食管鳞癌候选扩增癌基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食管癌的死亡率在我国恶性肿瘤中居第四位,鳞状细胞癌是我国食管癌的主要病理类型,五年生存率低于10%。为鉴定与食管癌关系密切的癌基因,本研究从基因扩增的角度出发,在实验室前期进行的食管癌细胞遗传学和分子遗传学研究以及文献报道的基础上,从扩增发生频率较高的染色体区段1q、3q、8q和11q中寻找与食管癌发生发展有关的扩增基因。
     本研究首先挑选30个可能与肿瘤相关的基因,通过RT-PCR方法检测其在16对食管癌及相应的癌旁组织的表达,结果显示TXNRD3、RAB7、AMOTL2、CCNL1、EIF5A2、p63、MUC4、TMEM16A和CTTN基因在食管癌组织过表达的频率大于30%。利用这9个基因内部的UniSTS,进一步通过半定量PCR方法检测其在另外20对食管癌及配对癌旁组织中的基因组DNA含量,发现TXNRD3、RAB7、AMOTL2、CCNL1、MUC4、TMEM16A和CTTN基因在食管癌组织中扩增频率不低于20%。荧光原位杂交也证实CCNL1和CTTN基因在食管癌组织存在扩增。
     定位于11q13上的cortactin(CTTN,也称为EMS1)基因编码的蛋白是促进肌动蛋白核化和支链形成的重要分子,目前对其在具体肿瘤中作用的研究还相对较少,为此我们对该基因在食管癌中的作用进行了深入的研究。食管癌组织芯片的免疫组化分析发现CTTN在食管癌中过表达率为68.8%(86/125),过表达与淋巴结转移和肿瘤分期相关。11q13上另一重要癌基因CCND1在食管癌中过表达率为47.0%(55/117),其表达虽与CTTN表达显著相关,但与淋巴结转移等临床参数无明显相关性。说明CTTN基因是11q13上与食管癌淋巴结转移和肿瘤分期相关的独立因素。
     在食管癌细胞系EC9706的体外实验中,CTTN RNAi不影响细胞的增殖、平板集落形成、细胞周期进展和对Matrigel的粘附能力,但可抑制细胞的划痕愈合、运动穿膜、Matrigel侵袭、软琼脂集落形成和抗失巢凋亡能力。体内实验显示,CTTN表达降低可抑制裸鼠皮下瘤生长和实验性肺转移,延长实验性转移裸鼠的生存期。
     针对CTTN影响EC9706细胞抗失巢凋亡能力这一现象,我们进一步探讨其分子机制。发现P13K和MEK抑制剂均可增加EC9706细胞的失巢凋亡,但CTTN只影响Akt的活化,对Erk和EGFR激活无影响,提示CTTN的抗失巢凋亡作用与P13K-Akt通路有关。我们在KYSE410食管癌细胞中也验证了CTTN的高表达有助于保护细胞抵抗失巢凋亡,并可提高Akt的活化水平。进一步在EC9706和KYSE410细胞中,Co-IP实验证实CTTN和P13K蛋白分子可被共沉淀,提示CTTN可能通过与P13K相互作用,活化P13K-Akt通路而提高食管癌细胞的抗失巢凋亡的能力。
     以上结果表明,从DNA扩增片段中寻找在肿瘤过表达的基因是鉴定与特定肿瘤相关癌基因的有效方法。染色体11q13上的CTTN基因,通过发生扩增和过表达,提高食管癌细胞的运动和抗失巢凋亡能力,是促进食管癌侵袭转移的重要癌基因。
Esophageal cancer is the fourth most common malignancy in China and esophageal squamous cell carcinoma (ESCC) is the most prevalent type. Multiple genetic changes have been found in ESCC, but little is known about major oncogenes and tumor suppressor genes involved in this disease. In pursuit of candidate oncogenes in ESCC, we focused on overexpressed genes within previously identified chromosome regions with frequent amplification in ESCC in the present study.
     30 cancer-related genes on chromosome 1q, 3q, 8q and 11q were examined in 16 primary esophageal tumors and matched adjacent histological normal tissues by RT-PCR. TXNRD3, RAB7, AMOTL2, CCNL1, EIF5A2, p63, MUC4, TMEM16A and CTTN presented mRNA overexpression in over 30% tumors. The genomic DNA copy number of these nine genes was then evaluated by semi-quantitative PCR of intragenic UniSTS in 20 cases of tumors and matched normal tissues. Amplification of TXNRD3, RAB7, AMOTL2, CCNL1, MUC4, TMEM16A and CTTN was found in more than 20% of cancerous tissues. CCNL1 and CTTN amplifications were confirmed in ESCC by fluorescence in situ hybridization (FISH).
     The cortactin gene (CTTN, also as EMS1), located at 11q13, plays a pivotal role in coupling membrane dynamics to cortical actin assembly. In the present study, immunohistochemical analysis was performed on tissue microarrays and CTTN overexpression was found in 68.8% (86/125) tumors. Statistical analysis indicated that there were significant correlations between CTTN expression and lymph node metastasis and tumor stage in ESCC. CCND1 is another oncogene on 11q13 and its overexpression was detected in 47.0% (55/117) ESCC. Although a positive correlation between CCND1 and CTTN expression was observed, none of the tumor clinicopathologic features was associated with CCND1 overexpression. These results indicate that CTTN is an independent marker at 11q13 for ESCC lymphoid metastasis and tumor stage.
     Functional analysis by siRNA-mediated silencing revealed that CTTN did not influence cell proliferation, cell cycle progression and adhesion to Matrigel in esophageal cancer cell line EC9706. Whereas CTTN RNAi decreased EC9706 capabilities in wound healing, haptotactic migration, Matrigel chemoinvasion colony formation in soft agar and anoikis resistance. In vivo assay showed that inhibition of CTTN expression also decreased tumor growth and lung metastasis of EC9706 cells.
     To explore the molecular mechanism by which CTTN protected cells from anoikis, we examined the potential effect of CTTN on the activation of several known pathway associated with anoikis. Both PI3K and MEK inhibitors abrogated the survival protection of CTTN in EC9706, while only phosphorylated Akt was down-regulated in CTTN RNAi cells. No difference in Erk activation or EGFR expression was observed after CTTN suppression, suggesting that PI3K-Akt, not MEK-Erk or EGFR signaling, contributed to CTTN-related survival in detached EC9706. CTTN also protected KYSE410 esophageal cancer cells from anoikis when overexpressed. Akt activation was observed in these cells after CTTN transfection as well. In EC9706 and KYSE410 cells, CTTN and PI3K could be co-immunoprecipitated by either of the antibodies. These data imply that CTTN may interact with PI3K and activate it to serve a protective function in anoikis resistance.
     In conclusion, analysis of amplified genes may be helpful to the identification of oncogenes associated with malignant tumors. The CTTN gene in the 11q13 amplicon, through DNA copy number increase and protein overexpression, plays an oncogenic role in ESCC metastasis by promoting cell migration and anoikis resistance.
引文
1. Kuwano H, Kato H, Miyazaki T, Fukuchi M, Masuda N, Nakajima M, Fukai Y, Sohda M, Kimura H, Faried A. Genetic alterations in esophageal cancer. Surgery today. 2005, 35(1): 7-18.
    2. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol. 2001, 2 (9): 533-543.
    3. He YT, Hou J, Qiao CY, Chen ZF, Song GH, Li SS, Meng FS, Jin HX, Chen C. An analysis of esophageal cancer incidence in Cixian county from 1974 to 1996. World J Gastroenterol. 2003,9 (2): 209-213.
    4. Garidou A, Tzonou A, Lipworth L, Signorello LB, Kalapothaki V, Trichopoulos D. Life-style factors and medical conditions in relation to esophageal cancer by histologic type in a low-risk population. International journal of cancer. 1996, 68 (3): 295-299.
    5. Cheng KK, Duffy SW, Day NE, Lam TH. Oesophageal cancer in never-smokers and never-drinkers. International journal of cancer. 1995,60 (6): 820-822.
