome. Genetics, 2002a, 160, 137-148.
    Flor H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971, 9: 275-296.
    Foster AJ, Jenkinson JM, Talbot NJ. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO J, 2003, 22: 225-235.
    Froeliger EH, Carpenter BE. NUT1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity. Mol Gen Genet, 1996,251: 647-656.
    Fukuchi A, Suzuki Y, Hirochika H, Kikuchi F, Linkage relations between the photoperiod sensitivity gene Se-1 and two other genes, Pi-z and Pgi-2. Rice genetics Newsletter, 9: 47-50.
    Fukuoka S, Okuno K. QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor Appl Genet, 2001, 103: 185-190.
    Gabriel D W, Rolfe B G. Working models of specific recognition in plant-microbe interactions. Annu. Rev. Phytopathol., 1990, 28: 365 -391.
    Goff SA, Ricke D, Lan TH, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. Japonica). Science, 2002, 296: 92-100.
    Goto I. Genetic studies on the resistance of rice plant to the blast fungus. 1. Inheritance of resistance in crosses Sensho ×H-79 and Imochishirazu×H-79. Ann Phytopath Soc Japan, 1970,36:304-312.
    Goto, I. Genetic studies on resistance of rice plant to blast fungus (VII). Blast resistance genes of Kuroka. Ann Phytopath Soc Japan, 1988, 54: 460-465.
    Gowda M, Banman SR, Chattoo BB. Molecular mapping of a novel blast resistance gene Pi38 in rice using SSLP and AFLP markers. Plant Breeding, 2006, 125(6): 596-599.
    Hamer JE, Givan S. Genetic mapping with dispersed repeated sequences in the rice blast fungus: mapping the SMO locus. Molecular and General Genetics, 1990,223: 487-495.
    Hamiltion WD. Sex versus no-sex versus parasite. Oikos, 1980, 35: 282-290.
    Hamilton WD, Axelrod R, Tanese R. Sexual reproduction as an adaptation to resist parasites. Proc Natl Acad Sci USA, 1990, 87: 3566-3573.
    Hammond-Kosack KE, Jones JDG. Resistance gene-dependent plant defense responses. Plant Cell, 1996,8:1773-1791.
    Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamato T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kruata N, Khush GS, Sasaki T. A high-density rice genetic linkage map with 2275 markers using a single F_2 population. Genetics, 1998,148: 479-494.
    Hayashi K, Hashimoto N, Daigen M, Ashikawa I. Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theor Appl Genet, 2004, 108: 1212-1220.
    Hayashi N, Ando I, Imbe T. Identification of a new resistance gene to a Chinese blast fungus isolate in the Japanese rice cultivar Aichi Asahi. Phytopathology, 1998, 88: 822-827.
    He C, Fong SH, Yang D, Wang GL. BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol Plant-Microbe Interact, 1999, 12:1064-1073.
    Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet, 2000, 100: 1121-1128.
    Hsieh SC, Lin H, Liang HL. Genetic analysis in rice. VIII. Inheritance of resistance to race 4, 22 and 25 of Pyricularia oryzae, Botanical Bulletin of Academia Sinica, Taipei, 1967, 8, 255 -260.
    Imbe T, Matsumoto S. Inheritance of resistance of rice varieties to the blast fungus strains virulent to the variety "Reiho". Jpn J Breed, 1985, 35: 332-339.
    Imbe T, Yanoria MJ, Tsunematsu H. A new gene for blast resistance in rice cultivar, IR24. Rice Genetics Newsletter, 1997, 14:60-62.
    Innan H, Terauchi R, Miyashita NT. Microsatellite polymorphism in natural populations of the wild plant Arabidqsis thuliana. Genetics, 1997, 146, 1441-1452.
    Inukai T, Nelson RJ, Zeigler RS, Sarkarung S, Mackill DJ, Bonman JM, Takamure I, Kinoshita T. Allelism of blast resistance genes in near-isogenic lines of rice. Phytopathology, 1994, 84: 1278-1283.
    Inukai T, Saiko A. Determination of chromosomal location of blast resistance gene in West African upland cultivar Moroberekan. Breeding Sci, 1997, 47(SuppI.I): 268.(in Japanese).
    Jantasuriyarat C, Gowda M, Haller K, Hatfield J, Lu G, Stahlberg E, Zhou B, Li H, Kim H, Yu Y, Dean RA, Wing RA, Soderlund C, Wang GL. Large-scale identification of expressed sequence tags involved in rice and rice blast fungus interaction. Plant Physiology, 2005, 138: 105-115.
