八株海洋微生物次级代谢产物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选取4株胶州湾海洋放线菌和4株条斑紫菜丝状体相关丝状真菌,进行了次级代谢产物的分离纯化与鉴定,共得到78个单体化合物,其中10个为新颖结构。对部分纯化合物进行了抑菌,抗肿瘤活性测试,并对菌株进行了菌种鉴定。具体结果如下:
     从胶州湾放线菌M491,M097,M361和M353得到40个单体化合物,其中6个为新颖结构化合物。从M491分离到14个单体化合物,包括2个新结构倍半萜15-hydroxy-T-muurolol (1a)和11,15-dihydroxy-T-muurolol (1b),2个首次报道的微生物来源的倍半萜T-muurolol (2b)和3α-hydroxy-T-muurolol (2c),2个新颖结构大环内酯chalcomycin C (7)和chalcomycin D (8)。制备了3-oxo-T-muurolol (2a)单晶体,纠正了前人发表的错误结构。从M353分离得到10个化合物,包括2个新颖倍半萜5-hydroxy-epi-isozizaene (28)和5,14-dihydroxy-isozizaene (30)。自M097和M361分别分离得到12个,4个已知结构化合物。
     从健康条斑紫菜丝状体分离得到了12株真菌。从优势附生菌N5分离得到了12个化合物,包括phenylacetic acid (42),p-hydroxyphenylethyl alcohol (43)和L-β-phenyllactic acid (49)等广谱抗生素和紫菜生长调节剂。
     对分离自白斑病条斑紫菜丝状体真菌N27,EF8,GA4进行了次级代谢产物研究,分离得到38个单体化合物。从GA4分离得到了16个化合物,4个为新结构化合物,包括1个酰脲类化合物hualyzin (62)和3个phenalenone族新化合物7-methyl isonorherqueinone (69) , 7,8-dimethyl atrovenetin (70)和8-methyl-deoxyherqueinone (73)。从真菌N27和EF8分别分离得到12个和2个已知结构化合物。
     采用MTT法,对37株人体肿瘤细胞株活性表明:chalcomycin C (7)和chalcomycin D (8)具有非常强的细胞毒活性,其平均IC50分别为0.027μg/mL和0.007μg/mL。7,8-Dimethyl atrovenetin (71)和8-methyl deoxyherqueinone (73)具有中等细胞毒活性,其平均IC50分别为5.1μg/mL和0.7μg/mL。
     此外,本文首次报道了几个已知化合物的细胞毒活性,分别是chalcomycin (0.015μg/mL),kalamycin (0.06μg/mL),(+)-homononactic acid(1.9μg/mL),(+)-nonactic acid(2.3μg/mL),griseoviridin(3.9μg/mL),cyclo(L-Trp-L-Phe)(3.3μg/mL),WIN 64821(5.8μg/mL)和3,5-dihydroxy-2-methyl-4-pyrone(3.3μg/mL)。
     菌种鉴定结果表明:M353归属链霉菌,GA4,N27归属青霉属,EF8归属曲霉属,N5为枝孢霉属。
This thesis reports the secondary metabolites isolated from eight marine-derived microbes including four actinomycetes isolated from Jiaozhou Bay and four fungi isolated from Porphyra yezoensis. Seventy-eight pure compounds among which ten are novel ones, have been obtained. Some of the pure compounds have been tested of their biological activities. And, some strains have been identified through morphological observation and phylogenetic analysis.
     Fourty compounds including six novel secondary metabolites have been separated from actinomycetes M491, M097, M361 and M353. Fourteen compounds including two novel sesquiterpenes 15-hydroxy-T-muurolol (1a) and 11,15-dihydroxy-T-muurolol (1b), two novel microbial metabolites T-muurolol (2b) and 3α-hydroxy-T-muurolol (2c), and two novel macrolides chalcomycin C (7) and chalcomycin D (8) have been obtained from M491. 3-Oxo-T-muurolol (2a) was re-isolated and crystalized. The absolute configuration was solved by X-ray spectroscopy and the previously reported structures were corrected. Two novel sesquiterpenes 5-hydroxy-epi-isozizaene (28) and 5,14-dihydroxy-isozizaene (30) and another eight known compounds have been separated from M353. Twelve and three known compounds have been isolated from M097 and M361, respectively.
     Twelve fungal isolates have been isolated from the Concocelis of Porphyra yezoensis. The dorminant strain N5 produced fifteen compounds including wide-spectrum antibiotics and plant growth-regulators phenylacetic acid (42), p-hydroxyphenylethyl alcohol (43), L-β-phenyllactic acid (49).
     Fungal strains N27, EF8 and GA4 have been isolated from Porphyra yezoensis with white-spot syndrome. Sixteen compounds including one new urea-derivative hualyzin (62) and three new phenalenones 7-methyl isonorherqueinone (69), 7,8-dimethyl atrovenetin (71) and 8-methyl-deoxyherqueinone (73) have been purified from GA4. Twelve and two known compounds have been separated from N27 and EF8, respectively.
