极化聚合物电光开关的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对极化聚合物高速电光开关的研制在理论和实验上进行了研究。高速电光开关在新一代的全光网络,新兴的ROF技术以及在军事国防上都有着重大的应用前景。极化聚合物电光开关更因为聚合物光子材料高度的可剪裁性,优良的可加工性和优异的衬底兼容性以及近年来在光损耗、热稳定性等关键特性方面的突破性进展,使高速聚合物电光开关成为极具发展的实现低成本、高性能光子器件。基于自主研发的性能稳定的电光材料,从分子和材料结构、合成工艺与电光材料性能的关系入手,分别研究了掺杂型的分散红1/含氟聚酰亚胺、溶胶—凝胶法合成的有机/无机杂化复合型这两种电光材料。其中有机/无机杂化材料,成膜良好,RMS仅为2.108nm,电光系数在1310nm可达50pm/V且稳定性良好,基于它的优良特性我们设计了一种加载条形波导结构,波导波导的宽度和高度分别为4μm和3μm,分支波导的间距为30μm,调制区长度为1.5cm依据优化的设计参数成功制备了极化聚合物电光开关,经测试消光比可达8dB,为基于有机聚合物光波导技术在高速电光器件领域的应用进行了基础的探索。
Fiber network has become a fundamental system on information processing in many countries. Wavelength-division multiplexing (WDM) technique is considered as a promising solution to meet the demand of tremendous information transmission in the current telecommunications network because it expands the network’s capacity and also offers flexibility for the construction of novel network architectures. The devises such as electro-optic (EO) modulators and switches are of great technique for wide band optical communication systems and wireless information networks. The frequency conversion, modulation, switch, deflection are basis devices in optical information processing, which put into effect depending on the optical signal (intensity, phase, polarization, etc.) of nonlinear optical materials along with the change of applied electric, sound, magnetic and optical field. In recent years, compared with LiNbO3 crystal, polymers and hybrid materials have many intrinsic advantages, such as their low dispersion in the index of refraction between infrared and millimeter-wave frequencies, fast electronic response and high EO coefficient. These merits make a firm fundamental for the research and development of high speed EO devices.
     The thesis is supported by the 973 project. The history and the latest developments in EO switches have been introduced briefly. The necessity of the research on the work is explained. Some poled polymers have been investigated and the strip-loading waveguide structure is also introduced. Finally the switch devices are fabricated and the EO response is obtained. The main results are concluded as follows:
     1. The fundamental research on the new pattern of optical waveguide materials.
     Monomers of F-PI are synthesized. Polyamides have good thermo oxidative stability, outstanding mechanical properties, fire resistance and so on. We successfully synthesize five materials based on monomer of TFDAS and hope them can keep the advantage of the famous polyimide, such as adhesion to the substrate and hygroscopic. The experiments prove the polymers exhibit excellent thermal stabilities, low optical loss and birefringence, have good solubility in many solvents, suitable for the fabrication of waveguide.
     2. The research on new EO materials: DR1/F-PI.
     DR1 and F-PI have a good solution in DMF, we successfully gain the EO coefficient of the DR1/F-PI after corona poling. To compare the doped EO materials, the DR1/F-PI can have a better stability on EO coefficient due to the valence bond effect between the DR1 and F-PI. Considering the characteristic of the EO materials and the design of device, a reverse rib waveguide structure is used. And the output near-field profile from 2-cm-length waveguide is obtained.
     3. The hybrid DR1/SiO2 film utilizing sol-gel technique has been prepared.
     The reaction process of sol-gel system has been discussed theoretically. The optimal preparation for the DR1/SiO2 film was given. The DR1 chromophores are firmed in the networks of the TiO2-SiO2. The best concentration of solution and the heating treatment condition has been obtained by experiments. The large EO coefficient and good stability (1000h at room temperature only 5% relax) are obtained.
     4. A strip-loading waveguide structure is proposed. The waveguide using organic/inorganic film was also fabricated successfully.
     The hybrid materials have a small dielectric constant because of the doped host material and the good thermal stability due to rigid and stable inorganic network. But the depth and mismatch between the EO film and polymer can not be ignored. This strip-loading structure eliminates the damage to the EO material by the dry etching process and also avoids the cracks for EO material caused by the mismatch of the thermal expansion constant. Furthermore, the induced guiding core reduces the coupling loss with optical fiber due to its thickness. The modulated efficiency can be also enhanced. The design of the device is optimized by the solution of these problems. We have successfully fabricated the EO switch. And the measurement of the CPW electro-optic switch proves the possibility of this fabrication. The performance parameters of the EO switch are also measured and discussed.