    Jeung JU, Kim BR, Cho YC, Han SS, Moon HP, Lee YT, Jena KK. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor Appl Genet, 2007, 115: 1163-1177.
    Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J, 2000, 19:4004-4014.
    Kachroo P, Leong SA, Chattoo BB. Pot2, an inverted rpeat transposon from the rice blast fungus Magnaporthe grisea. Mol Genet Genomics, 1994,245: 339-348.
    Kang S, Sweigard JA, Valent B. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. MPMI, 1995, 8: 939-948.
    Kang S, Chumley FG, Valent B. Isolation of the mating-type genes of the phytopathogenic fungus Magnaporthe grisea using genomic subtraction. Genetics, 1994, 138: 289-296
    Karaoglu H, Lee CMY, Meyer W. Survey of Simple Sequence Repeats in Completed Fungal Genomes. Molecular Biology and Evolution, 2004, 22, 639-649.
    Katti MV, Ranjekar PK, Grpta VD. Differential distribution of simple sequence repeats in eukaryotics genome sequences. Mol Biol Evol, 2001, 18: 1161-1167.
    Kawasaki T, Henmi K, Onstenk J, Hatakeyama S, Iwano M, Satoh H, Shimamoto K. The small GTP-binding protein Rac is a regulator of cell death in plants. Proc "Natl Acad Sci USA, 1999, 96:10922-10926.
    Keen N.T. Gene-for-gene complementarity in plant-pathogen interaction. Annu. Rev. Genet. 1990, 24: 447-463.
    Keon JPR, James CS, Court S, Baden-Daintree C, Bailey AM, Burden RS, Bard M, Hargreaves JA. Isolation of the ERG2 gene, encoding sterol △~8△→~7 isomerase, from the rice blast fungus Magnaporche grisea and its expression in the maize smut pathogen Ustilago maydis. Curr Genet, 1994,25:531-537.
    Kim HS, Desveaux D, Singer AU, Patel P, John S, Dangl JL. The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM 1 activation. Proc Natl Acad Sci USA, 2005, 102, 18: 6496-6501.
    Kim S, Ahn IP,.Lee YH. Analysis of genes expressed during rice-Magnaporthe grisea interactions. MPMI, 2002,14:1340-1346.
    Kim S, Ahn IP, Rho HS, Lee YH. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Molecular Microbiology, 2005, 57: 1224-1237.
    Kim WY, Kim CY, Cheong NE, Choi YO, Lee KO, Lee SH, Park JB, Nakano A, Bank JD, Cho MJ, Lee SY. Characterization of two fungal-elicitor-induced rice cDNAs encoding functional homologues of the rab-specific GDP-dissociation inhibitor. Planta, 1999, 210:143-149.
    Kiyosawa S. 1972. Genetics of blast resistance.pp.203-225. IRRI. Manila. Philippines. In Rice Breeding IRRI. Manila. Philippines: pp.203-225.
    Kiyosawa S. Genetic studies on host-pathogen relationship in the rice blast disease. Proc. Symp. Rice Diseases and their Control by Growing Resistant Varieties and Other Measures. Tokyo, In: 1967, pp 137-153.
    Kiyosawa S. The inheritance of resistance of Zenith type varieties of rice to the blast fungus. JPN J Breeding, 1967,17:99-107.
    Kurata NY, Nagamura K, Yamamoto Y, Harushima Y, Sue N, Wu J, Antonio BA, Shomura A, Shimizu T, Lin SY. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genetics, 1994, 8: 365-372.
    Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1, 174-181.
    Lau G, Hamer JE. Regulatory genes controlling MPG1 expression and pathogenicity in the rice blast fungus Magnaporthe grisea. Plant Cell, 1996, 8:771-781.
    Lau GW and Hamer JE. Acropetal: A genetic locus required for conidiophore architecture and pathogenicity in the rice blast fungus. Fungal Genetics and Biology, 1998, 24: 228-239.
    Lau GW, Chao CT, Ellingboe AH. Ineteraction of genes controlling avirulence/virulence of Magnaporthe grisea on rice cultivar Katy. Phytopathology, 1993, 83: 375-382.
    Lauge R, De Wit P J G M. Fungal avirulence genes: Structrue and possible functions. Fungal Genet Biol, 1998,24:285-297.