     Some of the compounds have been tested of their cytotoxicity against thirty-seven human cell tumor lines using MTT method. Chalcomycin C (7) and chalcomycin D (8) exhibited high cytoxicity with the average IC50 of 0.027μg/ml and 0.007μg/mL, respectively. 7,8-Dimethyl atrovenetin (71) and 8-methyl deoxyherqueinone (73) showed moderate cytotoxicity with the IC50 of 5.1μg/mL and 0.7μg/mL, respectively.
     Besides, some known compounds have been firstly reported for their cytotoxicity: chalcomycin (0.015μg/mL), kalamycin (0.06μg/mL), (+)-homononactic acid (1.9μg/mL), (+)-nonactic acid (2.3μg/mL), griseoviridin (3.9μg/mL), cyclo (L-Trp-L-Phe) (3.3μg/mL), WIN 64821 (5.8μg/mL) and 3,5-dihydroxy-2-methyl-4-pyrone (3.3μg/mL).
     M353 was identified as Streptomyces sp. N5 belongs to Cladosporium. EF8 belongs to Aspergillus. GA4 and N27 belong to Penicillium.
引文
[1] Klayman DL, Lin AJ, Acton N, Scovill JP, Hoch JM, Milhous WK, Theoharides AD, and Dobek AS. Isolation of artemisinin (qinghaosu) from Artemisia annua growing in the United States. J Nat Prod.1984 (47): 715-717.
    [2] Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, and Gim GA. The isolation and structure of taxol. A novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc. 1971 (93): 2325-2327
    [3] Wall ME, Wani MC, and Cook CE. The isolation and structure of camptothecin, a novel alkaloid leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc. 1966 (88): 3888-3890
    [4] Kingston DG. The chemistry of taxol. Pharmacol Ther. 1991 (52): 1-34
    [5] Cragg G, and Suffness M. Metabolism of plant-derived anticancer agents. Pharmacol Ther. 1988 (37): 425-461
    [6] Newman DJ, and Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod. 2007 (70): 461-477
    [7] Blunt JW, Copp BR, Munro MHG, Northcote PT, and Prinsep MR. Marine natural products. Nat Prod Rep. 2004 (21): 1-47
    [8] Simmons TL, Andrianasolo E, McPhail K, Flatt P, and Gerwick WH. Marine natural products as anticancer drugs. Mol Cancer Ther. 2005 (4): 333-342
    [9] Feling RH, Buchanan GO, Mincer TJ, et al. Salinoaporamide A: highly cytotoxic proteasome inhibitor from a novel microbial source,a marine bacterium of the new genus Salinospora. Angezo Chem Int Ed. 2003 (42): 35
    [10] Bernan VS, Montenegro DA, Korshalla JO, Maiese WM, Steinberg DA, and Greenstein M. Bioxalomycins, new antibiotics produced by the marine Streptornyces sp. LL31F508: taxonomy and fermentation. J Antibiot. 1994 (47): 1417-l424.
    [11] Zaccardi J, Alluri M, Ashcroft J, Bernan V, Korshalla JO, Morton GO, Siegle M, Tsao R, Williams DR, Maiese W, and Ellestad GA. Structures of the bioxalomycins and their relationship to naphthyridinomycin. J Org Chem. 1994 (59): 4045-4047.
    [12] Singh MP, Petersen PJ, Jacobus NV, Maiese WM, Greenstein M, and Steinberg DA. Bioxalomycin α2, a novel antibiotic produced by Streptomyces viridodiastaticussubsp. ‘litoralis’ LL-31f508: Mechanistic studies and biological activity. Anlimicrob Agents Chemother. 1994 (38): 1808-l 812. [ 13 ] Schumacher RW, Davidson BS, Montenegro DA, and Bernan VS. γ-Indomycinone, a new pluramycin metabolite from a deep-sea derived Actinomycete J Nat Prod. 1995 (58): 613.
    [14] Trischman JA, Jensen PR, and Fenical W. Nat Prod Lett. 1998 (11): 279.
    [15] Shin J, Seo Y, Lee HS, Rho JR, and Mo SJ. A new cyclic peptide from a marine-derived bacterium of the genus Nocardiopsis. J Nat Prod. 2003 (66): 883.
    [16] Jeong SY, Shin HJ, Kim TS, Lee HS, Park SK, and Kim HM. Streptokordin, a new cytotoxic compound of the methylpyridine class from a marine-derived Streptomyces sp. KORDI-3238. J Antibiot. 2006 (59): 234.
    [17] Williams DE, Bernan VS, Ritacco FV, Maiese WM, Greenstein M, and Andersen RJ. Holyrines A and B, possible intermediates in staurosporine biosynthesis produced in culture by a marine actinomycete obtained from the North Atlantic ocean Tetrahedron Lett. 1999 (40): 7171.
    [18] Macherla VR, Liu J, Bellows C, Teisan S, Nicholson B, Lam KS, and Potts BCM. Glaciapyrroles A, B, and C, pyrrolosesquiterpenes from a Streptomyces sp. isolated from an Alaskan marine sediment. J Nat Prod. 2005 (68): 780.
    [19] Davidson BS, and Schumacher RW. Isolation and synthesis of Caprolactins A and B, new caprolactams from a marine bacterium. Tetrahedron. 1993 (49): 6569.