     5. The enhancing performance of the EO materials doped with polyvinyl alcohol (PVA).
     The PVA is of great adhesion and flexibility. The doped PVA have effects on the electro-optic performance. And we obtain a good uniformity and the raised thickness of EO film by the experiment. Considering the excellent thermal stabilities of the hybrid film and the simple processes for the device fabrication, this type of device has great potential for electro-optic devices applications.
     The researches above are totally innovative. The exploratory work established fundamental for the fabrication of high quality poled polymer electro-optic switches.
引文
[1]丁么明,宋立新.光波导与光纤通信基础,北京,高等教育出版社。2005,152
    [2]刘颂豪,光电子技术与信息,2002,02,6
    [3]杨建义,江晓清,王明华,用于光纤通信的光开关研究进展,光通信研究,2000,4:42-48
    [4]谢世钟,王国忠,禹培栋,光联网中的光开关器件,世界电子元器件,2001,(10):7-9
    [5]禹培栋,王国忠,陈明华,谢世钟,光开关技术开展,半导体光电,2001,22(3):149-154
    [6] W. Yuan, S. Kim, G. Sadowy, C. Zhang, C. Wang, W.H. Steier and H.R. Fetterman,Polymeric electro-optic digital optical switches with low switching voltage Electronics Letters, 2004, 40(3), 195-197
    [7] Y. Enami, G. Meredith, and N. Peyghambarian, M. Kawazu, A. K.-Y. Jen, Hybrid electro-optic polymer and selectively buried sol-gel waveguides, Appl. Phys. Lett. 2003, 82, 4
    [8] Y. Enami,_D. Mathine, C. T. DeRose, and R. A. Norwood, J. Luo and A. K.-Y. Jen, N. Peyghambarian Sol-gel silica planar waveguide doped with green ?uorescent protein for in-line biosensors Appl. Phys. Lett. 2007, 91, 093505
    [9] Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen and N. Peyghambarianl, Transversely tapered hybrid electro-optic polymer/sol-gel Mach–Zehnder waveguide modulators, Appl. Phys. Lett., 2008, 92, 193508
    [10] C. Holtman, Integration and applications of III-V semiconductor optical amplifiers. 1998. 24th European Conference on Optical Communication. 1998, l, 499-500
    [11] M. Aoki, M. Suzuki, Y. Okuno. Multi-wavelength DFB laser arrays grown by in-plane thickness control epitaxy. Seventh International Conference on Indium Phosphide and Related Materials, 1995, 53-56
    [12] M.F.C. Stephens, R.V. Penty, I.H. White, M. Asghari, K.A. Williams, M.J. Fice, J.E.A. Whiteaway. High speed wavelength conversion utilizing an integratedamplifier/DFB laser, IEEE Colloquium on WDM Technology and Applications (Digest No. 1997/036).1997, 14/114/6
    [13] P. Cinguino, E. Dovio, G. Fornuto, et al. InGaAs/InGaAs tensile-strained-barrier MQW structures for optical amplifiers, 1996. IPRM'96. Eighth International Conference on Indium Phosphide and Related Materials, 1996, 184-187
    [14] Sasaki T., Yamazaki H., Henmi N., et al. Extremely low threshold current operation in 1.5- VπMQW-DFB laser diodes with semi-insulating InP current blocking region. Journal of Lightwave Technology, 1990, 8(9), 1343-1349
    [15] Wakita K., Mitomi O., Kotaka 1, et al. High-speed electro-optic phase modulators using InGaAs/InAlAs multiple quantum well waveguides. IEEE Photonics Technology Letters, 1989, 1(12), 441-442
    [16] Silva M.T.C., de Francisco C.A. Ultra-wide bandwidth, low voltage and chirp-free optical intensity modulator: design and performance analysis. IEEE M7T-S International Microwave Symposium Digest, 1996, 2, 899-902
    [17] Cada M., Muller G., Greil A., et al. Dynamic switching characteristics of a 4×4 InP/InGaAsP matrix switch. Electronics Letters, 1992, 28(23), 2149-2150
    [18] Sahara R.T., Hummel S.G., Steier W.H., et al. AlGaAs waveguide optically controlled directional coupler latch. Journal of Lightwave Technology, 1993, 1l (10), 1533-1538