    Lee MW, Qi M, Yang Y. A novel jasmonic acid-inducible rice myb gene associates with fungal infection and host cell death. Mol Plant Microbe Interact, 2001, 14:527-535.
    Lee YH, Dean RA. Stage-specific gene expression during appressorium formation of Magnaporthe grisea. Experimental Mycology, 1993, 17: 215-222.
    Leung H, Borromeo ES, Bernardo MA, Notteghem JL. Genetic analysis of virulence in the rice blast fungus Magnaprothe grisea. Phytopatholgoy, 1988,78: 1227-1233.
    Li YC, Korol A B, Fahima T, Beiles A, Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Molecular Ecology, 2002, 11, 2453-2465.
    Li Z, Pinson SRM, Marchetti MA, Stansel JW, Park WD. Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani). Theor Appl Genet. 1995, 91: 382-388.
    Liu B, Zhang S, Zhu X, Yang Q, Wu S, Mei M, Mauleon R, Leach J, Mew T, Leung H. Candidate defense genes as predictors of quantitative blast resistance in rice. MPMI, 2004, 17:1146-1152.
    Liu G, Lu G, Zeng L, Wang GL. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Mol Genet Genomics, 2002, 267: 472-480.
    Liu QX, Wang L, Chen S, Lin F, Pan QH. Genetic and physical mapping of Pi36(t), a novel rice blast resistance gene located on rice chromosome 8. Mol Genet Genomics, 2005, 274: 394-401.
    Liu S, Dean RA. G protein a subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. MPMI, 1997, 10: 1075-1086.
    Liu X, Yang Q, Lin F, Hua L, Wang C, Wang L, Pan Q. Identificaiton and fine mapping of Pi39(t), a major gene conferring the broad-spectrum resistance to Magnaporthe oryzae. Mol Genet Genomics, 2007, 278: 403-410.
    Lu G, Jantasuriyarat C, Zhou B, Wang GL. Isolation and characterization of novel defense response genes involved in compatible and incompatible interactions between rice and Magnaporthe grisea. Theor Appl Genet, 2004, 108: 525-534.
    Luo CX, Yin LF, Koyanagi S, Farman ML, Kusaba M, Yaegashi H. Genetic mapping and chromosomal assignment of Magnaporthe oryzae avirulence gene AvrPik, AvrPiz and AvrPiz-t controlling cultivar specificity on rice. Phytopathology, 2005, 95: 640-647.
    Ma JH, Wang L, Feng S,J, Lin F, Xiao Y, Pan QH. Identification and fine mapping of AvrPi15, a novel avirulence gene of Magnaporthe grisea. Theor. Appl. Genet. 2006, 113, 875-883.
    Mackey D, Belkhadir Y, Alonso JM, Ec'ke r JR, Dang J. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell, 2003, 112: 379-389.
    Mackey D, Holt BF, Wiig A, Dangl JL. RIN4 interacts with Pseudomonas syringae type III efector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell, 2002, 108:743-754.
    Mackill DJ and Bonman JM. Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology, 1992, 82: 746-749.
    Martin SL, Blackmon BP, Rajagopalan R, Houfek TD, Sceeles RG, Denn SO, Mitchell TK, Brown DE, Wing RA, Dean RA. MagnaportheDB: a federated solution for integrating physical and genetic map data with BAC end derived sequences for the rice blast fungus Magnaporthe grisea. Nucleic Acids Research, 2002, 30: 121-124.
    Mauch F, Rcimmann C, Freydle E, Schaffrath U, Dudler R. Characterization of the rice pathogen-related protein Rirla and regulalion of the corresponding gene. Plant Mol Biol, 1998,38:577-586.
    McCafferty HRK, Talbot NJ. Identification of three ubiquitin genes of the rice blast fungus Magnaporthe grisea, one of which is highly expressed during intial stages of plant colonisation. Current Genetics, 1998, 33: 352-361.
    McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genetics Newsletters, 1997, 14: 11.
    McCouch SR, Kocher G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD. Molecular mapping on rice chromosomes. Theor Appl Genet, 1988, 80: 488-496.
    McCouch SR, Teytelman L, Xu YB, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li ZK, Xing YZ, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L). DNA Research, 2002, 9: 199-207.