    6. Hu N, Dawsey SM, Wu M, Bonney GE, He LJ, Han XY, Fu M, Taylor PR. Familial aggregation of oesophageal cancer in Yangcheng County, Shanxi Province, China. International journal of epidemiology. 1992,21 (5): 877-882.
    7. Gray JW, Collins C. Genome changes and gene expression in human solid tumors. Carcinogenesis. 2000,21 (3): 443-452.
    8. Dougall WC, Qian X, Peterson NC, Miller MJ, Samanta A, Greene MI. The neu-oncogene: signal transduction pathways, transformation mechanisms and evolving therapies. Oncogene. 1994, 9 (8): 2109-2123.
    9. Momand J, Jung D, Wilczynski S, Niland J. The MDM2 gene amplification database. Nucleic Acids Res. 1998,26 (15): 3453-3459.
    10. Wintersberger E. DNA amplification: new insights into its mechanism. Chromosoma. 1994, 103 (2): 73-81.
    11. Imoto I, Yuki Y, Sonoda I, Ito T, Shimada Y, Imamura M, Inazawa J. Identification of ZASC1 encoding a Kruppel-like zinc finger protein as a novel target for 3q26 amplification in esophageal squamous cell carcinomas. Cancer Res. 2003,63 (18): 5691-5696.
    12. Imoto I, Yang ZQ, Pimkhaokham A, Tsuda H, Shimada Y, Imamura M, Ohki M, Inazawa J. Identification of cIAP1 as a candidate target gene within an amplicon at 11q22 in esophageal squamous cell carcinomas. Cancer Res. 2001, 61 (18): 6629-6634.
    13. Yang ZQ, Imoto I, Fukuda Y, Pimkhaokham A, Shimada Y, Imamura M, Sugano S, Nakamura Y, Inazawa J. Identification of a novel gene, GASC1, within an amplicon at 9p23-24 frequently detected in esophageal cancer cell lines. Cancer Res. 2000, 60 (17): 4735-4739.
    14. Kitagawa Y, Ueda M, Ando N, Ozawa S, Shimizu N, Kitajima M. Further evidence for prognostic significance of epidermal growth factor receptor gene amplification in patients with esophageal squamous cell carcinoma. Clin Cancer Res. 1996,2 (5): 909-914.
    15. Shiga C, Shiga K, Hirayama K, Katayama M, Nishihira T, Mori S. Prognostic significance of hst-1 gene amplification in primary esophageal carcinomas and its relationship to other prognostic factors. Anticancer Res. 1994, 14 (2B): 651-656.
    16. Jiang W, Kahn SM, Tomita N, Zhang YJ, Lu SH, Weinstein IB. Amplification and expression of the human cyclin D gene in esophageal cancer. Cancer Res. 1992, 52 (10): 2980-2983.
    17. Kitagawa Y, Ueda M, Ando N, Shinozawa Y, Shimizu N, Abe O. Significance of int-2/hst-l coamplification as a prognostic factor in patients with esophageal squamous carcinoma. Cancer Res. 1991,51 (5): 1504-1508.
    18. Yen CC, Chen YJ, Lu KH, Hsia JY, Chen JT, Hu CP, Chen PM, Liu JH, Chiou TJ, Wang WS et al. Genotypic analysis of esophageal squamous cell carcinoma by molecular cytogenetics and real-time quantitative polymerase chain reaction. Int J Oncol. 2003,23 (4): 871-881.
    19. Han Y, Wei F, Xu X, Cai Y, Chen B, Wang J, Xia S, Hu H, Huang X, Han Y et al. [Establishment and comparative genomic hybridization analysis of human esophageal carcinomas cell line EC9706]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2002, 19 (6): 455-457.
    20. Buday L, Downward J. Roles of cortactin in tumor pathogenesis. Biochim Biophys Acta. 2007,
    21. Wei F, Ni J, Wu SS, Liu H, Xu X, Han YL, Cai Y, Zhang JW, Chen XJ, Pang H et al. Cytogenetic studies of esophageal squamous cell carcinomas in the northern Chinese population by comparative genomic hybridization. Cancer Genet Cytogenet. 2002,138 (1): 38-43.
    22. Sunpaweravong P, Sunpaweravong S, Puttawibul P, Mitarnun W, Zeng C, Baron AE, Franklin W, Said S, Varella-Garcia M. Epidermal growth factor receptor and cyclin D1 are independently amplified and overexpressed in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 2005, 131 (2): 111-119.
    23. Jin Y, Jin C, Law S, Chu KM, Zhang H, Strombeck B, Yuen AP, Kwong YL. Cytogenetic and fluorescence in situ hybridization characterization of clonal chromosomal aberrations and CCND1 amplification in esophageal carcinomas. Cancer Genet Cytogenet. 2004, 148 (1): 21-28.
    24. Ishizuka T, Tanabe C, Sakamoto H, Aoyagi K, Maekawa M, Matsukura N, Tokunaga A, Tajiri T, Yoshida T, Terada M et al. Gene amplification profiling of esophageal squamous cell carcinomas by DNA array CGH. Biochem Biophys Res Commun. 2002,296 (1): 152-155.
    25. Chanin TD, Merrick DT, Franklin WA, Hirsch FR. Recent developments in biomarkers for the early detection of lung cancer: perspectives based on publications 2003 to present. Current opinion in pulmonary medicine. 2004, 10 (4): 242-247.
    26. Karan D, Lin MF, Johansson SL, Batra SK. Current status of the molecular genetics of human prostatic adenocarcinomas. International journal of cancer. 2003,103 (3): 285-293.
    27. Albertson DG. Profiling breast cancer by array CGH. Breast cancer research and treatment. 2003, 78 (3): 289-298.
    28. Urig S, Becker K. On the potential of thioredoxin reductase inhibitors for cancer therapy. Seminars in cancer biology. 2006, 16 (6): 452-465.
    29. Choi JH, Kim TN, Kim S, Baek SH, Kim JH, Lee SR, Kim JR. Overexpression of mitochondrial thioredoxin reductase and peroxiredoxin III in hepatocellular carcinomas. Anticancer research. 2002,22 (6A): 3331-3335.
    30. Cassidy PB, Edes K, Nelson CC, Parsawar K, Fitzpatrick FA, Moos PJ. Thioredoxin reductase is required for the inactivation of tumor suppressor p53 and for apoptosis induced by endogenous electrophiles. Carcinogenesis. 2006, 27 (12): 2538-2549.
    31. Huang H, Lu FI, Jia S, Meng S, Cao Y, Wang Y, Ma W, Yin K, Wen Z, Peng J et al. Amotl2 is essential for cell movements in zebrafish embryo and regulates c-Src translocation. Development (Cambridge, England). 2007, 134 (5): 979-988.
    32. Jiang WG, Watkins G, Douglas-Jones A, Holmgren L, Mansel RE. Angiomotin and angiomotin like proteins, their expression and correlation with angiogenesis and clinical outcome in human breast cancer. BMC cancer. 2006,6 16.
    33. Iyer VR, Eisen MB, Ross DT, Schuler G, Moore T, Lee JC, Trent JM, Staudt LM, Hudson J, Jr., Boguski MS et al. The transcriptional program in the response of human fibroblasts to serum. Science (New York, NY. 1999, 283 (5398): 83-87.
    34. Dickinson LA, Edgar AJ, Ehley J, Gottesfeld JM. Cyclin L is an RS domain protein involved in pre-mRNA splicing. The Journal of biological chemistry. 2002, 277 (28): 25465-25473.
    35. Muller D, Millon R, Theobald S, Hussenet T, Wasylyk B, du Manoir S, Abecassis J. Cyclin L1 (CCNL1) gene alterations in human head and neck squamous cell carcinoma. British journal of cancer. 2006, 94 (7): 1041-1044.
    36. Redon R, Hussenet T, Bour G, Caulee K, Jost B, Muller D, Abecassis J, du Manoir S. Amplicon mapping and transcriptional analysis pinpoint cyclin L as a candidate oncogene in head and neck cancer. Cancer research. 2002, 62 (21): 6211-6217.
