JNKs分子在小鼠着床前胚胎中表达、激活及其与细胞凋亡的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:JNKs蛋白在各阶段植入前小鼠胚胎中的表达
     目的:了解JNKs蛋白在各阶段小鼠着床前胚胎中的表达规律:
     方法:实验动物为昆明种小鼠,经过药物促排卵后,分别获取妊娠0.5天(合子),1.5天(二细胞期),2.5天(融合期桑椹胚),3.5天(早期囊胚)的胚胎;使用JNK多克隆抗体,通过免疫荧光法结合激光共聚焦技术,在蛋白水平上定性且半定量检测个阶段鼠胚内JNKs蛋白的表达,并且初步找出其中规律
     结果与结论:
     1.在各阶段的小鼠胚胎细胞的胞浆内均有JNKs蛋白的表达;
     2.随着胚胎的发育,JNKs蛋白表达呈上升趋势,其中在妊娠1.5天(2细胞阶段)到妊娠2.5天(融合期桑椹胚阶段)上升最为明显(荧光强度3176.9±446
     vs 1297.2±392.3,P<0.05):
     第二部分外界培养环境与小鼠早期胚胎细胞内JNKs分子的激活
     目的:探讨体外培养环境及其内各种刺激因素对小鼠胚胎细胞内JNKs分子激活的影响
     方法:
     1.分别获取体内及体外的妊娠第3.5天的小鼠胚胎(早期囊胚阶段),以免疫荧光和Western-Blotting的检测方法,比较两者细胞内JNKs分子的激活(磷酸化)水平;
     2.以免疫荧光法比较不同温度下(35摄氏度,37摄氏度,39摄氏度)培养9小时后小鼠着床前胚胎(早期囊胚期)细胞内JNKs分子的激活水平。
     3.以免疫荧光法比较在3种不同培养液(CZB,G-1,G-2)中培养48小时后的小鼠胚胎细胞内JNKs分子的激活水平;
     4.以免疫荧光法比较在不同培养密度下(<3个/25ul;15-25个/25ul与>50个/ul)
     培养48小时后小鼠胚胎细胞内JNKs分子的激活水平。
     结果:
     1.体外培养的小鼠胚胎细胞内JNKs分子的激活水平显著高于体内发育者。(免疫荧光法与Western-Bloting法比较均有统计学意义)
     2.而在39摄氏度培养下9小时后的鼠胚细胞内JNKs分子的激活水平明显高于35与37摄氏度组(P<0.05);
     3.而使用CZB培养液培养的胚胎细胞内激活的JNKs分子的荧光密度显著高于G-2培养液组(P<0.05)
     4.而在25微升的液滴中,当培养密度〉50个胚胎/液滴时,细胞内激活的JNKs分子的含量显著增加,较另外两组差异有统计学意义(P<0.05)
     结论:
     1.体外培养的小鼠胚胎细胞内JNKs分子的激活水平高于体内发育者;
     2.培养温度,培养液的成分以及培养密度的变化局可以影响小鼠胚胎细胞内JNKs分子的激活。
     第三部分:JNKs分子的激活与小鼠早期胚胎的发育与凋亡
     目的:探讨JNKs分子的激活与小鼠胚胎细胞凋亡之间的关系:
     方法:
     1.比较在培养液内加入不同浓度(10uM,20uM与50uM)或在不同时间内(妊娠1.5天到2.5天与妊娠2.5天到妊娠3.5天)加入JNKs激活的特异性抑制剂SP600125对小鼠胚胎囊胚形成率的影响;
     2.取妊娠3.5天的小鼠早期囊胚,以TUNEL标记法比较培养液加入或不加入SP600125的情况下,热处理(41摄氏度)6小时后小鼠囊胚细胞的凋亡比例;
     3.取妊娠1.5天的小鼠胚胎,以线粒体膜电位荧光探针JC-1染色法,比较加入或不加入SP600125的情况下,热处理(41摄氏度)1小时后胚胎细胞内线粒体膜电位的改变;
     4.同上法,比较加入或不加入SP600125的情况下,热处理3小时后小鼠胚胎细胞内Caspase-3蛋白表达水平的差异;
     结果:
     1.培养液中添加不同浓度SP600125后,囊胚形成率有所上升,其中当SP600125浓度为20uM是囊胚形成率最高,达72.3%,培养液中在妊娠1.5-2.5天时(卵裂球融合前)添加SP600125比妊娠2.5-3.5天时(卵裂球融合后)添加SP600125的囊胚形成率更高,但以上差异均未见统计学意义;
     2.在培养液中加入20uM浓度的SP600125时,可显著降低热处理后小鼠囊胚中调亡的细胞比例(39.27±7.15 Vs 64.97±8.23,P<0.05):
     3.在培养液中加入20uM浓度的SP600125时,热处理1小时后胚胎膜电位丧失的线粒体比例显著下降(P<0.05)
     4.在培养液中加入20uM浓度的SP600125时,热处理后3小时的胚胎细胞内Caspase蛋白表达的水平明显下降(P<0.05)
     结论:
     1.JNKs分子的激活可能影响小鼠胚胎进一步的发育潜力;
     2.外界刺激引起的JNKs分子的激活可以促进小鼠胚胎细胞的凋亡过程;
     3.JNKs促进胚胎细胞凋亡的机制可能与线粒体依赖的凋亡途径有关。
PART I. Expression of JNKs Proteins in Different Stages of Preimplantation Mouse Embryos