    McDowell JM, Cuzick A, Can C, Beynom J, Dangl JL, Holub EB. Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation. Plant Journal, 2000, 22: 523-529.
    Midoh N, Iwata M. Cloning and characterization of a Probenazole-inducibel gene for an intracellular pathogenesis-related protein in rice. Plant Cell Physiol. 1996, 37: 9-18.
    Mitchell TK, Dean RA. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast fungus Magnaporthe grisea. Plant Cell, 1995,7: 1869-1879.
    Miyamoto Masaru, Ando I, Rybka K, Kodama O, Kawasaki S. High resolution mapping of the Indica-derived rice blast resistance gene. I. Pi-b. MPMI, 1996, 9: 6-13.
    Motoyama T, Imanishi K, Yamaguchi I. cDNA cloning expression, and mutagenesis of scytalone dehydratase needed for pathogenicity of the rice blast fungus, Pyricularia oryzae. Bioscience, Biotechnology, and Biochemistry, 1998, 62: 564-566.
    Nagakubo TM, Taga M, Tsuda M, Ueyama. A. Genetic linkage relationships in Pyricularia oryzae. Mere. Coll. Agric. Kyoto. Univ. 1983, 122: 75-83. (Japanese)
    Naqvi NI, Chattoo BB, Molecular genetic analysis and sequence-characterized amplified region-assisted selection of blast resistance in rice. In: IRRI (ed). Rice genetics III. IRRI, Manila, The Philippines, In: 1996, pp 570-576.
    Nelson AJ, Doemer PW, Zhu Q, Lamb CJ. Isolation of a monocot 3-hydroxy-3-methylglutaryl coenzyme A reductase gene that is elicitor-inducible. Plant Mol Biol, 1994, 25: 401-412.
    Nguyen TTT, Koizumi S, La TN, Zenbayashi KS, Ashizawa T, Yasuda N, Imazaki I, Miyasaka A. Pi35(t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188, Theor Appl Genet, 2006, 113: 697-704.
    Nitta N, Farman ML, Leong SA. Genome organization of Magnaporthe grisea: integration of genetic maps, clustering of transposable elements and identification of genome duplications and rearrangements. Theor. Appl. Genet. 1997, 95: 20-32.
    Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K. Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA. 2001, 98:759-764.
    Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell, 2000,12: 2019-2032.
    Ou SH. Pathogen variability and host resistance in rice blast disease. Annu Rev Phytopathol, 1980, 18: 167-187. Ou SH. Rice Disease, Commonwealth Mycological Institiute, Kew, UK, 1985, pp. 109-121.
    Pan Q, Wang L, Ikehashi H, Tanisaka T. Identification of a new blast resistance gene in the indica rice cultivar Kasalath using Japanese differential cultivars and isozyme markers. Phytopathology, 1996, 86: 1071-1075.
    Pan QH, Hu ZD, Takathoshi T, Wang L. Fing mapping of the blast resistance gene Pi15, linked to Pii, on rice chromosome 9. Acta Botanica Sinica, 2003, 45(7): 871-877.
    Pan QH, Laungsarrd J, Sriprakon S, Beeraparaditsin T, Pimpisitithavorn S, Roumen E. in Proceedings of the Internationa] Programme on Rice Biotechnolgy, Phuket, Thailand, 1999.
    Pan QH, Wang L, Ikehashi H, Yamagata H, Tanisaka T. Identification of two new genes conferring resistance to rice blast in the Chinese native cultivar 'Maowangu'. Plant Breeding, 1998b, 117:27-31.
    Pan QH, Wang L, Tanisaka T, Ikehashi H. Allelism of rice blast resistance genes in two Chinese native cultivars and identification of two new resistance genes. Plant Pathol, 1998a, 47: 165-170.
    Park CH, Kim S, Park JY, Ahn IP, Jwa NS, 1m KH, Lee YH. Molecular characterization of a pathogenesis-related protein 8 gene encoding a class III chitinase in rice. Mol Cells, 2004,17: 144-150.
    Park G, Xue C, Zheng L, Lam S, Xu JR. MST12 regulates infection growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. MPMI, 2002, 15:183-192.
    Park SY, Lee EJ, Lee CW. Molecular cloning and sequence analysis of a putative ras gene of the phytopathogenic fungus Botryotiniafuckeliana, Mol Cell, 1997, 7: 300-304.
    Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphysiums. Nature, 1988, 335: 721-726.