    [19] Peng Jihu, Li Dejie, Shen Lei, Wang Weidong, A novel BOA type polarization independent optical switch, 1990 IEEE Region 10 Conference on Computer and Communication Systems, IEEE TENCON'90. 1990, l, 128-129
    [20] A. McGuire, A.P. Thomas, R.C. Booth. Optimisation of LiNbO3 BOA waveguide switches operating at 1.3Γ=π. Electronics Letters. 1990, 26(25), 2077-2079
    [21] Wang W., Tavlykaev R., Ramaswamy R.V. Bandpass traveling-wave Mach-Zehnder modulator in LiNbO3 with domain reversal. IEEE Photonics Technology Letters, 1997, 9(5), 610-612
    [22] Fujiwara T., Watanabe A., Mori H. Measurement of uniformity of driving voltage in Ti: LiNbO3 waveguides using Mach-Zehnder interferometers. IEEE PhotonicsTechnology Letters, 1990, 2(4), 260-261
    [23] I.Tomeno and S.Matumeno. Dielectric constant of LiNbO3”, Inspec, 2002, 129-130
    [24] L. R. Dalton, Rational design of organic electro-optic materials, J. Phys. Condens. Matter, 2003, 15, 897-934,
    [25]陈钢进,应用于非线性光学技术中的极化聚合物材料,浙江师大学报,1999,22,4。
    [26].G. Meredith, J. VanDusen, D. Williams, Nonlinear Optical Properties of Organic and Polymer Materials,D.WilliamsEd.ACSSympSeries,1983,232,109
    [27] L. R. Dalton. Realization of sub 1 V polymeric modulators through systematic definition of material structure relationships, Synthetic Metals, 2001, 124, 3-7
    [28] B. Robinson and L. R. Dalton, Defining performance limits for polymeric EO modulators, Proc. SPIE, 2001, 4279, 1-9
    [29] L. R. Dalton, A. K. Y. Jen, Organic electro-optic materials: some unique opportunities, roc. SPIE, 2004, 5351, 1-15
    [30] B. Robinson and L. R. Dalton, Monte Carlo statistical mechanical simulations of the competition of intermolecular electrostatic and poling field interactions', J. Phys. Chem. A, 2000, 104, 4785-4795
    [31] Ando Setal,Polymer for Micro-electronics, 1994, 22, 304-308
    [32] J. L. Oudar, D. S. Chemla, Novel EO-polymers for EO Devices J. Chem. Phys. 1977, 66, 266-270
    [33] G. Meredith, J. Vandusen, and D. Williams,“Optical and nonlinear opticalcharacterization of molecularly doped thermotropic liquid crystalline polymers,”Macromolecules, 1982, 15, 1385-1390
    [34] T. Penner, H. Motschmann, and N. Armstrong, et al.,“Efficient phase-matchedsecond-harmonic generation of blue light in an organic waveguide,”Nature, 1993, 367, 49-54
    [35] D. Li, M. Ratner, and T. Marks, et al.,“Chromophoric self-assembled multilayer organic super lattice approaches to thin-film nonlinear optical materials,”J. Am. Chem. Soc., 1990, 112, 7389-7492
    [36] W. Shi, Z. Xu, C. Fang, et al. Optics and Lasers in Engineering. 1999, 32, 139-145.
    [37] T. Ushiwata, E. Okamoto, T.Kaino, Development of thermally stable novel EO-polymers.,Molecular Crystals and Liquid Crystals. 2002, 374, 303-314.
    [38] S. Marturunkakul, J.I. Chen, L. Li, et al. Design and synthesis if interpenetrating polymer networks for second-order nonlinear optics , Polymer Advance Technology. 1995, 7, 303-310
    [39] D. Jungbauer, B. Reck, R. Twieg, et al. Highly efficient and stable nonlinear optical polymers via chemical cross-linking under electric field, Applied Physics Letters. 1990, 56(26), 2610-2612
    [40] L. R. Dalton. Realization of sub 1 V polymeric EO modulators through systematic definition of material structure/function relationships, Synthetic Metals. 2001, 124, 3–7
    [41]黄章勇,光纤通信用新型光无源器件,北京:北京邮电大学出版社,2003年2月第1版,202
    [42]鹿飞,梁琨,宋琼,彭海波,吴伯瑜,聚合物电光调制器行波电极系统,光电子.激光,2005,16(3):267-270
    [43].G. K. Gopalakrishnan,W. K. Burns,R. W. McElhanon et al.,Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators. J. Lightwave Technol.,1994,12 (10), 1807~1819