    37. Singh AP, Chaturvedi P, Batra SK. Emerging roles of MUC4 in cancer: a novel target for diagnosis and therapy. Cancer research. 2007, 67 (2): 433-436.
    38. Katoh M, Katoh M. FLJ10261 gene, located within the CCND1-EMS1 locus on human chromosome 11q13, encodes the eight-transmembrane protein homologous to C12orf3, C11orf25 and FLJ34272 gene products. International journal of oncology. 2003,22 (6): 1375-1381.
    39. West RB, Corless CL, Chen X, Rubin BP, Subramanian S, Montgomery K, Zhu S, Ball CA, Nielsen TO, Patel R et al. The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. The American journal of pathology. 2004, 165 (1): 107-113.
    40. Huang X, Godfrey TE, Gooding WE, McCarty KS, Jr., Gollin SM. Comprehensive genome and transcnptome analysis of the 11q13 amplicon in human oral cancer and synteny to the 7F5 amplicon in murine oral carcinoma. Genes, chromosomes & cancer. 2006,45 (11): 1058-1069.
    41. Guan XY, Sham JS, Tang TC, Fang Y, Huo KK, Yang JM. Isolation of a novel candidate oncogene within a frequently amplified region at 3q26 in ovarian cancer. Cancer research. 2001,61 (9): 3806-3809.
    42. Guan XY, Fung JM, Ma NF, Lau SH, Tai LS, Xie D, Zhang Y, Hu L, Wu QL, Fang Y et al. Oncogenic role of eIF-5A2 in the development of ovarian cancer. Cancer research. 2004, 64 (12): 4197-4200.
    43. Marchet A, Mocellin S, Belluco C, Ambrosi A, De Marchi F, Mammano E, Digito M, Leon A, D'Arrigo A, Lise M et al. Gene expression profile of primary gastric cancer: towards the prediction of lymph node status. Ann Surg Oncol. 2007,14(3): 1058-1064.
    44. Moll UM, Slade N. p63 and p73: roles in development and tumor formation. Mol Cancer Res. 2004, 2 (7): 371-386.
    45. Westfall MD, Pietenpol JA. p63: Molecular complexity in development and cancer. Carcinogenesis. 2004, 25 (6): 857-864.
    46. Hu H, Xia SH, Li AD, Xu X, Cai Y, Han YL, Wei F, Chen BS, Huang XP, Han YS et al. Elevated expression of p63 protein in human esophageal squamous cell carcinomas. International journal of cancer. 2002, 102 (6): 580-583.
    47. Yen CC, Chen YJ, Pan CC, Lu KH, Chen PC, Hsia JY, Chen JT, Wu YC, Hsu WH, Wang LS et al. Copy number changes of target genes in chromosome 3q25.3-qter of esophageal squamous cell carcinoma: TP63 is amplified in early carcinogenesis but down-regulated as disease progressed. World J Gastroenterol. 2005,11(9): 1267-1272.
    48. Cheng KW, Lahad JP, Gray JW, Mills GB. Emerging role of RAB GTPases in cancer and human disease. Cancer research. 2005,65 (7): 2516-2519.
    49. Cheng KW, Lahad JP, Kuo WL, Lapuk A, Yamada K, Auersperg N, Liu J, Smith-McCune K, Lu KH, Fishman D et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nature medicine. 2004, 10(11): 1251-1256.
    50. Davidson B, Zhang Z, Kleinberg L, Li M, Florenes VA, Wang TL, Shih le M. Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from diffuse malignant peritoneal mesothelioma. Clin Cancer Res. 2006, 12 (20 Pt 1): 5944-5950.
    51. Ceresa BP, Bahr SJ. rab7 activity affects epidermal growth factor:epidermal growth factor receptor degradation by regulating endocytic trafficking from the late endosome. The Journal of biological chemistry. 2006,281 (2): 1099-1106.
    52. Palacios F, Tushir JS, Fujita Y, D'Souza-Schorey C. Lysosomal targeting of E-cadherin: a unique mechanism for the down-regulation of cell-cell adhesion during epithelial to mesenchymal transitions. Molecular and cellular biology. 2005, 25(1): 389-402.
    53. Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine & growth factor reviews. 2005, 16(2): 159-178.
    54. Arai H, Ueno T, Tangoku A, Yoshino S, Abe T, Kawauchi S, Oga A, Furuya T, Oka M, Sasaki K. Detection of amplified oncogenes by genome DNA microarrays in human primary esophageal squamous cell carcinoma: comparison with conventional comparative genomic hybridization analysis. Cancer Genet Cytogenet. 2003,146(1): 16-21.
    55. Hu L, Sham JS, Xie D, Wen JM, Wang WS, Wang Y, Guan XY. Up-regulation of fibroblast growth factor 3 is associated with tumor metastasis and recurrence in human hepatocellular carcinoma. Cancer Lett. 2007,
    56. Tai AL, Sham JS, Xie D, Fang Y, Wu YL, Hu L, Deng W, Tsao GS, Qiao GB, Cheung AL et al. Co-overexpression of fibroblast growth factor 3 and epidermal growth factor receptor is correlated with the development of nonsmall cell lung carcinoma. Cancer. 2006, 106(1): 146-155.
    57. Aonuma M, Murakami K, Hirotani K, Horiuchi T, Sakamoto H, Terada M, Tanaka NG. In vivo malignant phenotype of hst-1-transfected cells regulated by paracrine endothelial cell growth stimulation by HST-1. Angiogenesis. 1998, 2 (2): 143-152.
    58. Dell'Era P, Belleri M, Stabile H, Massardi ML, Ribatti D, Presta M. Paracrine and autocrine effects of fibroblast growth factor-4 in endothelial cells. Oncogene. 2001, 20 (21): 2655-2663.
    59. Hirai K, Sasaki H, Sakamoto H, Takeshita F, Asano K, Kubota Y, Ochiya T, Terada M. Antisense oligodeoxynucleotide against HST-1/FGF-4 suppresses tumorigenicity of an orthotopic model for human germ cell tumor in nude mice. The journal of gene medicine. 2003, 5 (11): 951-957.
    60. Nicholes K, Guillet S, Tomlinson E, Hillan K, Wright B, Frantz GD, Pham TA, Dillard-Telm L, Tsai SP, Stephan JP et al. A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. The American journal of pathology. 2002, 160 (6): 2295-2307.
    61. Kumar R, Gururaj AE, Barnes CJ. p21-activated kinases in cancer. Nature reviews. 2006,6 (6): 459-471.
    62. Wu H, Reynolds AB, Kanner SB, Vines RR, Parsons JT. Identification and characterization of a novel cytoskeleton-associated pp60src substrate. Mol Cell Biol. 1991, 11 (10): 5113-5124.
    63. Weed SA, Parsons JT. Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene. 2001,20 (44): 6418-6434.
    64. Daly RJ. Cortactin signalling and dynamic actin networks. Biochem J. 2004, 382 (Pt 1): 13-25.
    65. Freier K, Sticht C, Hofele C, Flechtenmacher C, Stange D, Puccio L, Toedt G, Radlwimmer B, Lichter P, Joos S. Recurrent coamplification of cytoskeleton-associated genes EMS1 and SHANK2 with CCND1 in oral squamous cell carcinoma. Genes Chromosomes Cancer. 2006,45 (2): 118-125.
    66. Yuan BZ, Zhou X, Zimonjic DB, Durkin ME, Popescu NC. Amplification and overexpression of the EMS 1 oncogene, a possible prognostic marker, in human hepatocellular carcinoma. J Mol Diagn. 2003, 5 (1): 48-53.
    67. Bringuier PP, Tamimi Y, Schuuring E, Schalken J. Expression of cyclin D1 and EMS1 in bladder tumours; relationship with chromosome 11q13 amplification. Oncogene. 1996, 12(8): 1747-1753.
    68. Fantl V, Smith R, Brookes S, Dickson C, Peters G. Chromosome 11q13 abnormalities in human breast cancer. Cancer Surv. 1993, 18 77-94.