    [20] Gautschi JT, Amagata T, Amagata A, Valeriote FA, Mooberry SL, and Crews P. Expanding the strategies in natural product studies of marine-derived fungi: a chemical investigation of penicillium obtained from deep water sediment. J Nat Prod. 2004 (67): 362-367
    [21] Zhang HL, Hua HM, Pei YH, and Yao XS. Three new cytotoxic cyclic acylpeptides from marine Bacillus sp. Chem Pharm Bull. 2004 (52): 1029
    [22] Wright AD, Osterhage C, and K?nig, GM. Epicoccamide, a novel secondary metabolite from a jellyfish-derived culture of Epicoccum purpurascens. Org Biomol Chem. 2003 (1): 507.
    [23] Imamura N, Nishijima M, Adachi K, et al. Novel antimycin antibiotics, urauchimycins A and B, produced by marine actinomyces. J Antibiot. 1993 (46): 241-246.
    [24] José M, Sánchez L, Marta MI, Julia PB, José LFP, and Librada MCH. New cytotoxic indolic metabolites from a marine Streptomyces. J Nat Prod. 2003 (66): 863-864.
    [25] Tapiolas DM, Roman M, Fenical W, et a1. Octalactins A and B: Cytotoxic eight-member-ring lactons from a marine bacterium Streptomyces sp. J Am Chem Soc. 1991 (113): 4682.
    [26] He H, Ding WD, Bernan VS, Richardson AD, Ireland CM, Greenstein M, Ellestad GA, and Carter GT. Lomaiviticins A and B., potent antitumor antibiotics from Micromonospora lomaivitensis. J Am Chem Soc. 2001 (123): 5362-5363
    [27] Yang RY, Li CY, Lin YC, Peng GT, She ZG, and Zhou SN. Lactones from a brown alga endophytic fungus (No. ZZF36) from the South China Sea and their antimicrobial activities. Bioorg Med Chem Lett. 2006 (16): 4205–4208.
    [28] Takahashi C, Numata A, Ito Y, Matsumura E, Araki H, Iwaki H, and Kushida K. Leptosins, antitumor metabolites of a fungus isolated from a marine alga. J Chem Soc, Perkin Trans. 1994 (13): 1859–1864.
    [29] Klemke C, Kehraus S, Wright AD, and K?nig GM. New secondary metabolites from the marine endophytic fungus Apiospora montagnei. J Nat Prod. 2004 (67): 1058–1063.
    [30] Krohn K, Dai J, Florke U, Aust HJ, Drager S, and Schulz B. Botryane metabolites from the fungus Geniculosporium sp. isolated from the marine red alga Polysiphonia. J Nat Prod. 2005 (68): 400–405.
    [31] Lang G, Mitova MI, Ellis G, Richard KSS, John W, Blunt P, Cummings NJ, Cole ALJ, and Munro MHJ. Bioactivity profiling using hplc/microtiter-plate analysis: application to a new zealand marine alga-derived fungus, Gliocladium sp. J Nat Prod. 2006 (69): 621–624.
    [32] Bugni TS, Janso JE, Williamson RT, Feng X, Bernan VS, Greenstein M, CarterGT, Maiese WM, and Ireland CM. Dictyosphaeric acids A and B: new decalactones from an undescribed Penicillium sp. obtained from the alga Dictyosphaeria versluyii. J Nat Prod. 2004 (67): 1396–1399.
    [33] Maskey RP, Li FC, Qin S, Fiebig HH, and Laatsch H. Chandrananimycins A ~ C: Production of novel anti-cancer antibiotics from a marine Actinomadura sp. isolate M048 by variation of medium composition and growth conditions. Journal of Antibiotics. 2003 (56): 622-629.
    [34] Li FC, Maskey RP, Qin S, Sattler I, Fiebig HH, Maier A, Zeeck A, and Laatsch H. Chinikomycin A and B: Isolation, structure elucidation and biological activity of novel antibiotics from a marine Streptomyces sp. isolate M045. Journal of Natural Products. 2005 (68): 349-353
    [35] Wu SJ, Fotso S, Li F, Qin S, Kelter G, Fiebig HH, and Laatsch H. Marine bacteria, XXXI: N-Carboxamido-staurosporine and selina-4(14),7(11)-diene-8,9-diol, new metabolites from a marine Streptomyces sp. J Antibiot. 2006 (59): 331-337
    [36] Biabani MAF, Baake M, Lovisetto B, Laatsch H, Helmke E, and Weyland H. Anthranilamides: New antimicroalgal active substances from a marine Streptomyces sp. J Antibiot. 1998 (51): 333-340.
    [37]吕庆杰,马颖,宋继谒,董芳,宓贞.MTT比色分析法检测卵巢癌药物敏感性. 中国医科大学学报,2004(33): 540-543.
    [38] Meyer BN, Ferrigni NR, Putnam JE et al. Brine shrimp: a convenient general bioassay for active plant constituents. J Med Plant Res. 1982 (45): 31–34
    [39] Stackebrandt E, and Liesack W. Nucleic acids and classification systematics. In: Goodfellow M, O’Donnell AG. ed, Handbook of new bacteria systematics. London: Academic Press Ltd. 1993.