    [44]. J. B. P. van Schoot, P. V. Lambeck , at al. Design And Realisation Of A MZI Type Polymer Based High Speed EO-Modulator. 22nd European Conference on Optical Communication.1996, 3, 281-284
    [45]. K. Noguchi, O. Mitomi,H. Miyazawa. Millimeter-wave Ti: LiNbO3 Optical Modulators. J. of Lightwave Technology, 1998, 16(4): 615-619
    [46].D. Chen, H. R. Tetterman, A. Chen, W. H. Steier, et al. Demonstration of 110GHz electro-optic polymer modulators. Appl. Phys. Lett. 1997, 70(25): 3335-3337
    [47].M. Lee, H. E. Katz, C. Erben, et al. Broadband Modulation of Light by Using an Electro-Optic Polymer. Science 2002, 298: 1401-1403
    [48]. S.Yongqiang, L.Weiping, W. H. Steier, et al. Electro-optic polymer modulators with 0.8v half-wave voltage. Appl. Phys. Lett. 2000, 77: 1-3
    [49]. J. I. Thackara,J. C. Chon,G. C. Bjorklund,W. Volksen,and D. M. Burland,Polymeric electro-optic Mach–Zehnder switches, 1995, Appl. Phys. Lett. 67 (26):3874-3877
    [50] R. Songa and H. Steier, Overlap integral factor enhancement using buried electrode structurein polymer Mach-Zehnder modulator, Appl. Phys. Lett. 92, 031103, 2008
    [1] F. Pedrotti and L. Pedrotti, Introduction to Optics, Prentice Hall, 1993, 2-5
    [2] A. Yariv, P. Yeh, Optical Waves and Crytals, Wiley & Sons, 1984, 4-9
    [3] D. Williams, Nonlinear Optical Properties of Organic Molecules and Crystals, D. S, Chemla, Academic Press, 1987, 6-10
    [4] K. Singer, M. Kuzuk, J. Sohn, Second–order nonlinear-optical process in orientationally ordered materials, Journal of the Optical Society of American, 1987, B4, 968-976
    [5] D. Burland, R. Miller, C. Walsh, Second–order Nonlinearity in Poled-Polymer Systems, Chemical Reviews, 1994, 94, 31-75
    [6] P. Prasd and D. Williams, Introduction to nonlinear optical effects in molecules and polymers, Wiley, 1991
    [7]马春生,刘式墉等,光波导模式理论,长春,吉林大学出版社,2006,417
    [8] G. R. Mohlmann, W. H. Horsthuis, C. P. vander Vorst, et al., Proceedings of the SPIE Symposium on Optical and Optoelectronic Applied Science and Engineering, San Diego, 1989, 245,1147.
    [9] Y. Shuto, M. Amano, Reflection measurement technique of electro-optic coefficients in lithium niobate crystals and poled polymer films. J. Appl. Phys. 1995, 77(9), 4632-4638
    [10] E. Van Tomme and E. Lagasse et al., Integrated optic devices based on nonlinear optical polymers, IEEE. J. Quantum Electronics, 1991, 27(3), 778.
    [11] F. Michelotti and E.Toussaere, Pulse poling of side-chain and croslinkable, 1995, 45, 875
    [12] C. Ye, et al. Persistent, efficient frequency doubling by poled annealed films of a chromophore-functionalized poly (p-hydroxystyrene) , Macromolecules, 1988, 21(9), 2899-2901
    [13]徐建东,鲍信先,李淳飞,非线性光学聚合物的极化技术,高技术通讯,1997, 10, 59-61
    [14] S. Bauer, Poled polymers for sensors and photonic applications, Journal ofApplied Physics. 1996, 80(10), 5531-5558
    [15] Z. Lu,P. Shao,J. Li,J. L. Hua,J. G. Qin,A. J. Qin,C. Ye,Two novel fluorinated poly (arylene ether) s with pendant chromophores for second-order nonlinear optical application Maeromolecules,2004,37,7089
    [16] K. A. Mortazavi, A. Knoesen and S. T. Kowel, Second-harmonic generation and absorption studies of polymer-dye films oriented by corona-onset poling at elevated temperatures, J. Opt. Soc. Am. B, Vol.6, No.4, 733, 1989
    [17] S. Yilmaz, S. Bauer, R. Gerhard-Multhaupt, Photothermal Poling of nonlinear optical polymer films, Appl. Phys. Lett., 1994, 64(21), 2770-2772
    [18]傅竹西,固体光电子学,合肥,中国科学技术大学出版社,1999年,241
    [19] R. A. Hill, A. Knoesen and M. A. Mortazavi, Corona poling of nonlinear polymer thin films for electro-optic modulators, Appl. Phys. Lett, 1994, 65, 14, 1733.