    Peng YL, Shirano Y, Ohm H, Hibino T, Tanaka K, Shibata D. A novel lipoxygenase from rice, Primary structure and specific expression upon incompatible infection with rice blast fungus. J Binl Chem, 1994, 269: 3755-3761.
    Ramalingam J, Vera Cruz CM, Kukreja K, Chittoor JM, Wu JL, Lee SW, Baraoidan M, George ML, Cohen MB, Hulbert SH, Leach JE, Leung H. Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. MPMI, 2003, 16:14-24.
    Rausher MD. Co-evolution and plant resistance to natural enemies. Nature, 2001, 411: 857-864.
    References S, Kachroo P, Leong S, Chattoo B. Mg-SINE: a short interspersed nuclear element from the rice blast fungus, Magnaporthe grisea. Proc Natl Acad Sci USA, 1995, 92: 11125-11129.
    Romao J, Hamer JE. Genetic organization of a repeated DNA sequence family in the rice blast fungus. Proc. Natl. Acad. Sci. USA., 1992, 88: 5316-5320.
    Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steriner H-Y, Hunt MD. Systemic acquired resistance. Plant Cell, 1996, 8:1809-1819.
    Rybka K, Miyamoto M, Ando I, Saito A, Kawasaki S. High resolution mapping of the indica-derived rice blast resistance gene II. Pi-ta2 and Pi-ta and a consideration of their origin. MPMI, 1997, 10:517-524.
    Saito AM, Yano N, Kishimoto M. Linkage map of RFLP loci in rice. J pn J Breeding, 1991, 41: 665-670.
    Sallaud C, Lorieux M, Roumen E, Tharreau D, Berruyer R, Svestasrani P, Garsmeur O, Ghesquiere A, Notteghem JL. Identification of five new blast resistance genes in the highly blast-resistant rice variegy IR64 using a QTL mapping strategy. Theor Appl Genet, 2003, 106: 794-803.
    Salmeron JM, Oldroyd GE, Rommens CM, Scofield SR, Kim HS, Lavelle DT, Dahlbeck D, Staskawicz BJ. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell, 1996, 86: 123-133.
    Sasaki T. The rice genome project in Japan. Proc Natl Acad Sci USA. 1998, 95, 2027-2028.
    Sawata KZ, Ashizawa T, Koizumi S. Pi34-AVRPi34: a new gene-for-gene interaction for partial resistance in rice to blast caused by Magnaporthe grisea. Journal of General Plant Pathology, 2005,71:395-401.
    Sawata KZ, Fukuoka S, Katagiri S, Fujisawa M, Matsumoto T, Ashizawa T, Koizumi S. Genetic and physical mapping of the partial resistance gene, Pi34, to blast in rice. Phytopathology, 2007, 97:598-602.
    Schuler, G.D., 1997. Sequence mapping by electronic PCR, Genome Res. 7, 541-550.
    Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, Staskawicz BJ. Molecular Basis of Gene-for-Gene Specificity in Bacterial Speck Disease of Tomato. Science, 1996, 274:2063-2065.
    Sharma TR, Madhav MS, Singh BK, Shanker P, Jana TK, Dalai V, Pandit A, Singh A, Gaikwad K, Upreti HC, Singh NK. High-resolution mapping, cloning and molecular characterization of the Pi-k~h gene of rice, which confers resistance to Magnaporthe grisea, Mol Genet Genomics, 2005, 274:569-578.
    Shi Z, Leung H. Genetic analysis of sporulation in Magnaporthe grisea by chemical and insertional mutagenesis. MPMI, 1995, 8: 949-959.
    Shinoda H, Toriyama K, Yunoki T, Ezuka A, and Sakurai Y. Studies on the varietal resistance of rice to blast. 6L Linkage relationship of blast resistance genes. Bulletin of Chugoku National Agric Expt Sta Series, 1971, 20:1-25.
    Shull V and Hamer JE. Genetic defferentiation in the rice blast fungus revealed by the distribution of the Fosbury retrotransposon. Fungal Genetic and Biology, 1996, 20: 59-69.
    Silue D, Notteghem JL, Tharreau D. Evidence of a gene-for-gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem. Phytopathology, 1992, 82: 577-580.
    Silue D, Tharreau D, Talbot NJ, Clergeot PH, Notteghem JL, Lebrum MH. Identification and characterization of apfl- in a non-pathogenic mutant of the rice blast fungus Magnaporthe grisea which is unable to differentiate appressoria. Physiological and Molecular Plant Pathology, 1998,53:239-251.