    [40] White TJ, Bruns T, Lee S, and Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Innis MA, Gelfand DH, Sninsky JJ, White TJ In PCR protocols, a guide to methods and applications. Academic Press, San Diego, 1990, pp 315–322
    [41] Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, and Higgins DG. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res. 1997 (25): 4876-4882.
    [42] Kumar S, Tamura K, and Nei M. MEGA3: Integrated software for molecularevolutionary genetics analysis and sequence alignment briefings in bioinformatics. Briefings in Bioinformatics. 2004 (5): 150-163
    [43] Saitou N, and Nei M. The neighbor joining method: a new method for constructing phylogenetic tree. Mo Biol Evol. 1987 (4): 406-425
    [44] Wu SJ, Fotso S, Li F, Qin S, and Laatsch H. Amorphane sesquiterpenes from a marine Streptomyces sp. J Nat Prod. 2007 (70): 304-306.
    [45] Crystallographic data for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre. Copies of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax +44-(0)1223-336033 or email: deposit@ccdc.cam.ac.uk).
    [46] Chalchat JC, Garry RP, and Michet A. Sesquiterpenes of the essential oil of Pinus sylvestris. Planta Medica. 1985(3): 285.
    [47] Tsuguyoshi, Y. Jpn. Kokai Tokkyo Koho (1989), 2 pp.
    [48] Kuo YH, Cheng YS, and Lin YT. Extractive components from the wood of Taiwania cryptomerioides Hayata: Three new sesquiterpene alcohols, muurolane-3-ene-9β-ol-2-one, muurolane-2δ,9β-diol-3-ene, and muurolane-2β,9β-diol-3-ene. Tetrahedron Lett. 1969 (28): 2375-2377.
    [49] Frohardt RP, Pitillo RF, and Ehrlich J. Chalcomycin and its fermentative production. 1962. U.S. patent 3,065,137.
    [50] Gupta RS, Murray W, and Gupta R. Cross resistance pattern towards anticancer drugs of a human carcinoma multidrug-resistant cell line. Br J Cancer. 1988 (58): 441-447.
    [51] Kim SD, Ryoo IJ, Kim CJ, Kim WG, Kim JP, Kong JY, Koshino H, Uramoto M, and Yoo ID. GERI-155, a new macrolide antibiotic related to chalcomycin. J Antibiot. 1996 (49): 955–957.
    [52] Goo YM, Lee YY, and Kim BT. A new 16-membered chalcomycin type macrolide antibiotic, 250-144C. J Antibiot. 1997 (50): 85–88.
    [53] Asolkar RN, Maskey RP, Helmke E, and Laatsch H. Chalcomycin B, a new macrolide antibiotic from the marine isolate Streptomyces sp. B7064. J Antibiot. 2002 (55): 893–898.
    [54] Chatterjee S, Reddy GCS, Franco CMM, Rupp RH, Ganguli BN, Fehlhaber HW, and Kogler H. Swalpamycin, a new macrolide antibiotic ii. Structure elucidation. Journal of Antibiotics. 1987 (40): 1368-1374
    [55] Pollak FC, and Berger RG. Geosmin and related volatiles in bioreactor-cultured Streptomyces citreus CBS 109.60. Appl Environ Microbiol. 1996 (62): 1295-1299.
    [56] Ayer WA,Muir DJ, and Chakravarty P. Phenolic and other metabolites of Phellinus pini, a fungus pathogenic to pine. Phytochem. 1996 (42): 1321-1324 [ 57 ] Johnson LE, and Dietz A. Kalafungin, a new antibiotic produced by Streptomyces tanashiensis Strain Kala. Applied Microbiology. 1968 (16): 1815-1821
    [58] Reusser F. On the mechanism of action of antibiotic U-19,718 in rat liver mitochondria. Biochemistry. 1968 (7): 293-299.
    [59] Yagi A, Makino K, and Nishioka I. Studies on the constituents of Aloe sapnaria Haw. I. The structure of tetrahydroanthracene derivatives and the related anthraquinones. Chem Pharm Bull. 1974 (22):1159-1166.
    [60] Bartel PL, Zhu CB, Lampel JS, Dosch DC, Connors NC, Strohl WR, Beale Jr JM, and Floss HG. Biosynthesis of anthraquinones by interspecies cloning of actinorhodin biosynthesis genes in Streptomycetes: clarification of actinorhodin gene functions. J Bacteriol. 1990 (172): 4816-4826.
    [61] Fotso S, Maskey RP, Grun-Wollny I, Schulz KP, Munk M, and Laatsch H. Bhimamycin A to approximately E and bhimanone: isolation, structure elucidation and biological activity of novel quinone antibiotics from a terrestrial Streptomycete. J Antibiot. 2003 (56): 931-941
    [62] a) Werner G, Hanspaul H, Drautz H, Baumgartner A, and Z?hner H. Metabolic products of microorganisms. J Antibiot. 1984 (37): 110-117 b) Werner G, Hanspaul H, Klaus A, and Kohlshorn H. Trans alkenes by stereoselective reduction of ?-Ph2PO ketones: E-isosaffrole, E-anethole, and peniculin. Tetrahedron lett. 1983 (24): 5193-5196.