    [20] K. D. Singer, M. G. Kuzyk, Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and microscopic properties J.Opt.Soc.Am.B, 1987, 4, 968
    [21] S. Ermer, D. Girton, et al, Low voltage eo modulator using amorphous polycarbonate host materials, Proc. SPIE, 2000, 3949
    [22]李淳飞,光纤通信光开关的物理基础,物理实验,2002,22(4):3-5
    [1].C. E. Sroog, A. L. Endrey, S. V. Abramo, C. E. Berr, W. M. Edwards, K. L.Olivier. Aromatic polypyromellitimides from aromatic polyamic acids, Journal of Polymer Science Part A: General Papers, 1965, 3, 1373
    [2]. S. Zhong, W. Chen, H. Yang, Y. Chen, Transparent optical path and crosstalk monitoring scheme for arrayed waveguide grating-based optical cross connect, 2000, 12, 1249
    [3]. C. E. Sroog, A. L. Endrey, S. V. Abramo, C. E. Berr, W. M. Edwards, K. L. Olivier. Aromatic polypyromellitimides from aromatic polyamic acids, Journal of Polymer Science Part A: General Papers, 1965, 3, 1373
    [4].邱凤仙,周钰明,刘举正,张旭苹。聚酰亚胺/SiO_2杂化材料的硅核磁共振波谱和电光性质的研究。感光科学与光化学,2006,24,55。
    [5]. K. Xie, S. Y. Zhang, J. G. Liu, M. H. He, S. Y. Yang, Synthesis and characterization of soluble fluorine-containing polyimides based on 1, 4-bis (4-amino-2-trifluoromethylphenoxy) benzene. Journal of Polymer Science Part A: Polymer Chemistry, 2001, 39, 2581
    [6]. K. Xie, J. G. Liu, H. W. Zhou, S. Y. Zhang, M. H. He and S. Y. Yang, Soluble fluoro-polyimides derived from 1, 3-bis (4-amino-2-trifluoromethyl- phenoxy) benzene and dianhydrides, Polymer, 2001, 42, 7267.
    [7]. C. L. Chung, C. P. Yang, S. H. Hsiao, Organosoluble and colorless fluorinated poly(ether imide)s from 1,2-bis(3,4-dicarboxyphenoxy)benzene dianhydride and trifluoromethyl-substituted aromatic bis(ether amine)s. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44, 3092.
    [8]. S. H. Hsiao, Y. M. Chang, H. W. Chen, Guey-Sheng Liou. Novel aromatic polyamides and polyimides functionalized with 4-tert-butyltriphenylamine groups, Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44, 4579.
    [9]. L. Jingjing and W. xiaodong, Novel low-κpolyimide/mesoporous silica composite films: Preparation, microstructure, and properties, Polymer, 2007, 48, 318.
    [10]. S. Putthanarat, G. Tandon, G. Schoeppner, Influence of polishing time on thermo-oxidation characterization of isothermally aged PMR-15 resin. POLYMER DEGRADATION AND STABILITY, 2007, 92, 2110
    [11].王朋朋,黄丽萍,王晓东,黄培。多苯氧基型聚酰亚胺的合成与表征。绝缘材料,2008,41,23。
    [12].黄培,耿洪斌,刘俊英,时钧,马志荣。长链聚酰亚胺的制备。与表征南京工业大学学报(自然科学版),2003,25,11。
    [13].陈志明,邵利。聚异丁烯丁二酰亚胺合成新工艺。高校化学工程学报,1999, 13,533。
    [14].李炳海,张淑萍,刘鑫业。由双(氯代酞酰亚胺)与双酚盐的亲核取代缩聚合成聚酰亚胺的研究。应用化学,1986,3,1。
    [15].李炳海。由双(氯代酞酰亚胺)与双酚盐的亲核取代缩聚合成聚酰亚胺的研究。应用化学。1985,2,94。
    [16]. A. Walch, H. Lukas, A. Klimmek, W. Pusch, Structure and hyperfiltration properties of polyimide membranes. Journal of Polymer Science: Polymer Letters Edition, 1974, 12, 697.
    [17].刘金刚,何民辉,王丽芳,杨海霞,李彦峰,范琳,杨士勇。含氟聚酰亚胺及其在微电子工业中的研究发展Ⅰ含氟单体及聚酰亚胺的合成,高分子通报,2003,3,1。
    [18]. D. Sterescu, D. Stamatialis, M. Wessling, Boltorn-modified polyimide gas separation membranes, JOURNAL OF MEMBRANE SCIENCE, 2008, 310, 512.
    [19]. M. Islam, W. Zhou, T. Honda, K. Tanaka, Okamoto K. Preparation and gas separation performance of flexible pyrolytic membranes by low-temperature pyrolysis of sulfonated polyimides, JOURNAL OF MEMBRANE SCIENCE, 2005, 261, 17.
    [20]. J. de Abajo, J. de la Campa, J. Espeso, C.Garcia, Designing aromatic polyamides and polyimides for gas separation membranes, MACROMOLECULAR SYMPOSIA, 2003, 199, 293.
    [21]. Y. Xiao, T. Chung, H. Guan, M. Guiver, Synthesis, cross-linking andcarbonization of co-polyimides containing internal acetylene units for gas separation.,JOURNAL OF MEMBRANE SCIENCE, 2007, 302, 254.
    [22]. Y. Kim; K. Park, T. Tak, Synthesis and characterization of soluble polyimides and its ultrafiltration membrane performances, JOURNAL OF APPLIED POLYMER SCIENCE, 1999, 73, 907.