    69. Rothschild BL, Shim AH, Ammer AG, Kelley LC, Irby KB, Head JA, Chen L, Varella-Garcia M, Sacks PG, Frederick B et al. Cortactin overexpression regulates actin-related protein 2/3 complex activity, motility, and invasion in carcinomas with chromosome 11q13 amplification. Cancer Res. 2006, 66 (16): 8017-8025.
    70. Zaharieva BM, Simon R, Diener PA, Ackermann D, Maurer R, Alund G, Knonagel H, Rist M, Wilber K, Hering F et al. High-throughput tissue microarray analysis of 11q13 gene amplification (CCND1, FGF3, FGF4, EMS1) in urinary bladder cancer. J Pathol 2003, 201 (4): 603-608.
    71. Callagy G, Pharoah P, Chin SF, Sangan T, Daigo Y, Jackson L, Caldas C. Identification and validation of prognostic markers in breast cancer with the complementary use of array-CGH and tissue microarrays. J Pathol. 2005, 205 (3): 388-396.
    72. Hui R, Campbell DH, Lee CS, McCaul K, Horsfall DJ, Musgrove EA, Daly RJ, Seshadri R, Sutherland RL. EMS1 amplification can occur independently of CCND1 or INT-2 amplification at 11q13 and may identify different phenotypes in primary breast cancer. Oncogene. 1997, 15 (13): 1617-1623.
    73. Cuny M, Kramar A, Courjal F, Johannsdottir V, Iacopetta B, Fontaine H, Grenier J, Culine S, Theillet C. Relating genotype and phenotype in breast cancer: an analysis of the prognostic significance of amplification at eight different genes or loci and of p53 mutations. Cancer Res. 2000,60 (4): 1077-1083.
    74. van Damme H, Brok H, Schuuring-Scholtes E, Schuuring E. The redistribution of cortactin into cell-matrix contact sites in human carcinoma cells with 11q13 amplification is associated with both overexpression and post-translational modification. J Biol Chem. 1997, 272 (11): 7374-7380.
    75. Schuuring E, Verhoeven E, van Tinteren H, Peterse JL, Nunnink B, Thunnissen FB, Devilee P, Cornelisse CJ, van de Vijver MJ, Mooi WJ et al. Amplification of genes within the chromosome 11q13 region is indicative of poor prognosis in patients with operable breast cancer. Cancer Res. 1992, 52 (19): 5229-5234.
    76. Rodrigo JP, Garcia LA, Ramos S, Lazo PS, Suarez C. EMS1 gene amplification correlates with poor prognosis in squamous cell carcinomas of the head and neck. Clin Cancer Res. 2000,6 (8): 3177-3182.
    77. Takes RP, Baatenburg de Jong RJ, Schuuring E, Hermans J, Vis AA, Litvinov SV, van Krieken JH. Markers for assessment of nodal metastasis in laryngeal carcinoma. Arch Otolaryngol Head Neck Surg. 1997, 123 (4): 412-419.
    78. Chen YJ, Lin SC, Kao T, Chang CS, Hong PS, Shieh TM, Chang KW. Genome-wide profiling of oral squamous cell carcinoma. J Pathol. 2004, 204 (3): 326-332.
    79. Naitoh H, Shibata J, Kawaguchi A, Kodama M, Hattori T. Overexpression and localization of cyclin D1 mRNA and antigen in esophageal cancer. Am J Pathol. 1995,146(5): 1161-1169.
    80. Shinozaki H, Ozawa S, Ando N, Tsuruta H, Terada M, Ueda M, Kitajima M. Cyclin Dl amplification as a new predictive classification for squamous cell carcinoma of the esophagus, adding gene information. Clin Cancer Res. 1996, 2 (7): 1155-1161.
    81. Sarbia M, Stahl M, Fink U, Heep H, Dutkowski P, Willers R, Seeber S, Gabbert HE. Prognostic significance of cyclin D1 in esophageal squamous cell carcinoma patients treated with surgery alone or combined therapy modalities. Int J Cancer. 1999,84(1): 86-91.
    82. Nagasawa S, Onda M, Sasajima K, Makino H, Yamashita K, Takubo K, Miyashita M. Cyclin Dl overexpression as a prognostic factor in patients with esophageal carcinoma. J Surg Oncol. 2001, 78 (3): 208-214.
    83. Shiozaki H, Doki Y, Yamana H, Isono K. A multi-institutional study of immunohistochemical investigation for the roles of cyclin D1 and E-cadherin in superficial squamous cell carcinoma of the esophagus. J Surg Oncol. 2002, 79 (3): 166-173.
    84. Schuuring E. The involvement of the chromosome 11q13 region in human malignancies: cyclin D1 and EMS1 are two new candidate oncogenes—a review. Gene. 1995, 159(1): 83-96.
    85. Bowden ET, Barth M, Thomas D, Glazer RI, Mueller SC. An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. Oncogene. 1999, 18 (31): 4440-4449.
    86. Li Y, Tondravi M, Liu J, Smith E, Haudenschild CC, Kaczmarek M, Zhan X. Cortactin potentiates bone metastasis of breast cancer cells. Cancer Res. 2001, 61 (18): 6906-6911.
    87. Chuma M, Sakamoto M, Yasuda J, Fujii G, Nakanishi K, Tsuchiya A, Ohta T, Asaka M, Hirohashi S. Overexpression of cortactin is involved in motility and metastasis of hepatocellular carcinoma. J Hepatol. 2004,41 (4): 629-636.
    88. Patel AS, Schechter GL, Wasilenko WJ, Somers KD. Overexpression of EMS1/cortactin in NIH3T3 fibroblasts causes increased cell motility and invasion in vitro. Oncogene. 1998,16(25): 3227-3232.
    89. Artym VV, Zhang Y, Seillier-Moiseiwitsch F, Yamada KM, Mueller SC. Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res. 2006,66 (6): 3034-3043.
    90. Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol. 2001, 13 (5): 555-562.
    91. van Rossum AG, van Bragt MP, Schuuring-Scholtes E, van der Ploeg JC, van Krieken JH, Kluin PM, Schuuring E. Transgenic mice with mammary gland targeted expression of human cortactin do not develop (pre-malignant) breast tumors: studies in MMTV-cortactin and MMTV-cortactin/-cyclin D1 bitransgenic mice. BMC Cancer. 2006,6 58.
    92. Zhan M, Zhao H, Han ZC. Signalling mechanisms of anoikis. Histol Histopathol. 2004, 19 (3): 973-983.
    93. Wang LH. Molecular signaling regulating anchorage-independent growth of cancer cells. Mt Sinai J Med. 2004, 71 (6): 361-367.
    94. Reginato MJ, Mills KR, Paulus JK, Lynch DK, Sgroi DC, Debnath J, Muthuswamy SK, Brugge JS. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat Cell Biol. 2003, 5 (8): 733-740.
    95. Timpson P, Lynch DK, Schramek D, Walker F, Daly RJ. Cortactin overexpression inhibits ligand-induced down-regulation of the epidermal growth factor receptor. Cancer Res. 2005,65 (8): 3273-3280.
    96. Okamura H, Resh MD. p80/85 cortactin associates with the Src SH2 domain and colocalizes with v-Src in transformed cells. J Biol Chem. 1995, 270 (44): 26613-26618.
    97. Krasilnikov MA. Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry. 2000, 65(1): 59-67.
    98. Frame MC. Newest findings on the oldest oncogene; how activated src does it. Journal of cell science. 2004, 117 (Pt 7): 989-998.
    99. Cuevas BD, Lu Y, Mao M, Zhang J, LaPushin R, Siminovitch K, Mills GB. Tyrosine phosphorylation of p85 relieves its inhibitory activity on phosphatidylinositol 3-kinase. J Biol Chem. 2001, 276 (29): 27455-27461.
    100. Diaz-Montero CM, Wygant JN, McIntyre BW. PI3-K/Akt-mediated anoikis resistance of human osteosarcoma cells requires Src activation. Eur J Cancer. 2006,42(10): 1491-1500.