    [63] Scheit KA, Bannister TD, Tasaka A, Wendt MD, Savall BM, Fegleyand GJ, and Roush WR. Total synthesis of (-)-bafilomycin A1. J Am Chem Soc. 2002 (124): 6981-6990.
    [64] Kinoshita K, Waritani T, Noto M, Takizawa K, Minemoto Y, Nishikawa Y, Ohkuma S, Nürnberg B, and Ahnert-Hilger G. Potential roles of heterotrimeric G proteins of the endomembrane system. FEBS Lett. 1996 (389): 61-66.
    [65] Surk-Sik M, Wey-Hyung H, Chung YR, and Shin J. J Antibiot. 2003 (37): 1333-1343
    [66] Corey EJ, and Ponder JW. Stereochemistry of the hygrolidins. Tetrahedron lett. 1984 (25): 4325-4328.
    [67] a) Seto H, Tajima I, Akoa H, Furihata K, and Otake N. The isolation and structures of hygrolidin amide and defumarylhygrolidin. J Antibiot. 1984 (37): 610-613. b) Seto H, Tajima I, Akoa H, Furihata K, and Otake N. Chemical synthesis of phosphorylated tetraacyl disaccharide corresponding to a biosynthetic precursor of lipid A.Tetrahedron lett. 1984 (23): 2667-2670.
    [67] Kinashi H, Sameno K, and Sakaguchi K. Isolation and characterization of concanamycins A, B and C. J Antibiot. 1984 (37): 1333-1343
    [69] Igarashi M, Kinoshita N, Ikeda T, Nakagawa T, Hamada E, Hamada M, and Takeuchi T. Formamicin, a novel antifungal antibiotic produced by a strain of Saccharothvix sp. J Antibiot. 1997 (50): 926-931
    [69] Yoichi H, Ishigami K, Shin-Ya K, and Seto H. Menoxymycins A and B, antitumor antibiotics generating active oxygen in tumor cells. J Antibiot. 1994 (47): 1344-1347
    [71] V. Prikrylova et al., Folia Microbiol. 39 (1994) 191-196
    [72] Bartz Q R, Standiford J, Mold JD, Johannessen A, Maretzki RA, and Haskell TH. in Antibiotics Annual, Medical Encyclopedia, Ind., New York, 1955, p. 777.
    [73] Anderson LE, Ehrlich J, Sun SH, and Burkholder PR. Antibiotics Chemother. 1956 (6): 100.
    [73] Bycroft BW, and King TJ. Revised constitution, absolute configuration, and conformation of griseoviridin, a modified cyclic peptide antibiotic, J.C.S. Perkin I,1976: 1996-2004.
    [75] Lin X, Hopson R, and Cane DE. Genome mining in Streptomyces coelicolor:molecular cloning and characterization of a new sesquiterpene synthase. Journal of the American Chemical Society. 2006 (128): 6022-6023.
    [76] Gurtler, H, Pedersen R, Anthoni U, Christophersen C, Nielsen PH, Wellington EM H, Pedersen C, and Bock K. Albaflavenone, a sesquiterpene ketone with a zizaene skeleton produced by a Streptomycete with a new rope morphology. Journal of Antibiotics. 1994 (47): 434-439.
    [77] Dusche BR, Leben C, Keitt CW, and Strong FM. The isolation and properties of Antimycin. J Am Chem Soc. 1949 (71): 2436-2437.
    [78] a) Dirch AJ, Cameron DW, Harada Y, and Richards RW. The structure of the antimycin-a complex. J Chem Soc. 1961: 889-895 b) Van Tamelen EE, Dickie JD, Loomans ME, Dewey RS, and Strong FM. The chemistry of antimycin A. X. Structure of the antimycins. J Am Chem Soc. 1961 (83): 1639-1646.
    [79] Kinoshita M, Aburaki S, and Umezawa S. Absolute configurations of antimycin lagtones and antimycin A. J Antibiot. 1972 (25): 373-375,
    [80] Colin JB, Oleynek JJ, Marinelli V, Sun HH, Kaplita P, Sedlock DM, Gillum AM, Chadwick CC, and Cooper R. Antimycins, inhibitors of ATP-Citrate lyase, from a Streptomyces sp. J Antibiot. 1997 (50): 729-733.
    [81] Robins MJ, Hansske F, Wnuk SF, and Kanai T. Nucleic acid related compounds. Improved syntheses of 5′-chloro-5′-deoxy- and 5′-S-aryl(or alkyl)-5′-thionucleosides. Can J Chem. 1991 (69): 1468-1474.