    Objective: To investigate the expression of JNKs proteins in different stages of preimplantation mouse embryos.
    Materials and Methods:E0.5,1.5,2.5and 3.5 mouse embryos were gathered after PMSG and HCG administration. Immunofluorescence and laser confocal microcopy technique were applied to detect the expression of JNKs protein in different stage embryos.
    Result and Conclusion:
    1. JNKs protein were expressed in all stages of preimplantation mouse embryos;
    2. Expression of the protein were increased with the embryos stage progressed., and this increase was significant in E1.5-E2.5(P<0.05);
    PART II. The Influence of In-Vitro Environment and Stress from the Culture System to the Activation of JNKs Protein
    Objective: To investigate the influence of In-Vitro environment and stress from the culture system to the activation of JNKs protein;
    Materials and Methods: Immunofluorescence and Wester-Blotting technique were used to compared the activation (phosphorylation) of JNKs protein in mouse embryos grow in vitro or in vivo; Immunofluorescencewas used to compared the activated level of JNKs protein in different culture contion as following: (1)Culture in different temperature (35°c,37 °c and 39 °c);(2)Culture in different media(CZB,G-l and G-2);(3)Cultured I different density(<3 embryos/25ul, 15-25 embryos/25ul and >50 embryo/25ul)
    Result: (1)Embryo grew in vitro seemed in a higher level of JNKs activation than the ones grew in vivo;(2) Embryo cultured in 39c seemed in a higher level of JNKs activation than the ones grew in other temperatures;(3) Embryo cultured in CZB seemed in a higher level of JNKs activation than the ones grew in other media; (4) Embryo cultured in a density of >50/ul showed a higher level of JNKs activation than the ones cultured in other density.
    Conclusion: (1)JNKs protein were more easily activated in embryos grew in vitro than in vivo;(2)Stress from culture system had a influence in activation of JNKs proteins. PART III. Relationship of JNKs Activation and Apoptosis of Mouse Embryo cell
    Objective: To investigate weather and how JNKs activation contributed to the
    development and apoptosis of mouse embryo cell.