    101. Abbi S, Guan JL. Focal adhesion kinase: protein interactions and cellular functions. Histol Histopathol. 2002, 17(4): 1163-1171.
    102. Xia H, Nho RS, Kahm J, Kleidon J, Henke CA. Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta 1 integrin viability signaling pathway. J Biol Chem. 2004, 279 (31): 33024-33034.
    103. Wei L, Yang Y, Zhang X, Yu Q. Altered regulation of Src upon cell detachment protects human lung adenocarcinoma cells from anoikis. Oncogene. 2004, 23 (56): 9052-9061.
    104. Windham TC, Parikh NU, Siwak DR, Summy JM, McConkey DJ, Kraker AJ, Gallick GE. Src activation regulates anoikis in human colon tumor cell lines. Oncogene. 2002, 21 (51): 7797-7807.
    105. Chen HC, Appeddu PA, Isoda H, Guan JL. Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J Biol Chem. 1996,271 (42): 26329-26334.
    106. Lua BL, Low BC. Cortactin phosphorylation as a switch for actin cytoskeletal network and cell dynamics control. FEBS Lett. 2005, 579 (3): 577-585.
    107. Huang J, Asawa T, Takato T, Sakai R. Cooperative roles of Fyn and cortactin in cell migration of metastatic murine melanoma. J Biol Chem. 2003, 278 (48): 48367-48376.
    108. Jimenez C, Hernandez C, Pimentel B, Carrera AC. The p85 regulatory subunit controls sequential activation of phosphoinositide 3-kinase by Tyr kinases and Ras. J Biol Chem. 2002,277 (44): 41556-41562.
    109. Sasaki AT, Chun C, Takeda K, Firtel RA. Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J Cell Biol. 2004, 167 (3): 505-518.
    110. Wang F, Herzmark P, Weiner OD, Srinivasan S, Servant G, Bourne HR. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat Cell Biol. 2002,4 (7): 513-518.
    111. Sabe H, Hamaguchi M, Hanafusa H. Cell to substratum adhesion is involved in v-Src-induced cellular protein tyrosine phosphorylation: implication for the adhesion-regulated protein tyrosine Phosphatase activity. Oncogene. 1997, 14 (15): 1779-1788.
    112. Vacca A, Ria R, Presta M, Ribatti D, Iurlaro M, Merchionne F, Tanghetti E, Dammacco F. alpha(v)beta(3) integrin engagement modulates cell adhesion, proliferation, and protease secretion in human lymphoid tumor cells. Exp Hematol. 2001,29 (8): 993-1003.
    1. Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol. 1994, 124(4): 619-626.
    2. Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol. 2001, 13(5): 555-562.
    3. Kim JE, Kim SJ, Jeong HW, Lee BH, Choi JY, Park RW, Park JY, Kim IS. RGD peptides released from beta ig-h3, a TGF-beta-induced cell-adhesive molecule, mediate apoptosis. Oncogene. 2003, 22(13): 2045-2053.
    4. Wu WB, Peng HC, Huang TF. Disintegrin causes proteolysis of beta-catenin and apoptosis of endothelial cells. Involvement of cell-cell and cell-ECM interactions in regulating cell viability. Exp Cell Res. 2003, 286(1): 115-127.
    5. Bonnefoy A, Legrand C. Proteolysis of subendothelial adhesive glycoproteins (fibronectin, thrombospondin, and von Willebrand factor) by plasmin, leukocyte cathepsin G, and elastase. Thrombosis research. 2000, 98(4): 323-332.
    6. Iacoviello L, Kolpakov V, Salvatore L, Amore C, Pintucci G, de Gaetano G, Donati MB. Human endothelial cell damage by neutrophil-derived cathepsin G Role of cytoskeleton rearrangement and matrix-bound plasminogen activator inhibitor-1. Arterioscler Thromb Vase Biol. 1995, 15 (11): 2037-2046.
    7. Mtairag el M, Houard X, Rais S, Pasquier C, Oudghiri M, Jacob MP, Meilhac O, Michel JB. Pharmacological potentiation of natriuretic peptide limits polymorphonuclear neutrophil-vascular cell interactions. Arterioscler Thromb Vasc Biol. 2002, 22 (11): 1824-1831.
    8. Mendis AH, Venaille TJ, Robinson BW. Study of human epithelial cell detachment and damage: effects of proteases and oxidants. Immunology and cell biology. 1990,68 ( Pt 2) 95-105.
    9. Venaille TJ, Mendis AH, Phillips MJ, Thompson PJ, Robinson BW. Role of neutrophils in mediating human epithelial cell detachment from native basement membrane. The Journal of allergy and clinical immunology. 1995, 95 (2): 597-606.
    10. Saarinen J, Kalkkinen N, Welgus HG, Kovanen PT. Activation of human interstitial procollagenase through direct cleavage of the Leu83-Thr84 bond by mast cell chymase. J Biol Chem. 1994,269(27): 18134-18140.
    11. Tchougounova E, Forsberg E, Angelborg G, Kjellen L, Pejler G Altered processing of fibronectin in mice lacking heparin, a role for heparin-dependent mast cell chymase in fibronectin degradation. J Biol Chem. 2001, 276 (6): 3772-3777.
    12. Leskinen MJ, Lindstedt KA, Wang Y, Kovanen PT. Mast cell chymase induces smooth muscle cell apoptosis by a mechanism involving fibronectin degradation and disruption of focal adhesions. Arterioscler Thromb Vasc Biol. 2003, 23 (2): 238-243.
    13. Lagunoff D, Rickard A. Mast cell granule heparin proteoglycan induces lacunae in confluent endothelial cell monolayers. Am J Pathol. 1999, 154 (5): 1591-1600.
    14. Lohi J, Harvima I, Keski-Oja J. Pericellular substrates of human mast cell tryptase: 72,000 dalton gelatinase and fibronectin. J Cell Biochem. 1992, 50 (4): 337-349.
    15. Tian B, Lessan K, Kahm J, Kleidon J, Henke C. beta 1 integrin regulates fibroblast viability during collagen matrix contraction through a phosphatidylinositol 3-kinase/Akt/protein kinase B signaling pathway. J Biol Chem. 2002,277 (27): 24667-24675.
    16. Coucouvanis E, Martin GR. Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell. 1995, 83 (2): 279-287.
    17. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992, 119 (3): 493-501.
    18. Strater J, Koretz K, Gunthert AR, Moller P. In situ detection of enterocytic apoptosis in normal colonic mucosa and in familial adenomatous polyposis. Gut. 1995, 37 (6): 819-825.
    19. Grossmann J, Walther K, Artinger M, Rummele P, Woenckhaus M, Scholmerich J. Induction of apoptosis before shedding of human intestinal epithelial cells. The American journal of gastroenterology. 2002,97(6): 1421-1428.
    20. Shanmugathasan M, Jothy S. Apoptosis, anoikis and their relevance to the pathobiology of colon cancer. Pathol Int. 2000, 50 (4): 273-279.
    21. Talhouk RS, Bissell MJ, Werb Z. Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution.J Cell Biol. 1992, 118(5): 1271-1282.
    22. Faraldo MM, Deugnier MA, Lukashev M, Thiery JP, Glukhova MA. Perturbation of beta1-integrin function alters the development of murine mammary gland. EmboJ. 1998, 17 (8): 2139-2147.
    23. Jones PL, Boudreau N, Myers CA, Erickson HP, Bissell MJ. Tenascin-C inhibits extracellular matrix-dependent gene expression in mammary epithelial cells. Localization of active regions using recombinant tenascin fragments. J Cell Sci. 1995, 108 (Pt2)519-527.
    24. Hansen RK, Bissell MJ. Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones. Endocrine-related cancer. 2000, 7 (2): 95-113.
    25. Lund LR, Romer J, Thomasset N, Solberg H, Pyke C, Bissell MJ, Dano K, Werb Z. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Development. 1996, 122 (1): 181-193.