    [82] Katsuura K, and Snieckus V. Directed ortho metalation reactions. Synthesis of the naturally-occurring benz[a]anthraquinones X-14881 C and ochromycinone Tetrahedron Letters. 1985 (26): 9-12
    [83] Guan S, Grabley S, Groth I, Lin W, Christner A, Guo1 D, and Sattler I. Structure determination of germacrane-type sesquiterpene alcohols from an endophyte Streptomyces griseus subsp. Magn Reson Chem. 2005 (43): 1028–1031 [ 84 ] Gansser D, Pollak FC, and Berger RG. A sesquiterpene alcohol from Streptomyces Citreus Cbs 109.60. Journal of Natural Products. 1995 (58):1790-1793
    [85] Mukku JRV, Speitling M, Laatsch H, and Helmke E. New butenolides from two marine Streptomycetes. J Nat Prod. 2000 (63): 1570-1572
    [86] Sato S, and Sasaki M. Studies on red rot disease of Porphyra. In JapaneseSociety of Fisheries Science (ed.), the disease of cultivated Porphyra. Koseisha Koseikaku, Tokyo, Japan, 1973. pp 59–69
    [87] Migita S. Studies on chytrid blight disease of Porphyra. In Japanese Society of Fisheries Science (ed.), the disease of cultivated Porphyra. Koseisha Koseikaku, Tokyo, Japan, (1973) pp. 12–20
    [88] Arashima K, Amano H, Suginaga R, and Noda H. Preparation of monoclonal antibodies against the fungal parasite, Pythium sp., the causative organism of laver red rot. Fisheries Sci. 1994 (60): 481–482.
    [89] Amano H, Suginaga R, Arashim K, and Noda H. Immunological detection of the fungal parasite, Pythium sp.; the causative organism of red rot disease in Porphyra yezoensis. J Appl Phycol. 1995 (7): 53–58
    [90] Park CS, Kakinuma M, and Amano H. Detection and quantitative analysis of zoospores of Pythium porphyrae, causative organism of red rot disease in Porphyra, by competitive PCR. J Appl Phycol. 2001 (13): 433–441
    [91] Addepalli MK, and Fujita Y. Serological detection of red rot disease initiation stages of microbial pathogen, Pythium porphyrae (Oomycota) on Porphyra yezoensis. J Appl Phycol. 2001 (13): 221–227
    [92] Woo JH, Kitamura E, Myouga H, and Kamei Y. An antifungal protein from the marine bacterium Streptomyces sp. Strain AP77 is specific for Pythium porphyrae, a causative agent of red rot disease in Porphyra spp. Appl Enviro Microb. 2002 (65): 2666–2675
    [93] Ball DM, Pedersén JF, and Lacefield GD. The tall-fescue endophyte. Am Sci. 1993 (81): 370–379.
    [94] Schardl CL. Epichloe festucae and related mutualistic symbionts of grasses. Fungal Genet Biol. 2001 (33): 69–82.
    [94] Provasoli L, and Pintner, IJ. Symbiotic relationships between microorganisms and seaweeds. Am J Bot. 1964 (51): 681.
    [96] Kingman AR, and Moore J. Isolation, purification and quantitation of several growth regulating substances in Ascophyllum nodosum (Phaeophyta). Bot Mar. 1982 (25): 149–153
    [97] Pedersén M. Ectocarpus fasciculatus: marine brown alga requiring kinetin. Nature. 1968 (217): 776.
    [98] Fries L. Polysiphonia urceolata in axenic culture. Nature. 1964 (202): 110 [ 99 ] Yamazaki A, Nakanishi K, and Saga N. Axenic tissue culture and morphogenesis in Porphyra yezoensis (Bangiales, Rhodophyta). J Phycol. 1998 (34): 1082–1087
    [100] Fries L, and Iwasaki H. p-Hydroxyphenylacetic acid and other phenolic compounds as growth stimulators of the red alga Porphyra tenera. Plant Sci Lett. 1976 (6): 299–307
    [101] Fries L. Some observations on the morphology of Enteromorpha linza (L.) J. Ag. and Enteromorpha compressa (L.) Grev. In axenic culture. Bot Mar. 1975 (18): 251–253
    [102] Provasoli L, and Pintner IJ. Bacteria induced polymorphism in an axenic laboratory strain of Ulva lactuca (Chlorophyceae). J Phycol. 1980 (16): 196–201
    [103] Nakanishi K, Nishijima M, Nishimura M, Kuwano K, and Saga N. Bacteria that induce morphogenesis in Ulva pertusa (Chlorophyta) grown under axenic conditions. J Phycol. 1996 (32): 479–482
    [104] Matsuo Y, Suzuki M, Kasai H, Shizuri Y, and Harayama S. Isolation and phylogenetic characterization of bacteria capable of inducing differentiation in the green alga Monostroma oxyspermum. Environ Microbiol. 2003 (5): 25–35
    [105] Marshall K, Joint I, Callow ME, and Callow JA. Effect of marine bacterial isolates on the growth and morphology of axenic plantlets of the green alga Ulva linza. Microb Ecol. 2006 (52): 302–310
    [106] Matsuo Y, Imagawa H, Nishizawa M, and Shizuri Y. Isolation of an algal morphogenesis inducer from a marine bacterium. Science. 2005 (307): 1598