    Materials and Methods: (1)Compare the addition of SP600125,a specific inhibitor of JNKs activation, in different concentration or different time to the development of mouse embryo development; (2)Detect the influence of Sp600125 to the apoptosis rate of blastocyst cells suffered in a heat shock of 41c ,6h.;(3)Detect the influence of SP600125 to the mitochondrial membrane potential of the E1.5 mouse embryos suffer a heat shock of 41c ,lh;(4)Detect the influence of SP600125 to Caspase-3 level in E1.5 mouse embryos suffer a heat shock of 41c ,3h;
    Result: (1) Embryos treated bySP600125 in a concentration of 20uM and in E1.5-2.5 show a better blastcyst formation rate than others; (2)Blastcyst treated by SP600125 showed a significant lower apoptosis rate than positive control after a heat shock of 6h; (3) E1.5 mouse embryos treated by SP600125 have more high membrane potential mitochondrial than positive control after heat shock of 1h; (4) E1.5 mouse embryos treated by SP600125 showed a higher expressed level of Caspase-3 than positive control after heat shock of 3h;
    Conclusion: Activation of JNKs protein perhaps negatively influence the development potential of preimplantation mouse embryos and can promote the apoptosis program , which had a relationship with the mitochondrial-dependent parthway.
引文
1. Erbach GT, Lawitts JA, Papaioannou VE, Biggers JD. Differentialgrowth of the mouse preimplantation embryo in chemically definedmedia. Biol Reprod 1994;50:1027-33.
    2. Harlow GM, Quinn P. Development of preimplantation mouse embryosin vivo and in vitro. Aust J Biol Sci 1982;35:187-93.
    3. Jung T, Fischer B. Correlation between diameter and DNA or proteinsynthetic activity in rabbit blastocysts. Biol Reprod 1988;39:1111- 6.
    4. Carney EW, Foote RH. Effects of superovulation, embryo recovery,culture system and embryo transfer on development of rabbit embryosin vivo and in vitro. J Reprod Fertil 1990;89:543-51.
    5. Roger J. Davis. Signal Transduction by the JNK Group of MAP Kinases.Cell, Vol.103, 239-252,2000;
    6. Chang L, Karin M. Mammalian MAP kinase signalling cascades.Nature 2001; 410: 37-40;
    7. Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol 2002; 4:E131-6
    8. Lin A. Activation of the JNK signaling pathway: breaking thebreak on apoptosis. Bioessays 2003; 25:1-8.
    9. Lu X, Nemoto S, Lin A. Identification of c-Jun NH2-terminalprotein kinase (JNK)-activating kinase 2 as an activator of JNK but not p38. J Biol Chem 1997; 272:24751-4.
    10. Tournier C, Dong C, Turner TK, et al. MKK7 is an essentialcomponent of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev 2001; 15:1419-26.
    11. Hiroshi Kandal,2 and Masayuki Miural,Regulatory Roles of JNK in Programmed Cell Death J. Biochem. 136,1-6 (2004)
    12. Behrens A, Sibilia M, Wagner EF. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 1999; 21:326-9.
    13. Tournier C, Hess P, Yang DD, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000; 288:870-4.
    14. Liu J, Minemoto Y, Lin A. c-Jun N-terminal protein kinase 1 (JNK1), but not JNK2, is essential for tumor necrosis factor alpha-induced c-Jun kinase activation and apoptosis. Mol Cell Biol 2004; 24:10844-56.
    15. Bost F, McKay R, Bost M, et al. The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. Mol Cell Biol 1999; 19:1938-49.
    16. Potapova O, Anisimov SV, Gorospe M, et al. Targets of c-Jun NH(2)-terminal kinase 2-mediated tumor growth regulation revealed by serial analysis of gene expression. Cancer Res 2002; 62:3257-6
    17. Yu C, Minemoto Y, Zhang J, et al. JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Molecular Cell 2004,13:329-40
    18. D. Randall ArmantT .Blastocysts don't go it alone. Extrinsic signals fine-tune the intrinsic developmental program of trophoblast cells Developmental Biology 280 (2005) 260-280
    19. Yingchun Wang, Fangfei Wang, Tong Sun. Entire Mitogen Activated Protein Kinase (MAPK) Pathway Is Present in Preimplantation Mouse Embryos. DEVELOPMENTAL DYNAMICS 231:72 - 87, 2004
    1. Adler, V., Polotskaya, A., Wagner, F., and Kraft, A.S. (1992) Affinity-purified c-Jun amino-terminal protein kinase requires serine/threonine phosphorylation for activity. J. Biol. Chem.