    [23]. A. Iwama and Y. Kazuse, New polyimide ultrafiltration membranes for organic use, Journal of Membrane Science, 1982, 11, 297.
    [24]. N. Mohammad, N. Sarbolouki, Properties of asymmetric polyimide ultrafiltration membranes, I. Pore size and morphology characterization, Journal of Applied Polymer Science, 1984, 29, 743.
    [25]. Y. Kim; K. Park, T. Tak, Preparation of soluble polyimides and ultrafiltration membrane performances, JOURNAL OF APPLIED POLYMER SCIENCE, 2000, 75, 1.
    [26]. W. Mark, S. Linda, X. Chengzeng, L. R. Dalton, S. Yongqiang, H. William, Large and Stable Nonlinear Optical Effects Observed for a Polyimide Covalently Incorporating a Nonlinear Optical Chromophore. Chem. Mater, 1994, 6, 104.
    [27]. Takanobu Noguchi and Masaaki Hirooka, Toshihiro Ohnishi, Ichiki Murase, Preparation of graphite film by pyrolysis of polymers, Synthetic Metals, 1987, 18, 497.
    [28]. J. Davenas, X. L. Xu and G. Boiteux. New conducting and optical properties induced in polyimide by ion beam irradiation, Synthetic Metals, 1988, 24, 81.
    [29]. Mark W. Becker, Linda S. Sapochak, Rima Ghosen, Chengzeng Xu, Larry R. Dalton, Yongqiang Shi, William H. Steier, Alex K.-Y. Jen. Large and Stable Nonlinear Optical Effects Observed for a Polyimide Covalently Incorporating a Nonlinear Optical Chromophore. Chem. Mater., 1994, 6, 104.
    [30]. S. D. Bruck, Thermal degradation of an aromatic polypyromellitimide in air and vacuum III—Pyrolytic conversion into a semiconductor, Polymer, 1965, 6, 319.
    [31]. Sui Y, Yin J, Hou ZJ, Zhu N, Lu JX, Liu YG, Zhu ZK, Wang ZG, A facile approach to prepare soluble side-chain polyimides for second-order nonlinear optics, JOURNAL OF POLYMER SCIENCE PART A-POLYMERCHEMISTRY, 2001, 39, 2189.
    [32]. Davey MH, Lee VY, Wu LM, Moylan CR, Volksen W, Knoesen A, Miller RD, Marks TJ, Ultrahigh-temperature polymers for second-order nonlinear optics, Synthesis and properties of robust, processable, chromophore-embedded polyimides, CHEMISTRY OF MATERIALS, 2000, 12, 1679.
    [33]. Liu YG, Sui Y, Yin J, Gao J, Zhu ZK, Huang DY, Wang ZG, Synthesis and characterization of side-chain polyimides for second-order nonlinear optics via a post-azo-coupling reaction, JOURNAL OF APPLIED POLYMER SCIENCE, 2000, 76, 290.
    [34]. Rumiko Hayase, Naoko Kihara, Naohiko Oyasato, Shigeru Matake, Masayuki Oba, Positive photosensitive polyimides using polyamic acid esters with phenol moieties, Journal of Applied Polymer Science, 1994, 51, 1971.
    [35]. Hasegawa, Masatoshi, Nakano, Jun, Miyazaki, Tatsuya, Tanaka, Yuma, Hydroxyamide-containing positive-type photosensitive polyimides, JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 2007, 20, 175.
    [36]. Watanabe Y, Shibasaki Y, Ando S, Ueda M. New negative-type photosensitive alkaline-developable semi-aromatic polyimides with low dielectric constants based on poly(amic acid) from aromatic diamine containing adamantyl units and alicyclic dianhydrides, a cross-linker, and a photoacid generator, POLYMER JOURNAL, 2005, 37, 270.
    [37]. Miyagawa T, Fukushima T, Oyama T, Iijima T, Tomoi M. Photosensitive fluorinated polyimides with constant based on reaction development a low dielectric patterning, JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2003, 41, 861.
    [38]. Preparation and properties of high-pretilt-angle polyimides based on an alicyclic dianhydride and long alkyloxy side-group-containing diamines, JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2000, 38, 1943.
    [39].杨晶晶,周宏伟,党国栋,陈春海。聚酰亚胺硅氧烷/聚酰亚胺两面异性复合膜的制备及性能研究。高等学校化学学报。2006,27,1579。
    [40]. Watanabe Y, Shibasaki Y, Ando S, Ueda M. Synthesis and characterization ofnovel low-k polyimides from aromatic dianhydrides and aromatic diamine containing phenylene ether and perfluorobiphenyl units, POLYMER JOURNAL, 2006, 38, 79.