    [107] Yan LM, Boyd KG, and Burgess JG. Surface attachment induced production of antimicrobial compounds by marine epiphytic bacteria using modified roller bottle cultivation. Mar Biotech. 2002 (4): 355–356
    [108] Boyd KG, Adams DR, and Burgess JG. Antibacterial and repellent activities of marine bacteria associated with algal surfaces. Biofouling. 1999 (14): 227–236
    [109] Dobretsov SV, and Qian PY. Effect of bacteria associated with the green alga Ulva reticulata on marine micro- and macrofouling. Biofouling. 2002 (18): 217–228
    [110] Armstrong E, Yan L, Boyd KG, et al. The symbiotic role of marine microbes on living surfaces. Hydrobiologia. 2001 (461): 37–40
    [111] Byun HG, Zhang HP, Mochizuki M, et al. Novel antifungal diketopiperazine from marine fungus. J Antibiot. 2003 (56): 102–106
    [112] Hwang BK, Lim SW, Kim BS, et al. Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Appl Environ Microbiol. 2001 (67): 3739–3745
    [113] Kim Y, Cho JY, Kuk JH, et al. Identification and antimicrobial activity of phenylacetic acid produced by Bacillus licheniformis isolated from fermented soybean. Curr Microbiol. 2004 (48): 312–317
    [114] Lavermicocca P, Valerio F, and Visconti A. Antifungal activity of phenyllactic acid against molds isolated from bakery products. Appl Environ Microbiol. 2003 (69): 634–640
    [115] Claydon N, Grove JF, and Pople M. Elm bark beetle boring and feeding deterrents from Phomopsis oblonga. Phytochemistry. 1985 (24): 937–943
    [116] Stoessl A. 8-Hydroxy-6-methoxy-3-methylisocoumarin and other metabolites of Ceratocystisfimbriata. Biochem Biophys Res Comm. 1969 (35): 186–191
    [117] Gil-Turnes MS, and Fenical W. Embryos of Homarus americanus are protected by epibiotic bacteria. Biol Bull. 1992 (182): 105-108
    [118] Fries L, and Iwasaki H. p-Hydroxyphenylacetic acid and other phenolic compounds as growth stimulators of the red alga Porphyra tenera. Plant Sci Lett. 1976 (6): 299–307
    [119] 魏景超. 真菌鉴定手册,上海科学技术出版社,1979,pp545
    [120] Wirsel SGR, Christiane RF, Ahrén DG, Kemen E, Oliver RP, and Mendgen KW. Four or more species of Cladosporium sympatrically colonize Phragmites australis. Fungal Genet Biol. 2002 (35):99–113.
    [121] Moricca S, Ragazzi A, and Mitchelson KR. Molecular and conventional detection and identification of Cladosporium tenuissimum on two-needle pine rust aeciospores. Can J Bot. 1999 (77): 339–347.
    [122] Rubini MR, Silva Ribeiro RT, Pomella AW, Maki CS, Araujo WL, Dos Santos D R, and Azevedo JL. Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches' Broom disease. Int J Biol Sci. 2005 (1): 24–33.
    [123] Sette LD, Passarini MRZ, Delarmelina C, Salati F, and Duarte MCT. Molecular characterization and antimicrobial activity of endophytic fungi from coffee plants. World J Microbiol Biotechnol. 2006 (22): 1185–1195.
    [124] Dugan FM, and Roberts RG. Morphological and reproductive aspects of Cladosporium macrocarpum and C. herbarum from bing cherry fruits. Mycotaxon. 1994 (52): 513–522.
    [125] Salgado Salazar C, and Cepero de Garcia MC. Endophytic fungi in rose (Rosa hybrida) in Bogota, Colombia. Rev Iberoa. Micol. 2005 (22): 99–101.
    [126] Guo LD, Hyde KD, and Liew ECY. Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences. Mol Phylogenet Evo. 2001 (20): 1–13.
    [127] Araujo WL, Maccheroni WJ, Aguilar Vildoso CI, Barroso PA, Saridakis HO, and Azevedo JL. 2001. Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of Citrus rootstocks. Can J Microbiol. 47: 229–236.
    [128] Danti R, Sieber TN, Sanguineti G, Raddi P, and Di Lonardo V. Decline in diversity and abundance of endophytic fungi in twigs of Fagus sylvatica L. after experimental long-term exposure to sodium dodecylbenzene sulphonate (SDBS) aerosol. Environ Microbiol. 2002 (4): 696–702.
    [129] Neubert K, Mendgen K, Brinkmann H, and Wirsel SGR. Only a few fungal species dominate highly diverse Mycofloras associated with the common reed. Appl Environ Microbiol. 2006 (72): 1118–1128.
    [130] Amagata T. et al. Cytotoxic substances produced by a fungal strain from a sponge: physico-chemical properties and structures. J Antibiot. 1998 (51): 33
    [131] Kelly TR, Ma Z, and Xu W. Revision of the structure of przewalskinone B. Tetrahedron Lett. 1992 (33): 7713-7714.