    2. Hibi, M., Lin, A., Smeal, T., Minden, A., and Karin, M. (1993) Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 7, 2135-2148
    3. Zinck R, Cahill MA, Kracht M, Sachsenmaier C, Hipskind RA, Nordheim A. Protein synthesis inhibitors reveal differential regulation of mitogen activated protein kinase and stress-activated protein kinase pathways that converge on Elk-1. Mol Cell Biol 1995;15:4930-4938.
    4. Chang L, Karin M. Mammalian MAP kinase signalling cascades.Nature 2001; 410: 37-40;
    5. Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol 2002; 4:E131-6
    6. Lin A. Activation of the JNK signaling pathway: breaking thebreak on apoptosis. Bioessays 2003; 25:1-8.
    7. Davis Jr., W., DeSousa, P.D., Schultz, R.M., 1996. Transient expression of translation initiation factor eIF-4C during the 2-cell stage of the preimplantation mouse embryo: identification by mRNA differential display and the role of DNA replication. Dev. Biol. 181, 296-307.
    8. Kigami, D., Minami, N., Takayama, H., Imai, H., 2003. MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos. Biol. Reprod. 68, 651-654.
    9. Aoki, F., Worrad, D.M., Schultz, R.M., 1997. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev. Biol. 181, 296- 307.
    10. Christians, E., Campion, E., Thompson, E.M., Renard, J.-P., 1995. Expression of the HSP 70.1 gene, a landmark of early zygotic gene activity in the mouse embryo, is restricted to the first burst of transcription. Development 121, 113-122.
    11. Hyafil, F., Babinet, C., Jacob, F., 1981. Cell - cell interactions in early embryogenesis : a molecular approach to the role of calcium. Cell 26, 447- 454.
    12. Kidder, G.M., Winterhager, E.,. Intercellular communication in preimplantation development: the role of gap junctions. Front. Biosci. 6, 2001 D731- D736.
    13. Fleming, T.P., Sheth, B., Fesenko, I., 2001. Cell adhesion in the preimplantationmammalian embryo and its role in trophectoderm differentiation and blastocyst morphogenesis. Front. Biosci. 6, D1000-D1007.
    14. Pesce, M., Scholer, H.R., 2000. Oct-4: control of totipotency and germline determination. Mol. Reprod. Dev. 55, 452- 457.
    15. Niswander, L., Martin, G.R., 1992. Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114, 755-768.
    16. Doherty, A.S., Mann, M.R., Tremblay, K.D., Bartolomei, M.S., Schultz, R.M., 2000. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol. Reprod. 62, 1526-1535.
    17. Williams, J.W., Hawes, S.M., Patel, B., Latham, K.E., 2002. Trophectoderm-specific expression of the X-linked Bexl/Rex3 gene in preimplantation stage mouse embryos. Mol. Reprod. Dev. 61, 281- 287.
    18. Latham, K.E., Garrels, J.I., Chang, C., Solter, D., 1991. Quantitative analysis of protein synthesis in mouse embryos: Ⅰ. Extensive reprogramming at the one-and two-cell stages. Development 112, 921-932.
    19. ,Baldwin DA, Schultz RM.Transcript profiling during preimplantation mouse development.Dev Biol. 2004 Aug 15;272(2):483-96
    20. Wang, Q.T., Piotrowska, K., Ciemerych, M.A., Milenkovic, L., Scott, M.P., Davis, R.W., Zernicka-Goetz, M., 2004. A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev. Cell 6, 133-144.
    1. Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod 2000;62:1526 -35.
    2. Johnson MH, Maro B. Time and space in the mouse early embryo: a cell biological approach to cell diversification. Cambridge, UK: Cambridge University Press, 1986.
    3. Latham KE, Garrels JI, Chang C, Solter D. Analysis of embryonic mouse development: construction of a high-resolution, two-dimensional gel protein database. Appl Theor Electrophor 1992;2:163-70.
    4. Latham KE, Schultz RM. Embryonic genome activation. Front Biosci 2001;6: D748-59.
    5. Fleming TP, McConnell J, Johnson MH, Stevenson BR. Development of tight junctions de novo in the mouse early embryo: control of assembly of the tight junction-specific protein, ZO-1. J Cell Biol 1989;108:1407-18.