    Sirithunya P, Tragoonrung S, Vanavichit A, Pa-in N, Vongsaprom C, Toojinda T. Quantitative trait loci associated with leaf and neck blast resistance in recombinant inbred line population of rice (Oryza Sativa), DNA Research, 2002, 9: 79-88.
    Skinner DZ, Budde AD, Farman ML, Smith JR, Leung H, Leong SA. Genome organization of Magnaporthe grisea: genetic map, electrophoretic karyotype, and occurrence of repeated DNAs. Theor. Appl. Genet. 1993, 87: 545-557.
    Skinner DZ, Leung H, Leong SA. Genetic map of the blast fungus Magnaporthe grisea. In: O'Brien SJ (ed) Genetic maps, 5th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1990, pp 3.82-3.83.
    Smith JR, Leong SA. Mapping of a Magnaporthe grisea locus affecting rice (Oryza sativa) cultivar specificity. Theor Appl Genet, 1994, 88: 901-908.
    Sone T, Suto M, Tomita F. Host species-specific repetitive DNA sequence in the genome of Magnaporthe grisea, the rice blast fungus. Biosic Biotechnol Biochem, 1993, 57: 1228-1230.
    Song D, Chen J, Song F, Zheng Z. A novel rice MAPK gene, OsBIMK2, is involved in disease-resistance responses. Plant Biology, 2006, 8: 587-596.
    Song D, Li G, Song F, Zheng Z. Molecular characterization and expression analysis of OsBISERK1, a gene encoding a leucine-rich repeat receptor-like kinase, during disease resistance responses in rice. Molecular Biology Reports, 2008, Online.
    Song F, Goodman RM. OsBIMKl, a rice MAP kinase gene involved in disease resistance responses. Planta, 2002, 215:997-1005.
    Sweigard JA, Carroll AM, Kang S, Farrall L, Chumley FG, Valent B. Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell, 1995,7:1221-1233.
    Sweigard JA, Chumley FG, Vatent B. Cloning and analysis of CUT1, a cutinase gene from Magnaporthe gresia. Mol Gen Genet, 1992a, 232: 174-182.
    Sweigard JA, Valent B, Orbach MJ, Walter AM, Rafalski A, Chumley FG. Genetic map of the rice blast fungus Magnaporthe grisea. In: O'Brien SJ(ed.), Genetic Maps 1993, New-York: Cold Spring Harbor Press, pp.3.112-3.117.
    Tabien RE, Li Z, Paterson AH, Marchetti MA, Stansel JW, Pinson SRW. Mapping QTLs for field resistance to the rice blast pathogen and evaluating their individual and combined utility in improved varieties. Theor Appl Genet, 2002, 105: 313-324.
    Talbot NJ, Ebbote DJ, Hamer JE. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. The Plant Cell, 1993, 5: 1575-1590.
    Talbot NJ. Forcible entry. Scinece, 1999, 285: 1860-1861.
    Talukder ZI, Tharreau D, Price AH. Quantitative trait loci analysis suggests that partial resistance to rice blast is mostly determined by race-specific interactions. 2004, New Pathologist, 162: 197-209.
    Tang D, Wu W, Li W, Lu H, Worland AJ. Mapping of QTLs conferring resistance to bacterial leaf streak in rice. Theor Appl Genet, 2000,101: 286-291.
    Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science, 1996, 274:2060-2063.
    Tanksley SD, Ahn N, Causse M. RFLP mapping of the rice genome, In: Rice Genetics II, Los Banos, Laguna. IRRI, 1991, 435-442.
    Temnykh S, DeClerck G, Lukashova A , Lipovich L, Cartinhour S, McCouch S. Coutational and experimental analysis of microsatellites in rice (Oryza sativa L ) frequency length variation transposon associations and genetic marker potential. Genome Res, 2001,11: 1441-1452.
    Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR. Mapping and genome organization of microsatellite sequence in rice (Oryza sativa L ). Theor Appl Genet, 2000 ,100: 697-712.
    Thomas L. Illuminating the molecular basis of gene-for-gene resistance: Arabidopsis thaliana RRS1-R and its interaction with Raistonia solanacearum popP2. Trends in Plant Science, 2004,9:1-4.