    26. Vallorosi CJ, Day KC, Zhao X, Rashid MG, Rubin MA, Johnson KR, Wheelock MJ, Day ML. Truncation of the beta-catenin binding domain of E-cadherin precedes epithelial apoptosis during prostate and mammary involution. J Biol Chem. 2000,275 (5): 3328-3334.
    27. Tenniswood MP, Guenette RS, Lakins J, Mooibroek M, Wong P, Welsh JE. Active cell death in hormone-dependent tissues. Cancer Metastasis Rev. 1992, 11(2): 197-220.
    28. Giancotti FG, Ruoslahti E. Integrin signaling. Science (New York, NY. 1999, 285 (5430): 1028-1032.
    29. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000, 100 (1): 57-70.
    30. Eckert LB, Repasky GA, Ulku AS, McFall A, Zhou H, Sartor CI, Der CJ. Involvement of Ras activation in human breast cancer cell signaling, invasion, and anoikis. Cancer Res. 2004,64 (13): 4585-4592.
    31. Swan EA, Jasser SA, Holsinger FC, Doan D, Bucana C, Myers JN. Acquisition of anoikis resistance is a critical step in the progression of oral tongue cancer. Oral Oncol. 2003, 39 (7): 648-655.
    32. Rennebeck G, Martelli M, Kyprianou N. Anoikis and survival connections in the tumor microenvironment: is there a role in prostate cancer metastasis? Cancer Res. 2005, 65 (24): 11230-11235.
    33. Luo ML, Shen XM, Zhang Y, Wei F, Xu X, Cai Y, Zhang X, Sun YT, Zhan QM, Wu M et al. Amplification and overexpression of CTTN (EMS1) contribute to the metastasis of esophageal squamous cell carcinoma by promoting cell migration and anoikis resistance. Cancer Res. 2006, 66 (24): 11690-11699.
    34. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. CEACAM6 gene silencing impairs anoikis resistance and in vivo metastatic ability of pancreatic adenocarcinoma cells. Oncogene. 2004,23 (2): 465-473.
    35. Wei L, Yang Y, Yu Q. Tyrosine kinase-dependent, phosphatidylinositol 3'-kinase, and mitogen-activated protein kinase-independent signaling pathways prevent lung adenocarcinoma cells from anoikis. Cancer Res. 2001,61 (6): 2439-2444.
    36. Zhu Z, Sanchez-Sweatman O, Huang X, Wiltrout R, Khokha R, Zhao Q, Gorelik E. Anoikis and metastatic potential of cloudman S91 melanoma cells. Cancer Res. 2001,61(4): 1707-1716.
    37. Boisvert-Adamo K, Aplin AE. B-RAF and PI-3 kinase signaling protect melanoma cells from anoikis. Oncogene. 2006,25 (35): 4848-4856.
    38. Eriksson EE, Xie X, Werr J, Thoren P, Lindbom L. Direct viewing of atherosclerosis in vivo: plaque invasion by leukocytes is initiated by the endothelial selectins. FasebJ. 2001,15 (7): 1149-1157.
    39. Fontaine V, Jacob MP, Houard X, Rossignol P, Plissonnier D, Angles-Cano E, Michel JB. Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am J Pathol. 2002, 161 (5): 1701-1710.
    40. Arnould T, Michiels C, Remacle J. Hypoxic human umbilical vein endothelial cells induce activation of adherent polymorphonuclear leukocytes. Blood 1994, 83 (12): 3705-3716.
    41. Jacob MP, Cazaubon M, Scemama A, Prie D, Blanchet F, Guillin MC, Michel JB. Plasma matrix metalloproteinase-9 as a marker of blood stasis in varicose veins. Circulation. 2002, 106 (5): 535-538.
    42. Hoffman R, Noble J, Eagle M. The use of proteases as prognostic markers for the healing of venous leg ulcers. Journal of wound care. 1999, 8 (6): 273-276.
    43. Appleton I, Brown NJ, Willoughby DA. Apoptosis, necrosis, and proliferation: possible implications in the etiology of keloids. Am J Pathol. 1996, 149 (5): 1441-1447.
    44. Eble JA, Haier J. Integrins in cancer treatment. Curr Cancer Drug Targets. 2006, 6 (2): 89-105.
    45. Fukai F, Mashimo M, Akiyama K, Goto T, Tanuma S, Katayama T. Modulation of apoptotic cell death by extracellular matrix proteins and a fibronectin-derived antiadhesive peptide. Exp Cell Res. 1998,242 (1): 92-99.
    46. Zhang Z, Vuori K, Reed JC, Ruoslahti E. The alpha 5 beta 1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc Natl Acad Sci U S A. 1995,92 (13): 6161-6165.
    47. Lee JW, Juliano RL. alpha5betal integrin protects intestinal epithelial cells from apoptosis through a phosphatidylinositol 3-kinase and protein kinase B-dependent pathway. Mol Biol Cell. 2000,11 (6): 1973-1987.
    48. Saelman EU, Keely PJ, Santoro SA. Loss of MDCK cell alpha 2 beta 1 integrin expression results in reduced cyst formation, failure of hepatocyte growth factor/scatter factor-induced branching morphogenesis, and increased apoptosis. J Cell Sci. 1995, 108 (Pt 11)3531-3540.
    49. Howlett AR, Bailey N, Damsky C, Petersen OW, Bissell MJ. Cellular growth and survival are mediated by beta 1 integrins in normal human breast epithelium but not in breast carcinoma. J Cell Sci. 1995, 108 ( Pt 5) 1945-1957.
    50. Marconi A, Dallaglio K, Lotti R, Vaschieri C, Truzzi F, Fantini F, Pincelli C. Survivin identifies keratinocyte stem cells and is downregulated by anti-beta 1 integrin during anoikis. Stem Cells. 2007,25 (1): 149-155.
    51. Marconi A, Atzei P, Panza C, Fila C, Tiberio R, Truzzi F, Wachter T, Leverkus M, Pincelli C. FLICE/caspase-8 activation triggers anoikis induced by beta1-integrin blockade in human keratinocytes. J Cell Sci. 2004, 117 (Pt 24): 5815-5823.
    52. Manohar A, Shome SG, Lamar J, Stirling L, Iyer V, Pumiglia K, DiPersio CM. Alpha 3 beta 1 integrin promotes keratinocyte cell survival through activation of a MEK/ERK signaling pathway. J Cell Sci. 2004, 117 (Pt 18): 4043-4054.
    53. Grossmann J. Molecular mechanisms of "detachment-induced apoptosis-Anoikis". Apoptosis. 2002, 7 (3): 247-260.
    54. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science (New York, NY 1994, 264 (5158): 569-571.
    55. Shimaoka M, Springer TA. Therapeutic antagonists and conformational regulation of integrin function. Nature reviews. 2003, 2 (9): 703-716.
    56. Max R, Gerritsen RR, Nooijen PT, Goodman SL, Sutter A, Keilholz U, Ruiter DJ, De Waal RM. Immunohistochemical analysis of integrin alpha vbeta3 expression on tumor-associated vessels of human carcinomas. Int J Cancer. 1997, 71 (3): 320-324.
    57. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 1994, 79 (7): 1157-1164.
    58. Liu W, Ahmad SA, Reinmuth N, Shaheen RM, Jung YD, Fan F, Ellis LM. Endothelial cell survival and apoptosis in the tumor vasculature. Apoptosis. 2000, 5 (4): 323-328.
    59. Kozlova NI, Morozevich GE, Chubukina AN, Berman AE. Integrin alphavbeta3 promotes anchorage-dependent apoptosis in human intestinal carcinoma cells. Oncogene. 2001, 20 (34): 4710-4717.
    60. Janes SM, Watt FM. Switch from alphavbeta5 to alphavbeta6 integrin expression protects squamous cell carcinomas from anoikis. J Cell Biol. 2004, 166 (3): 419-431.
    61. Marco RA, Diaz-Montero CM, Wygant JN, Kleinerman ES, McIntyre BW. Alpha 4 integrin increases anoikis of human osteosarcoma cells. J Cell Biochem. 2003,88(5): 1038-1047.
    62. Hannigan G, Troussard AA, Dedhar S. Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nat Rev Cancer. 2005,5 (1): 51-63.