    6. Watson AJ, Barcroft LC. Regulation of blastocyst formation. Front Biosci 2001;
    7. D708-30. 12. Pantaleon M, Ryan JP, Gil M, Kaye PL. An unusual subcellular localization of GLUT1 and link with metabolism in oocytes and preimplantation mouse embryos. Biol Reprod 2001;64:1247-54.
    8. Ohsugi M, Hwang SY, Butz S, Knowles BB, Solter D, Kemler R. Expression and cell membrane localization of catenins during mouse preimplantation development. Dev Dyn 1996;206:391- 402.
    9. Sefton M, Johnson MH, Clayton L. Synthesis and phosphorylation of uvomorulin during mouse early development. Development 1992;115: 313-8.
    10. Clayton L, Stinchcombe SV, Johnson MH. Cell surface localisation and stability of uvomorulin during early mouse development. Zygote 1993; 1:333- 44.
    11. Van Winkle LJ, Campione AL, Farrington BH. Development of system B0,_ and a broad-scope Na(_)-dependent transporter of zwitterionic amino acids in preimplantation mouse conceptuses. Biochim Biophys Acta 1990;1025:225-33.
    12. Erbach GT, Lawitts JA, Papaioannou VE, Biggers JD. Differential growth of the mouse preimplantation embryo in chemically defined media. Biol Reprod 1994;50:1027-33.
    13. Harlow GM, Quinn P. Development of preimplantation mouse embryos in vivo and in vitro. Aust J Biol Sci 1982;35:187-93.
    14. Jung T, Fischer B. Correlation between diameter and DNA or prote in synthetic activity in rabbit blastocysts. Biol Reprod 1988;39:1111-6.
    15. Carney EW, Foote RH. Effects of superovulation, embryo recovery, culture system and embryo transfer on development of rabbit embryos in vivo and in vitro. J Reprod Fertil 1990;89:543-51.
    16. Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 1995; 270:16483-6.
    17. Shrode LD, Rubie EA, Woodgett JR, Grinstein S. Cytosolic alkalinization increases stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) activity and p38 mitogen-activated protein kinase activity by a calcium-independent mechanism. J Biol Chem 1997;272:13653-9.
    18. Ludt J, Sandvig K, Olsnes S. Rapid increase in pH set-point of the Na-in-dependent chloride/bicarbonate antiporter in Vero cells exposed to heat shock. J Membr Biol 1993;134:143-53.
    19. Rozanski GJ, Witt RC. Interleukin-1 enhances beta-responsiveness of cardiac L-type calcium current suppressed by acidosis. Am J Physiol 1994;267: H1361-7.
    20. Rosette C, Karin M. Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science 1996; 274:1194-7.
    21. Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 1994;265: 808-11.
    22. Seko Y, Takahashi N, Tobe K, Kadowaki T, Yazaki Y. Hypoxia and hypoxia/reoxygenation activate p65PAK, p38 mitogen-activated protein kinase (MAPK), and stress-activated protein kinase (SAPK) in cultured rat cardiac myocytes. Biochem Biophys Res Commun 1997; 239:840-4
    23. Kyriakis JM,Avruch J. Protein kinase cascades actived by stress and inflammatory cytokine.Bioassay, 1996,18:567-577.
    24. Leese H.J. Metabolism of the preimplantation mammalian embryos. Oxf Rev Reprod Bio1.1991 13:35-72;
    25. Yingchun Wang., Elizabeth E. Puscheck, Jennifer J. Lewis,, Increases in phosphorylation of SAPK,JNK and p38MAPK correlate negatively with mouse embryo development after culture in different media. Fertil Steril. 2005 Apr;83 Suppl 1:1144-54
    26. Chatot C.L, Lewis J.L, Torres I.,and Ziomek C.A.Development of 1-cell embryos from different strains of mice in CZB medium.Biol Reprod. 1990 42:432-440
    27. Wei Z, Park KW, Day BN, Prather RS. Effect of epidermal growth factor on preimplantation development and its receptor expression in porcine embryos. Mol Reprod Dev. 2001 Dec;60(4):457-62.