    [41].姜峰,林润雄。可溶性含氟聚酰亚胺三元共聚物的合成。合成化学,2007,15,150。
    [42].卢彦斌,苏桂仙,宋媛,王锦艳,蹇锡高。可溶性耐高温聚酰亚胺压电复合材料的制备与性能。塑料工业,2007,35,66。
    [43]. Ye, YS; Chen, WY; Wang, YZ. Synthesis and properties of low-dielectric-constant polyimides with introduced reactive fluorine polyhedral oligomeric silsesquioxanes, JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2006, 44, 5391.
    [44]. Yang, CP; Hsiao, SH; Wu, KL. Organosoluble and light-colored fluorinated polyimides derived from 2,3-bis(4-amino-2-trifluoromethylphenoxy)naphthalene and aromatic dianhydrides, POLYMER, 2003, 44, 7067.
    [45]. Yang, CP; Chen, RS; Chen, KH. Light-colored and soluble fluorinated polyimides based on 2-trifluoromethyl-4,4'-diaminodiphenyl ether and various aromatic dianhydrides, COLLOID AND POLYMER SCIENCE, 2003, 281, 505.
    [46]. Mathews, AS; Kim, I; Ha, CS. Fully aliphatic polyimides from adamantane-based diamines for enhanced thermal stability, solubility, transparency, and low dielectric constant, JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 102, 3316.
    [47]黄剑锋,溶胶-凝胶原理与技术,北京:化学工业出版社,2005第1版, 48
    [1]黄剑锋,溶胶-凝胶原理与技术,北京:化学工业出版社,2005第1版。58
    [2] Wen J., Wikes G.L. Organic/inorganic Hybrid Network Materials by the Sol-Gel Approach. Chem Mater. 1996, 8, 1667-1681.
    [3] West J.K., Hench L.L, The Sol-Gel process, J Chemical Review. 1990, 90, 33-72.
    [4]余桂郁,杨南如,溶胶-凝胶方法简介,硅酸盐通报, 1993, 6,60.
    [5]吴璧耀,张超灿,章文贡,有机/无机杂化材料及其应用,北京:化学工业出版社,2005第1版,77
    [6] Liu D S, Y e C, Dai D R, et al, A Novel Self2Assembled NLO Structurally Controlled Polymer Film. Solid State Communications, 1995, 194(3),1692172
    [7] Buestrich R, K ahlenberg F, et al, Ormocers for Optical Interconnection Technology. J. Sol2Gel Science and Technology, 2001, 20,1812186
    [8] SCHMIDT K, BARLOW S, and LECLERCQ A, et al. Efficient acceptorgroups for NLO chromophores: competing inductive and resonancecontributions in heterocyclic acceptors derived from 2-dicyanomethy-lidene-3-cyano-4, 5, 5-trimethyl-2, 5-dihydrofuran [J]. J Mater Chem, 2007, 17(28): 2944–2949.
    [9] CHEN L J, JIN X F, CUI Y J, et al. Dipolar orientation stabilities ofhybrid films for second-order nonlinear optical applications [J]. J Sol–Gel Sci Technol, 2007, 43(3): 329–335.
    [10] CUI Y J, CHEN L J, QIAN G D, et al. Preparation and second-order optical nonlinearity of inorganic–organic hybrid films [J]. J Non-cryst Solids, 2008, 354(12–13): 1211–1215
    [11] KIM H K, KANG S-J, CHOI S-K, et al. Highly efficient organic/ inorganic hybrid nonlinear optic materials via sol–gel process: synthesis, optical properties, and photobleaching for channel waveguides [J]. Chem Mater, 1999, 11(3): 779–788.
    [12] Lu P., Li J., Hua J.L., Qin J.G., Qin A.J., Ye C., Two novel fluorinated poly(arylene ether)s with pendant chromophores for second-order nonlinear optical application Maeromolecules,2004,37,7089一7096
    [13] REYES-ESQUEDA J, DARRACQ B, GARCíA-MACEDO J, et al. Effect of chromophore-chromophore electrostatic interactions in the NLO response of functionalized organic-inorganic sol–gel materials. Opt Commun, 2001, 198(1–3), 207–215.