    Thompson JN, Burdon JJ. Gene-for-gene coevolution between plants and parasites. Nature, 1992, 360: 121-125.
    Thompson JN. The coevolutionary process. 1994, University of Chicago Press, Chicago.
    Thon MR, Pan H, Diener S, Papalas J, Taro A, Mitchell TK, Dean RA. The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae. Genome Biology, 2006, 7, R16 (dio: 10.1186/gb-2006-7-r16)
    Tinker NA and Mater DE. Methods for QTL analysis with progeny replicated in multiple environments, 1995. J.QTL: http://probe.nalusda.gov.8000/otherdocs/jqtl/
    Tinker NA and Mater DE. MQTL: Software for simplified composite interval mapping of QTL in multiple environments, J.QTL: http://probe.nalusda.gov.8000/otherdocs/jqtl/
    Tosa Y, Osue J, Eto Y, Oh HS, Nakayashiki H, Mayama S, Leong SA. Evolution of an avirulence gene, AVR1-CO39, concomitant with the evolution and differentiation of Magnaporthe oryzae. MPMI,2005, 18:1148-1160.
    Urban M, Bhargava T, Hamer JE. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J, 1999, 18:512-521.
    Valent B, Chumley FG. Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annu Rev Phytopathol, 1991a, 29: 443-467
    Valent B, Crawford MS, Weaver CG, Chumley FG. Genetic studies of fertility and pathogenicity in Magnaporthe grisea (Pyricularia oryzae). Iowa State J. Res. 1986, 60: 569-594.
    Valent B, Farrall L, Chumley FG. Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcross. Genetics, 1991b, 127: 87-101.
    Valent B. Rice blast as a model system for plant pathology. Phytopathology, 1990, 80: 33-36.
    Van der Hoom RAL, De Wit PJGM, Joosten MHA J. Balancing selection favors guarding resistance protein. Trends Plant Science, 2002,7: 67-71.
    Van Ooijen JW, Maliepaard C. Map QTL (tm) version 3.0: software for the calculation of QTL position on genetic maps. Wageningen, The Netherlands: CRPO-DL), 1996.
    Viaud MC, Balhadere PV, Talbot NJ. A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell, 2002, 14: 917-930.
    Vidal-Cros A, Viviani F, Labesse G, Boccara M, Gaudry M. Polyhydroxynaphthalene reductase involved in melanin biosynthesis in Magnaporthe grisea. Purification, cDNA cloing and sequencing. Eur J Biochem, 1994, 219: 985-992.
    Wang AM, Mackill DJ, Bonman JM. Inheritance of partial resistance to blast in indica rice cultivars. Crop Science, 1989, 29: 848-853.
    Wang GL, Mackill DJ, Bonman JM, McCouch SR, Champoux MC, Nelson RJ. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics, 1994, 136: 1421-1434.
    Wang Z, Taramino G, Yang D, Liu G, Tinger SV, Miao GH, Wang GL. Rice ESTs with disease-resistance gene- or defense-response gene-like sequences mapped to regions containing major resistance genes or QTLs. Molecular Genetics and Genomics, 2001, 265: 302-310.
    Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. The Plant Journal, 1999, 19: 55-64.
    Warren RF, Merritt PM, Holub E, Innes RW. Identification of three putative signal transduction genes involved in R gene-specified disease resistance in Arabidopsis. Genetics, 1999, 152: 401-412.
    Wu JL, Fan YY, Li DB, Zheng KL, Leung H, Zhuang JY. Genetic control of rice blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates. Theor Appl Genet, 2005, 111:50-56.
    Wu KS, Martinez C, Lentini Z, Tohme J, Chumley FG, Scolnik PA, Valent B. Cloning a blast resistance gene by chromosome walking. In: Khush GS (ed) Rice Genet III. Proc 3~(rd) Int Rice Genet Symp, Oct 16-20 1995, Manila, The Philippines, 1996, pp 669-674.
    Wu SC, Kauffmann S, Darvill AG, Albersheim P. Purification, cloning and characterization of tow xylanases from Magnaporthe grisea, the rice blast fungus. MPMI, 1995, 8:506-514.
    Xiong L, Lee MW, Qi M, Yang Y. Identification of defense-related rice genes by suppression subtractive hybridization and differential screening. MPMI, 2001, 14: 685-692.
    Xiong L, Lee MW, Qi M, Yang Y. Identification of defense-related rice genes by suppression subtractive hybridization and differential screening. MPMI, 2001,14: 685-692.