    28. Kurzawa R, Glabowski W, Baczkowski T, Brelik P. Evaluation of mouse preimplantation embryos exposed to oxidative stress cultured with insulin-like growth factor Ⅰ and Ⅱ, epidermal growth factor, insulin, transferrin and selenium. Reprod Biol. 2002 Jul;2(2): 143-62.
    29. Carmona-Cuenca I, Herrera B, Ventura JJ, Roncero C, Fernandez M, Fabregat Ⅰ. EGF blocks NADPH oxidase activation by TGF-beta in fetal rat hepatocytes, impairing oxidative stress, and cell death. J Cell Physiol. 2006 May; 207(2):322-30.
    30. Minden A, Lin A, McMahon M, et al. Differential activation ofERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 1994; 266: 1719-23.
    31. Lane M, Gardner DK. Effect of incubation volume and embryo density on the development and viability of mouse embryos in vitro Hum Reprod. 1992 Apr;7(4):558-62.
    1. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26:239-57.
    2. Rinkenberger JL, Korsmeyer SJ. Errors of homeostasis and deregulated apoptosis. Curr Opin Genet Dev 1997; 7:589-96.
    3. Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell 1997; 88:347-54.
    4. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267:1456-62.
    5. Hibi, M., Lin, A., Smeal, T., Minden, A., and Karin, M. (1993) Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 7, 2135-2148
    6. Minden A, Lin A, McMahon M, et al. Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 1994; 266: 1719-23.
    7. Yang DD, Kuan CY, Whitmarsh AJ, et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the jnk3 gene. Nature 1997; 389: 865-70.
    8. Sabapathy K, Jochum W, Hochedlinger K, et al. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev 1999; 89:115-24.
    9. Kuan CY, Yang D, Samanta Roy DR, et al. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 1999; 22:667-76.
    10. Nishina H, Fischer KD, Radvanyi L, et al. Stress-signalling kinase Sek1 protects thymocytes from apoptosis mediated by CD95 and CD3. Nature 1997; 385:350-3.
    11. Bost F, McKay R, Bost M, et al. The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. Mol Cell Biol 1999; 19:1938-49.
    12. Potapova O, Anisimov SV, Gorospe M, et al. Targets of c-Jun NH(2)-terminal kinase 2-mediated tumor growth regulation revealed by serial analysis of gene expression. Cancer Res 2002; 62:3257-63.
    13. Potapova O, Gorospe M, Dougherty RH, et al. Inhibition of c- Jun N-terminal kinase 2 expression suppresses growth and induces apoptosis of human tumor cells in a p53-dependent manner. Mol Cell Biol 2000; 20:1713-22.
    14. Lin A. Activation of the JNK signaling pathway: breaking the break on apoptosis. Bioessays 2003; 25:1-8.
    15. Karin M, Lin A. NF- B at the crossroads of life and death. Nat Immunol 2002; 3:221-7.
    16. Tang F, Tang G, Xiang J, et al. Absence of NF- B-mediated inhibition of c-Jun N-terminal kinase activation contributes to tumor necrosis factor a induced apoptosis. Mol Cell Biol 2002, 22:8571-9.
    17. Joiakim A, Mathieu PA, Palermo C The Jun N-terminal kinase inhibitor SP600125
    is a ligand and antagonist of the aryl hydrocarbon receptor. Drug Metab Dispos. 2003 Nov;31(11):1279-82
    18. Gavrieli Y. Shemany Ban-Sasson AS. Identification of programmed Call death in silin via specific labeling of nude DNA fragment. J Cell Biol, 1992,119,493-501.
    19. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000; 288:870-874.