    [132] Coskun M, Tanker N, Sakushima A, Kitagawa S, and Nishibe S. An anthraquinone glycoside from Rhamnus pallasii. Phytochemistry. 1984 (23): 1485-1487 [133 Krenn L, Presser A, Pradhan R, Bahr B, Dietrich PH, Mayer KK, and Kopp B. Sulfemodin 8-O-β-D-Glucoside, a new sulfated anthraquinone glycoside, and antioxidant phenolic compounds from Rheum emodi. J Nat Prod. 2003 (66): 1107-1109
    [134] Cohen PA and Towers GHN. The anthraquinones of Heterodermia obscurata,Phytochemistry. 1995 (40): 911-915
    [135] Chen L, et al. Antiinsectan decaturin and oxalicine analogues from Penicillium thiersii. J Nat Prod. 2005 (68): 319-322
    [136] Umehara K. et al., A new potent platelet aggregation inhibitor. J Antibiot. 1984 (37): 469
    [137] 魏景超.真菌鉴定手册,上海科学技术出版社,1979,pp501
    [138] Kimura Y, Tani K, Kojima A, Sotoma G, Okada K, and Shimada A. Cyclo-(l-tryptophyl-l-phenylalanyl), a plant growth regulator produced by the fungus penicillium sp. Phytochemistry. 1996 (41): 665-669
    [139] Oleynek JJ, Sedlock DM, Barrow CJ, Appell KC, Casiano F, Haycock D, Ward SJ, Kaplita P, and Gillum AM. WIN 64821, a novel neurokinin antagonist produced by an Aspergillus sp. II. Biological activity. Journal of Antibiot. 1994 (47): 399-410.
    [140] 魏景超. 真菌鉴定手册,上海科学技术出版社,1979,pp133
    [141] Jun MC, Kazuo S, Kazuo F, Keiko F, Akira S, Yoichi H, and Haruo S. Isolation and structural elucidation of antioxidative agents, antiostatins A1 to A4 and B2 to B5. J Antibiot. 1990 (43): 1337_1340.
    [142] Nakanishi I, Fujikawa A, Imai K, and Sato A. 1H NMR determination of the solution structure and absolute configuration of FR134043, a novel inhibitor of human leukocyte elastase. J Pept Res. 2000 (55): 120-128.
    [143] Zhao YX, Li CS, Luo XD, Yi TM, and Zhou J. Three new urea derivatives from Pliocene-Fossil Pinus armandii. Helv Chim Acta. 2005 (88): 325_329.
    [144] Delgado A, Garcia, JM, Mauleon D, Minguillon C, Subirats JR, Feliz M, LopezF, and Velasco D. Synthesis and conformational analysis of 2-amino-1,2,3,4-tetrahydro-1-naphthalenols. Can J Chem. 1988 (66): 517-527.
    [145] Parker KA, and Kallmerten J. Efficient, regiospecific synthesis of anthracycline intermediates: total synthesis of daunomycin. J Am Chem Soc. 1980 (102): 5881_5886.
    [146] Cason J, Koch CW, and Correia JS. Structures of herqueinone, isoherqueinone and norherqueinone. J Org Chem.1970 (35): 179-186
    [147] a. Quick A, Thomas R, and Williams DJ. X-ray crystal structure and absolute configuration of the fungal phenalenone herqueinone. J Chem Soc. 1980 (22): 1051-1053 b. Yoshioka T, Hirata T, Aoki T, and Suga T. Structural studies on herqueinone. The configurations at C-4 of herqueinone and at C-3 and C-4 of dihydroherqueinone monomethyl ether. Bull Chem Soc Jpn. 1982 (55): 3847-3851 c. Brooks JS, and Morrison GA. Naturally occurring compounds related to phenalenone. VII. Absolute configuration of atrovenetin and related compounds. J Chem Soc Perkins Trans 1, Organic and Bio-Organic Chemistry (1972-1999), 1974 (18): 2114-2119.
    [148] Tabata N, Tomoda H, and Omura S. Erabulenols, inhibitors of cholesteryl ester transfer protein produced by Penicillium sp. FO-5637. J Antibiot. 1998 (51): 618-623.
    [149] Perpelescu M, Kobayashi J, Furuta M, Ito Y, Izuta S, Takemura M, Suzuki M, and Yoshida S. Novel phenalenone derivatives from a marine-derived fungus exhibit distinct inhibition spectrum against eukaryotic DNA polymerases Biochemistry. 2002 (41): 7610-7616
    [150] Shiomi K, Matsui R, Isozaki M, Chiba H, Sugai T, Yamaguchi Y, Masuma R, Tomoda H, Chiba T, Yan H, Kitamura Y, Sugiura W, Omura S, and Tanaka H. Fungal phenalenones inhibit HIV-1 integrase. J Antibiot. 2005 (58): 65-68
    [148] Anderson HA, Bracewell JM, Fraser AR, Jones D, Robertson GW, and Russell JD. 5-Hydroxymaltol and mycophenolic acid, secondary metabolites from Penicillium echinulatum. Trans Br Mycol Soc. 1988 (91): 649-651
    [152] 魏景超.真菌鉴定手册,上海科学技术出版社,1979,pp511
    [153] Ayer WA, Pedras, MSC, and Ward, DE. Metabolites produced by the Scleroderris canker fungus Gremmeniella Abietina. Can J Chem. 1987 (65): 754-764.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700