    63. White DE, Cardiff RD, Dedhar S, Muller WJ. Mammary epithelial-specific expression of the integrin-linked kinase (ILK) results in the induction of mammary gland hyperplasias and tumors in transgenic mice. Oncogene. 2001, 20 (48): 7064-7072.
    64. Attwell S, Roskelley C, Dedhar S. The integrin-linked kinase (ILK) suppresses anoikis. Oncogene. 2000, 19 (33): 3811-3815.
    65. Benoit DS, Tripodi MC, Blanchette JO, Langer SJ, Leinwand LA, Anseth KS. Integrin-linked kinase production prevents anoikis in human mesenchymal stem cells. J Biomed Mater Res A. 2007,
    66. Gabarra-Niecko V, Schaller MD, Dunty JM. FAK regulates biological processes important for the pathogenesis of cancer. Cancer Metastasis Rev. 2003, 22 (4): 359-374.
    67. Xia H, Nho RS, Kahm J, Kleidon J, Henke CA. Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta 1 integrin viability signaling pathway. J Biol Chem. 2004,279 (31): 33024-33034.
    68. Hanks SK, Polte TR. Signaling through focal adhesion kinase. Bioessays. 1997, 19(2): 137-145.
    69. Rafiq K, Kolpakov MA, Abdelfettah M, Streblow DN, Hassid A, Dell'Italia LJ, Sabri A. Role of protein-tyrosine Phosphatase SHP2 in focal adhesion kinase down-regulation during neutrophil cathepsin G-induced cardiomyocytes anoikis. J Biol Chem. 2006,281 (28): 19781-19792.
    70. Zhang Y, Lu H, Dazin P, Kapila Y. Squamous cell carcinoma cell aggregates escape suspension-induced, p53-mediated anoikis: fibronectin and integrin alphav mediate survival signals through focal adhesion kinase. J Biol Chem. 2004, 279 (46): 48342-48349.
    71. Masuda T, Wada K, Nakajima A, Okura M, Kudo C, Kadowaki T, Kogo M, Kamisaki Y. Critical role of peroxisome proliferator-activated receptor gamma on anoikis and invasion of squamous cell carcinoma. Clin Cancer Res. 2005, 11 (11): 4012-4021.
    72. Aixinjueluo W, Furukawa K, Zhang Q, Hamamura K, Tokuda N, Yoshida S, Ueda R, Furukawa K. Mechanisms for the apoptosis of small cell lung cancer cells induced by anti-GD2 monoclonal antibodies: roles of anoikis. J Biol Chem. 2005,280 (33): 29828-29836.
    73. Wang WJ, Kuo JC, Yao CC, Chen RH. DAP-kinase induces apoptosis by suppressing integrin activity and disrupting matrix survival signals. J Cell Biol. 2002,159(1): 169-179.
    74. Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection: more than just a road to PKB. The Biochemical journal. 2000,346 Pt 3 561-576.
    75. Thompson JE, Thompson CB. Putting the rap on Akt. J Clin Oncol. 2004, 22 (20): 4217-4226.
    76. Gilmore AP. Anoikis. Cell death and differentiation. 2005, 12 Suppl 2 1473-1477.
    77. Reginato MJ, Mills KR, Paulus JK, Lynch DK, Sgroi DC, Debnath J, Muthuswamy SK, Brugge JS. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat Cell Biol. 2003, 5 (8): 733-740.
    78. Hofmann C, Obermeier F, Artinger M, Hausmann M, Falk W, Schoelmerich J, Rogler G, Grossmann J. Cell-cell contacts prevent anoikis in primary human colonic epithelial cells. Gastroenterology. 2007, 132 (2): 587-600.
    79. Dufour G, Demers MJ, Gagne D, Dydensborg AB, Teller IC, Bouchard V, Degongre I, Beaulieu JF, Cheng JQ, Fujita N et al. Human intestinal epithelial cell survival and anoikis. Differentiation state-distinct regulation and roles of protein kinase B/Akt isoforms. J Biol Chem. 2004, 279 (42): 44113-44122.
    80. Krens SF, Spaink HP, Snaar-Jagalska BE. Functions of the MAPK family in vertebrate-development. FEBS Lett. 2006, 580 (21): 4984-4990.
    81. Juliano RL, Reddig P, Alahari S, Edin M, Howe A, Aplin A. Integrin regulation of cell signalling and motility. Biochem Soc Trans. 2004, 32 (Pt3): 443-446.
    82. Le Gall M, Chambard JC, Breittmayer JP, Grall D, Pouyssegur J, Van Obberghen-Schilling E. The p42/p44 MAP kinase pathway prevents apoptosis induced by anchorage and serum removal. Mol Biol Cell. 2000, 11 (3): 1103-1112.
    83. Fukazawa H, Noguchi K, Murakami Y, Uehara Y. Mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) inhibitors restore anoikis sensitivity in human breast cancer cell lines with a constitutively activated extracellular-regulated kinase (ERK) pathway. Mol Cancer Ther. 2002, 1 (5): 303-309.
    84. Jost M, Huggett TM, Kari C, Rodeck U. Matrix-independent survival of human keratinocytes through an EGF receptor/MAPK-kinase-dependent pathway. Mol Biol Cell. 2001, 12(5): 1519-1527.
    85. Schulze A, Lehmann K, Jefferies HB, McMahon M, Downward J. Analysis of the transcriptional program induced by Raf in epithelial cells. Genes Dev. 2001, 15 (8): 981-994.
    86. Zeng Q, McCauley LK, Wang CY. Hepatocyte growth factor inhibits anoikis by induction of activator protein 1-dependent cyclooxygenase-2. Implication in head and neck squamous cell carcinoma progression. J Biol Chem. 2002, 277 (51): 50137-50142.
    87. Heasley LE, Han SY. JNK regulation of oncogenesis. Mol Cells. 2006, 21 (2): 167-173.
    88. Frisch SM, Vuori K, Kelaita D, Sicks S. A role for Jun-N-terminal kinase in anoikis; suppression by bcl-2 and crmA. J Cell Biol. 1996, 135 (5): 1377-1382.
    89. Khwaja A, Downward J. Lack of correlation between activation of Jun-NH2-terminal kinase and induction of apoptosis after detachment of epithelial cells. J Cell Biol. 1997, 139(4): 1017-1023.
    90. Almeida EA, Ilic D, Han Q, Hauck CR, Jin F, Kawakatsu H, Schlaepfer DD, Damsky CH. Matrix survival signaling: from fibronectin via focal adhesion kinase to c-Jun NH(2)-terminal kinase. J Cell Biol. 2000, 149 (3): 741-754.
    91. Ilic D, Almeida EA, Schlaepfer DD, Dazin P, Aizawa S, Damsky CH. Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis. J Cell Biol. 1998, 143 (2): 547-560.
    92. Stromblad S, Becker JC, Yebra M, Brooks PC, Cheresh DA. Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin alphaVbeta3 during angiogenesis. The Journal of clinical investigation. 1996, 98 (2): 426-433.
    93. Nikiforov MA, Hagen K, Ossovskaya VS, Connor TM, Lowe SW, Deichman GI, Gudkov AV. p53 modulation of anchorage independent growth and experimental metastasis. Oncogene. 1996, 13 (8): 1709-1719.
    94. McGill G, Shimamura A, Bates RC, Savage RE, Fisher DE. Loss of matrix adhesion triggers rapid transformation-selective apoptosis in fibroblasts. J Cell Biol. 1997,138 (4): 901-911.
    95. Ossovskaya VS, Mazo IA, Chernov MV, Chernova OB, Strezoska Z, Kondratov R, Stark GR, Chumakov PM, Gudkov AV. Use of genetic suppressor elements to dissect distinct biological effects of separate p53 domains. Proc Natl Acad Sci U SA. 1996,93 (19): 10309-10314.
    96. van Delft MF, Huang DC. How the Bcl-2 family of proteins interact to regulate apoptosis. Cell research. 2006, 16 (2): 203-213.