    20. Anning Lin Activation of the JNK signaling pathway: breaking the brake on apoptosis. BioEssays 2002 25:17-24,
    21. B.M.Acton, A.Jurisicova, I.Jurisica and R.F.Casper Alterations in mitochondrial membrane potential during preimplantation stages of mouse and human embryo development。 Molecular Human Reproduction Vol.10, No.1 pp. 23±32, 2004
    22. George A. Thouas, Alan O. Trounson, Ernst J. Wolvetang, and Gayle M. Jones Mitochondrial Dysfunction in Mouse Oocytes Results in Preimplantation Embryo Arrest in Vitro. BIOLOGY OF REPRODUCTION 71, 1936-1942 (2004)
    1. Adler, V., Polotskaya, A., Wagner, F., and Kraft, A.S. (1992) Affinity-purified c-Jun amino-terminal protein kinase requires serine/threonine phosphorylation for activity. J. Biol. Chem. 267, 17001-17005
    2. Binetruy B, Smeal T, Karin M. Ha-Ras augments c-Jun activity and stimulates phosphorylation of its activation domain. Nature 1991;351: 122-127.
    3. Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M. Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 1991;354:494-496.
    4. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 1994;369:156-160.
    5. Gupta, S., Barrett, T., Whitmarsh, A.J., Cavanagh, J., Sluss, H.K., Derijard, B., and Davis, R.J. (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 15, 2760-2770
    6. Martin, J.H., Mohit, A.A., and Miller, C.A. (1996) Developmental expression in the mouse nervous system of the p493F12 SAP kinase. Brain Res. Mol. Brain Res. 35, 47-57
    7. Hibi, M., Lin, A., Smeal, T., Minden, A., and Karin, M. (1993) Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 7, 2135-2148
    8. Hiroshi Kanda1,2 and Masayuki Miura1,Regulatory Roles of JNK in Programmed Cell Death J. Biochem. 136,1-6 (2004)
    9. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR. Nature 1994;369:156±60
    10. Mielke K, Damm A, Yang DD, Herdegen T. Brain Res 2000; 75:128± 37.
    11. Minden A, Lin A, Smeal T, Derijard B, Cobb M, Davis R, Karin M. Mol Cell Biol 1994;14:6683±8.
    12. Kallunki T, Su B, Tsigelny I, Sluss HK, Derijard B, Moore G, Davis R, Karin M. Genes Dev 1994;8:2996± 3007.
    13. Sluss HK, Barrett T, Derijard B, Davis RJ. Mol Cell Biol 1994;14: 8376± 84.
    14. Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 1995; 270:16483-6.
    15. Gupta, S., Barrett, T., Whitmarsh, A.J., Cavanagh, J., Sluss, H.K.,Derijard, B., and Davis, R.J. (1996). Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 15, 2760-2770.
    16. Kallunki, T., Su, B., Tsigelny, I., Sluss, H.K., Derijard, B., Moore, G., Davis, R., and Karin, M. (1994). JNK2 contains a specificity- determining region responsible for efficient c-Jun binding and phosphorylation. Genes Dev. 8, 2996-3007.
    17. Sluss, H.K., Barrett, T., Derijard, B., and Davis, R.J. (1994). Signal transduction by tumor necrosis factor mediated by JNK proteinMol. Cell. Biol. 14, 8376-8384
    18. Dorfman K, Carrasco D, Gruda M, Ryan C, Lira SA. Bravo R: Disruption of the erp/mkp-1 gene does not affect mouse development: normal MAP kinase activity in ERP/MKP-1- deficient fibroblasts. Oncogene 1996,13:925-931.
    19. Dickens M, Rogers JS, Cavanagh J, Raitano A, Xia Z, Halpern JR, · Greenberg ME, Sawyers CL, Davis R J: A cytoplasmic inhibitor of the JNK signal transduction pathway. Science 1997, 277:693- 696.
    20. Jun D-Y, Teramoto H, Giam C-Z, Chun RF, Gutkind JS, Jeang K-T: A human suppressor of c-Jun N-terminal kinase 1 activation by tumor necrosis factor - J Bio/Chem 1997, 272:25816-25823.
    21. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 2000; 103: 239-52.
    22. Lin A. Activation of the JNK signaling pathway: breaking thebreak on apoptosis. Bioessays 2003; 25:1-8.
    23. Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 1995; 270:16483-6.