    [14] Stahelin M., Buriand D. M., Ebert M, Reevaluation of the thermal stability of optically nonlinearly merriest guest systems J. Phys. Lett.,1992, 61(14) ,1626-1628
    [15] Valley J. F., Wu J. W., Emmer S. et al, Thermo Plasticity and Parallel-Plate poling electro-optic polyimide host thin films [J]. APPL. Phys.Lett.,1992, 60, P160.162
    [1] W. J. Tomlinson, and C. A. Brackett, Telecommunications applications of integrated optics and optoelectronics, Proc.IEEE, 1987, 75, 1512
    [2] E. Vogues, and A. Neyer, Integrated-optic devices on LiNbO3 for optical communication, J.Lightwave Technol., 1987, 5, 1229,
    [3] L. Thylen, Integrated optics in LiNbO3: recent developments in devices in telecommunications, J. Lightwave Technol., 1988, 6, 847,
    [4] R. C. Alferness, Guided wave devices for optical communications, IEEE J.Quan.Electron., 1981, 17, 946
    [5] C. M. Verber, R. P. Kenan, and J. R. Busch, Design and performance of an integrated optical digital correlator, J.Lightwave Technol., 1983, 1, 256
    [6] S. K. Korotkydk, G. Eisenstein, and A. H. Gnauck, et al., 4-Gb/s transmission experiment over 117km of optical fiber using a Ti-LiNbO3 external modulator, J.Lightwave Technol., 1985, 3, 1027.
    [7] H. J. R. Dutton, Understanding optical communication, IBM Corporation, ITSO Redbooks, 1998, 262.
    [8] Q. F. Yan, J. Z. Yu, S. W. Chen, et al., 2×2 electrooptical switch in silicon-on-insulator waveguide, EDSSC, 2003, 91-94
    [9] J. Goldhar, M. henesian, Large-aperture electrooptical switches with plasma electrodes, IEEE J.Quantum Electronics, 1986, 22 (7), 1137
    [10] L. McCaughan, Low-loss polarization-independent electrooptical switches atλ=1.3μm, J. Lightwave Technology, 1984, 2(1), 51
    [11] R. Thapliya, Y. Okano, S. Nakamura, Electrooptic characteristics of thin-film PLZT waveguide using ridge-type Mach-Zehnder modulatorElectrooptic characteristics of thin-film PLZT waveguide using ridge-type Mach-Zehnder modulator, J. Lightwave Technology, 2003, 21, 1820
    [12] M. Suzuki, H. Tanaka, and A. S. Akiba, et al., Electrical and optical interactionsbetween integrated InGaAsP InP DFB lasers and electro absorption modulators,”J.Lightwave Technol., 1988, 6, 779
    [13] I. P. Kaminov, J.R.Carruthers, and E.H.Turner, et al., Thin film LiNbO3 electro-optic light modulator, Appl.Phys.Lett, 1973, 22, 540
    [14] D. G. Girton, S. L. Kwiatkowski, G. F. Lipscomb, R. S. Lytel, 20 GHz electro-optic polymer Mach--Zehnder modulator, Appl.Phys.Lett. 1991, 58, 1730
    [15] C. C. Teng, Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth, Appl.Phys.Lett, 1992, 60, 1538
    [16] W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, L. R. Dalton, Optical heterodyne detection of 60 GHz electro-optic modulation from polymer waveguide modulators,Appl.Phys.Lett., 1995, 67, 1806
    [17] D. Chen, H. R. Fetterman, W. Wang, Y. Shi, Demonstration of 110 GHz electro-optic polymer modulators, Appl.Phys.Lett, 1997, 70, 3335
    [18] M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee, Broadban modulation of light by using a n electro-optic polymer, Science, 2002, 298, 1401
    [19] Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, W. H. Steier, Low(sub-1-volt)halfwave voltage polymeric electrooptic modulators achieved by controlling chromophore shape,Science, 2000, 288, 119
    [20] L. Dalton, Nonliear optical polymeric materials: From chromophore design to commercial application, Advance in Polymer science, 2002, 158, 1
    [21] A Chen, V. Chuyanov, H. Zhang, L.R. Fetterman, Low VπElectro-optic Polymer Waveguide Modulators Using the Full Potential of HighμβChromophores and a Constant Bias Voltage.Proc.SPIE, 1998, 10,3281,
    [22] P. Labbé, A. Donval, R. Hierle, E. Toussaere, J. Zyss, Electro-optic polymer based devices and technology for optical telecommunication, C.R.Physique, 2002, 3, 543
    [23] K. D. Singer, M. G.Kuzyk, W. R. Holland, et al., Electro-optic phase modulationand optical second-harmonic generation in corona-poled polymer films, Appl.Phys.Lett, 1988, 53 (19), 1800
    [24]M. Amano and T.Kaino, Second-order Nonlinearity of a Novel Diazo-dye-attached Polymer, J.Appl.Phys, 1990, 68(12), 6024
    [25]马春生,刘式墉《光波导模式理论》吉林大学出版社,2006,21-23
    [26]S. Goel and L. Naylor, Thermally induced birefringence and stress in poly (methyl methacoylate) waveguides on oxidized silicon substrates Appl. OPt.,1993, 32(3), 322
    [27]Z. Xi-Zhen, Z. Da-Ming, M. Shan-Kun, et al, 1.53μm photoluminescence from ErYb (DBM)3 MA containing polymer,Applied Physics B, 2007, 86, 677

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700