    Xiong L, Yang Y. Disease Resistance and Abiotic Stress Tolerance in Rice Are Inversely Modulated by an Abscisic Acid-Inducible Mitogen-Activated Protein Kinase. Plant Cell, 2003, 15:745-759.
    Xu JR, Hamer JE. MAP kinase and cAMP singaling regulate infection structure formation and pathogenic growth in the blast fungus Magnaporthe grisea. Gene Dev, 1996,10:2696-2706.
    Xu JR, Staiger CJ, Hamer JE. Inactivation of the mitogen-actibated protein kinase MPSl from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc Natl Acod Sci USA, 1998, 95:12713-12718.
    Xu JR, Xue CY. Time for a blast: genomics of Magnaporthe grisea. Mol Plant Pathol. 2002, 3:173-176.
    Xue C, Park G, CHoi W, Zheng L, Dean RA, Xu JR. Two novel fungal virulence genes sepcifically expressed in appressoria of the rice blast fungus. Plant Cell, 2002, 14: 2107-2119.
    Yang J, Wu W, Zhu J. Mapping interspecific genetic architecture in host-parasite interaction system, Genetics, 2008, in press.
    Yasuda N, Fujuta Y, Noguchi M. Identification of avirulence genes in the rice blast fungus corresponding to three resistance genes in Japanese differentials. J Gen Plant Pathol, 2004, 70: 202-206.
    Yasuda N, Noguchi MT, Fujita Y. Identification of an avirulence gene in the fungus Magnaporthe grisea corresponding to a resistance gene at the Pik locus. Phytopathology, 2005, 95: 768-772.
    Yi G, Lee SK, Hong YK, Cho YC, Nam MH, Kim SC, Han SS, Wang GL, Hahn TR, Ronald PC, Jeon JS. Use of Pi5(t) markers in marker-assisted selection to screen for cultivars with resistance to Magnaporthe grisea. Theor Appl Genet, 2004,109: 978-985.
    Yu J, Hu SN, Wang J, et al. A draft sequence of the rice genome {Oryza sativa ssp. Indica). Science, 2002, 296: 79-92.
    Yu ZH, Mackill DJ, Bonman JM, McCouch SR, Guiderdoni E, Notteghem JL, Tanksley SD. Molecular mapping of genes for resistance to rice blast (Pyricularia grisea Sacc). Theor Appl Genet, 1996,93: 859-863.
    Yu ZH, Mackill DJ, Bonman JM, Tanksley SD. Tagging genes for blast resistance in rice via linkage to RFLP markers. Theor Appl Genet, 1991, 81:471-476.
    Zenbayashi K, Ashizawa T, Tani T, Koizumi S. Mapping of QTL (quantitative trait locus) conferring partial resistance to leaf blast in rice cultivar Chubu 32. Theor Appl Genet, 2002, 104:547-552.
    Zeng LR, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm BH, Leung H, Wang GL. Spotted leafl1, a Negative Regulator of Plant Cell Death and Defense, Encodes a U Box/Armadillo Repeat Protein Endowed with E3 Ubiquitin Ligase Activity. Plant Cell, 2004, 16:2795-2808.
    Zheng K L, et al. In: Proceedings of an Interantional Symposium on the Use of Induced Mutations and Molecular Techniques for Crop Improvement. Vienna. 19-23, June, 1995, 253- 261.
    Zheng KL, Zhuang JY, Lu J, Qian HR, Lin HX. Identification of DNA markers tightly linked to blast resistance genes in rice. In Khush, GS. ed. Rice genetics III, Manila, Philippines, IRRI. 1996, pp 565-569-132.
    Zhou JH, Wang JL, Xu JC, Lei CL, Ling ZZ. Identification and mapping of a rice blast resistance gene Pi-g(t) in the cultivar Guangchangzhan. Plant Pathology, 2004, 53: 191-196.
    Zhu H, Whitehead DS, Lee YH, Dean RA. Genetic analysis of developmental mutants and rapid chromosome mapping of APP1, a gene requried for appressorium fomation in Magnaporthe grisea. MPMI, 1996, 9: 767-774.
    Zhu Q,Dabi T,Bceche A,Yamamoto R,Lawton MA,Lamb C.Cloning and properties of a rice gene encoding phenylalanine ammonia-lyase.Plant Mol Biol,1995,29:535-550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700