    24. Yamamoto K, Ichijo H, Korsmeyer SJ. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 1999; 19: 8469-78.
    25. Maundrell K, Antonsson B, Magnenat E, et al. Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress- activated protein kinases in the presence of the constitutively active GTPbinding protein Racl. J Biol Chem 1997; 272: 25238-42.
    26. Yu C, Minemoto Y, Zhang J, et al. JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Molecular Cell 2004,13:329-40
    27. Lin, A., Minden, A., Martinetto, H., Claret, F.-X., Lange-Carter, C., Mercurio, F., Johnson, G. L. & Karin, M. (1995) Science 268, 286-290
    28. Yan, M., Dai, T., Deak, J. C., Kyriakis, J. M., Zon, L. I., Woodgett, J. R. & Templeton, D. J. (1994) Nature 372, 798-800
    29. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 2000; 103: 239-52.
    30. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001; 410: 37-40.
    31. Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol 2002; 4:E131-6.
    32. Lin A. Activation of the JNK signaling pathway: breaking the break on apoptosis. Bioessays 2003; 25:1-8.
    33. Minden A, Lin A, McMahon M, et al. Differential activation ofERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 1994; 266:1719-23.
    34. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995; 270:1326-31.
    35. Le-Niculescu H, Bonfoco E, Kasuya Y, et al. Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol Cell Biol 1999; 19:751-63.
    36. Yang DD, Kuan CY, Whitmarsh AJ, et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the jnk3 gene. Nature 1997; 389:865-70.
    37. Bruckner SR, Tammariello SP, Kuan CY, et al. JNK3 contributes to c-Jun activation and apoptosis but not oxidative stress in nerve growth factor-deprived sympathetic neurons. J Neurochem 2001; 78:298-303.
    38. Whitmarsh AJ, Kuan CY, Kennedy NJ, et al. Requirement of the JIP1 scaffold protein for stress-induced JNK activation. Genes Dev 2001; 15:2421-32.
    39. Ham J, Babij C, Whitfield J, et al. A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron 1995; 14:927-39.
    40. Behrens A, Sibilia M, Wagner EF. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 1999; 21:326-9.
    41. Tournier C, Hess P, Yang DD, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000; 288:870-4.
    42. Liu J, Minemoto Y, Lin A. c-Jun N-terminal protein kinase 1 (JNK1), but not JNK2, is essential for tumor necrosis factor alpha-induced c-Jun kinase activation and apoptosis. Mol Cell Biol 2004; 24:10844-56.
    43. Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 2001; 11:373-7.
    44. Karin M, Lin A. NF- B at the crossroads of life and death. Nat Immunol 2002; 3:221-7.
    45. Tang G, Minemoto Y, Dibling B, et al. Inhibition of JNK activation through NF- B target genes. Nature 2001; 414:313-7.
    46. Tang F, Tang G, Xiang J, et al. Absence of NF- B-mediated inhibition of c-Jun N-terminal kinase activation contributes to tumor necrosis factor a induced apoptosis. Mol Cell Biol 2002, 22:8571-9.
    47. Maeda S, Chang L, Li ZW, et al. IKKbeta is required for prevention of apoptosis mediated by cell-bound but not by circulating TNF- . Immunity 2003,19: 725-37.
    48. Deng Y, Ren X, Yang L, Lin Y, Wu X. A JNK-dependent pathway is required for TNF- . induced apoptosis. Cell 2003; 115:61-70.
    49. Sabapathy K, Jochum W, Hochedlinger K, et al. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev 1999; 89:115-24.
    50. Nishina H, Fischer KD, Radvanyi L, et al. Stress-signalling kinase Sek1 protects thymocytes from apoptosis mediated by CD95 and CD3. Nature 1997; 385: 350-3.
    51. Bost F, McKay R, Bost M, et al. The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. Mol Cell Biol 1999; 19:1938-49.
    52. Potapova O, Anisimov SV, Gorospe M, et al. Targets of c-Jun NH(2)-terminal kinase 2-mediated tumor growth regulation revealed by serial analysis of gene expression. Cancer Res 2002; 62:3257-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700