    97. Sourdeval M, Lemaire C, Deniaud A, Taysse L, Daulon S, Breton P, Brenner C, Boisvieux-Ulrich E, Marano F. Inhibition of caspase-dependent mitochondrial permeability transition protects airway epithelial cells against mustard-induced apoptosis. Apoptosis. 2006, 11 (9): 1545-1559.
    98. Rytomaa M, Martins LM, Downward J. Involvement of FADD and caspase-8 signalling in detachment-induced apoptosis. Curr Biol. 1999,9 (18): 1043-1046.
    99. Fina D, Franchi L, Caruso R, Peluso I, Naccari GC, Bellinvia S, Testi R, Pallone F, Monteleone G 5-aminosalicylic acid enhances anchorage-independent colorectal cancer cell death. EurJ Cancer. 2006,42 (15): 2609-2616.
    100. Laprise P, Vallee K, Demers MJ, Bouchard V, Poirier EM, Vezina A, Reed JC, Rivard N, Vachon PH. Merosin (laminin-2/4)-driven survival signaling: complex modulations of Bcl-2 homologs. J Cell Biochem. 2003, 89 (6): 1115-1125.
    101. Rosen K, Rak J, Leung T, Dean NM, Kerbel RS, Filmus J. Activated Ras prevents downregulation of Bcl-X(L) triggered by detachment from the extracellular matrix. A mechanism of Ras-induced resistance to anoikis in intestinal epithelial cells. J Cell Biol. 2000, 149 (2): 447-456.
    102. Marani M, Hancock D, Lopes R, Tenev T, Downward J, Lemoine NR. Role of Bim in the survival pathway induced by Raf in epithelial cells. Oncogene. 2004, 23 (14): 2431-2441.
    103. Puthalakath H, Villunger A, O'Reilly LA, Beaumont JG, Coultas L, Cheney RE, Huang DC, Strasser A. Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science. 2001, 293 (5536): 1829-1832.
    104. Schmelzle T, Mailleux AA, Overholtzer M, Carroll JS, Solimini NL, Lightcap ES, Veiby OP, Brugge JS. Functional role and oncogene-regulated expression of the BH3-only factor Bmf in mammary epithelial anoikis and morphogenesis. Proc Natl Acad Sci USA. 2007,104(10): 3787-3792.
    105. Gilmore AP, Metcalfe AD, Romer LH, Streuli CH. Integrin-mediated survival signals regulate the apoptotic function of Bax through its conformation and subcellular localization. J Cell Biol. 2000, 149 (2): 431-446.
    106. Valentijn AJ, Metcalfe AD, Kott J, Streuli CH, Gilmore AP. Spatial and temporal changes in Bax subcellular localization during anoikis. J Cell Biol. 2003,162 (4): 599-612.
    107. Wang P, Valentijn AJ, Gilmore AP, Streuli CH. Early events in the anoikis program occur in the absence of caspase activation. J Biol Chem. 2003, 278 (22): 19917-19925.
    108. Valentijn AJ, Gilmore AP. Translocation of full-length Bid to mitochondria during anoikis. J Biol Chem. 2004, 279 (31): 32848-32857.
    109. Idogawa M, Adachi M, Minami T, Yasui H, Imai K. Overexpression of BAD preferentially augments anoikis. Int J Cancer. 2003, 107 (2): 215-223.
    110. Matter ML, Ruoslahti E. A signaling pathway from the alpha5betal and alpha(v)beta3 integrins that elevates bcl-2 transcription. J Biol Chem. 2001, 276 (30): 27757-27763.
    111. Kennedy SG, Kandel ES, Cross TK, Hay N. Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol. 1999, 19 (8): 5800-5810.
    112. Scheid MP, Schubert KM, Duronio V. Regulation of bad phosphorylation and association with Bcl-x(L) by the MAPK/Erk kinase. J Biol Chem. 1999, 274 (43): 31108-31113.
    113. Breitschopf K, Haendeler J, Malchow P, Zeiher AM, Dimmeler S. Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathway. Mol Cell Biol. 2000,20(5): 1886-1896.
    114. Aoudjit F, Vuori K. Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-flip and implications for anoikis. J Cell Biol. 2001, 152 (3): 633-643.
    115. Rosen K, Shi W, Calabretta B, Filmus J. Cell detachment triggers p38 mitogen-activated protein kinase-dependent overexpression of Fas ligand. A novel mechanism of Anoikis of intestinal epithelial cells. J Biol Chem. 2002, 277 (48): 46123-46130.
    116. Frisch SM. Evidence for a function of death-receptor-related, death-domain-containing proteins in anoikis. Curr Biol. 1999, 9 (18): 1047-1049.
    117. Bachelder RE, Wendt MA, Fujita N, Tsuruo T, Mercurio AM. The cleavage of Akt/protein kinase B by death receptor signaling is an important event in detachment-induced apoptosis. J Biol Chem. 2001,276 (37): 34702-34707.
    118. Kurenova E, Xu LH, Yang X, Baldwin AS, Jr., Craven RJ, Hanks SK, Liu ZG, Cance WG. Focal adhesion kinase suppresses apoptosis by binding to the death domain of receptor-interacting protein. Mol Cell Biol. 2004,24 (10): 4361-4371.
    119. Kumar S. Caspase function in programmed cell death. Cell Death Differ. 2007, 14(1): 32-43.
    120. Grossmann J, Walther K, Artinger M, Kiessling S, Scholmerich J. Apoptotic signaling during initiation of detachment-induced apoptosis ("anoikis") of primary human intestinal epithelial cells. Cell Growth Differ. 2001, 12 (3): 147-155.
    121. Kaur M, Agarwal R, Agarwal C. Grape seed extract induces anoikis and caspase-mediated apoptosis in human prostate carcinoma LNCaP cells: possible role of ataxia telangiectasia mutated-p53 activation. Mol Cancer Ther. 2006, 5 (5): 1265-1274.
    122. Bozzo C, Sabbatini M, Tiberio R, Piffanelli V, Santoro C, Cannas M. Activation of caspase-8 triggers anoikis in human neuroblastoma cells. Neurosci Res. 2006, 56(2): 145-153.
    123. Bonfoco E, Chen W, Paul R, Cheresh DA, Cooper NR. beta1 integrin antagonism on adherent, differentiated human neuroblastoma cells triggers an apoptotic signaling pathway. Neuroscience. 2000, 101 (4): 1145-1152.
    124. Balan KV, Demetzos C, Prince J, Dimas K, Cladaras M, Han Z, Wyche JH, Pantazis P. Induction of apoptosis in human colon cancer HCT116 cells treated with an extract of the plant product, Chios mastic gum. In Vivo. 2005, 19 (1): 93-102.
    125. Jiang C, Wang Z, Ganther H, Lu J. Caspases as key executors of methyl selenium-induced apoptosis (anoikis) of DU-145 prostate cancer cells. Cancer Res. 2001,61 (7): 3062-3070.
    126. Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM, Cheresh DA. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol. 2001, 155 (3): 459-470.
    127. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science. 1997,276(5317): 1425-1428.
    128. Puthalakath H, Huang DC, O'Reilly LA, King SM, Strasser A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell. 1999, 3 (3): 287-296.
    129. Sasaki AT, Chun C, Takeda K, Firtel RA. Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J Cell Biol. 2004, 167 (3): 505-518.
    130. Mandal M, Mandal A, Das S, Chakraborti T, Chakraborti S. Identification, purification and partial characterization of tissue inhibitor of matrix metalloproteinase-2 in bovine pulmonary artery smooth muscle. Molecular and cellular biochemistry. 2003, 254 (1-2): 275-287.
    131. Cheng TL, Symons M, Jou TS. Regulation of anoikis by Cdc42 and Rac1. Exp Cell Res. 2004, 295(2): 497-511.
    132. Martin SS, Vuori K. Regulation of Bcl-2 proteins during anoikis and amorphosis. Biochim Biophys Acta. 2004, 1692(2-3): 145-157.
    133. Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E, Peeper DS. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature. 2004, 430(7003): 1034-1039.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700