阳极铝箔工艺过程和立方织构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电解电容器是电子工业的三大基础元件之一,电容器用阳极铝箔是制造优质铝电解电容器的关键材料。为了实现阳极铝箔的国产化,替代进口产品并填补国产优质中、高压电解电容器阳极铝箔的空白,本文对阳极铝箔的立方织构形成及演变和工艺过程进行了较深入的研究。
     本文首先对电解电容器用中、高压阳极铝箔的研究与生产现状进行综述,分析了国内外关于Fe、Si、Cu等化学成分对阳极铝箔性能影响,关于晶粒大小、位错密度、晶体取向等组织结构因素对阳极箔比电容影响的研究结果等文献。结合具体的工艺路线,分析研究了从均匀化退火、热轧温度、预备退火、附加退火、最终冷轧变形率到成品退火等的研究与工艺现状,及这些因素对铝箔最终退火立方织构比例影响规律和机制的国内外研究进展。在对热轧工艺的综述过程中,抓住了热轧工艺对原始取向的影响和Fe、Si杂质的存在状态两大研究线索。根据以上文献研究和生产工艺现状,设计了针对低铁硅和高铁硅原料分别进行试验的总体方案。
     介绍了本文研究所用到的微织构分析试验,阐述了EBSD取向成像分析技术的原理,并就本文研究所用的LEO1530扫描电镜及所用软件,以及扫描电镜的新技术作了介绍。在对立方织构进行研究的过程中,为实现工业用快速织构检测,尤其是立方织构的快速定量分析,本文借鉴国外硅铁织构腐蚀坑形状分析的文献,发展了高纯铝箔快速织构检测方法,并总结了蚀坑法的理论依据和操作方法。
     本文对乌铝(国产乌鲁木齐高纯铝)的工艺过程和立方织构进行了系统研究,重点研究了以低Fe、Si含量的高纯铝乌铝原料进行生产的工艺过程与立方织构的关系。通过对热终轧温度不同的热轧板进行预备退火、冷轧和成品退火试验及成品立方织构的定量检测,研究热终轧温度、预备退火温度、成品退火工艺对立方织构比例的影响规律。通过光学金相阳极复膜晶粒形态观察、扫描电镜组织形态观察、透射电镜析出物分布及高倍组织观察等实验手段,分析了乌铝立方织构演变的规律及影响成品立方织构比例的主要因素,提出低铁硅含量高纯铝阳极箔的成品退火织构中,立方织构的比例由原始(001)面晶粒比例、S织构强弱、析出物对再结晶的影响、铁硅的存在形式等共同决定。对乌铝立方织构的演变及影响因素进行了综合分析,为高纯铝阳极箔的生产工艺提供理论依据。
     本文对较高Fe、Si含量的高纯铝——美铝(美国高纯铝)的工艺过程与立方织构的关系进行了比较研究。通过采用不同的预备退火温度、冷轧过程中附加的部分再结晶退火(即附加退火)不同的退火温度、附加退火后最终冷轧(即附加轧制)
    
    重庆大学博士学位论文
    不同的变形率、不同成品退火工艺等的组合试验及成品立方织构的定量检测,研究
    预备退火温度、附加退火温度、附加轧制变形率及成品退火工艺对立方织构比例的
    影响规律。优化出了适用于较高Fe、Si含量的高纯铝(美铝)的阳极铝箔生产工艺
    参数,并对美铝工艺过程中立方织构的演变特点进行了分析。
     在上述试验的基础上,本文针对乌铝和美铝中立方织构的演变及其它相关现象
    作了研究分析。采用了扫描电镜微区取向成像技术进行微织构分析,研究高纯铝立
    方织构演变及变形织构经多工艺环节向立方退火织构转变的规律,并结合热分析试
    验结果及讨论,分析了生产过程的各种影响因素及作用机制。
     通过本文的研究,确定了热轧和预备退火工艺参数的变化对立方织构的影响规
    律及生产中应控制的范围,掌握了冷轧变形及附加退火工艺参数对成品箔立方织构
    的影响规律。结合本文在热终轧温度、预备退火温度、附加轧制和附加退火温度的
    关联性方面的重要研究进展,建立了优化阳极箔生产过程工艺参数和参数选择的依
    据。研究成果已在工业生产中得到成功应用。
Electrolytic capacitor is one of the three basic electronic components, capacitor anode aluminum foil is the key material for high quality electrolytic capacitors. In order to develop domestic capacitor anode aluminum foil and to reduce the import of high voltage electrolytic capacitors, this thesis worked on the evolution of cube texture and making techniques of anode aluminum foil.
    Current process and research status quo of anode aluminum foil for high voltage electrolytic capacitors was summarized firstly in this paper, including the influence of chemical composition such as Fe Si Cu on the properties of anode aluminum foil, the influence of microstructures such as grain size, dislocation density, crystal orientation on specific capacitance of anode aluminum foil. Relating to practical processes, the paper analyzed the technologic status quo of homogenizing, hot rolling, preparing anneal, additional anneal, additional rolling deformation and last anneal, and the rule and mechanism research development of their effects on cube texture ratio in aluminum foil after last anneal. From the summary of hot rolling processes, the effect of original orientation and status of Fe, Si impurities were taken as important research objects. According to above research and technologic status quo, the total project focused on aluminum foils with low Fe, Si impurity and high Fe, Si impurity respectively
    The paper introduced the analysis experiment of micro-texture, stated the technological principle of EBSD orientation image, and introduced the LEO 1530 scanning electronic microscope and its software as well as some new techniques. In order to achieve quick test for industrial texture, and especially to measure cube texture quantitatively, by means of foreign references related to etch pit shape in silicon steel, the method of industrial texture quick test for high purity aluminum was developed by this paper. The test method and skill of etch pit experiments were also summarized.
    The paper systematically researched the processing and the cube texture of Wu aluminum (high purity aluminum produced by Urumchi, China), emphasized the relationship between technological processes and cube texture of Wu aluminum containing low Fe, Si impurity. By tests of preparing anneal, cold rolling, last anneal and quantitative measurement of cube texture for finished product, the effect rule of hot finish rolling temperature, preparing anneal temperature, last anneal technique on the cube texture ratio was obtained. By observation of grain shape with positive electrode oxiding
    
    
    
    film, microstructure under SEM, precipitation distribution and microstructure under TEM, as well as other test methods, the rules of cube texture development and the main factors effecting cube texture ratio in Wu aluminum were analyzed. It was suggested that the cube texture ratio in the finished product of high purity anode foil with low Fe, Si content depended on the following: the original ratio of (001) grains, amount of S orientation, the effect of precipitation on recrystallization, the status of Fe, Si in aluminum. The development of cube texture in Wu aluminum and its effecting factors were roundly analyzed, which could provide reference to the production of high purity anode aluminum foil.
    The relationship between the processing and the cube texture of Mei aluminum (American high purity aluminum) containing high Fe, Si impurity was studied too in the paper. With quantitative measurement of cube texture in finished products, the effects of preparing anneal temperatures, additional partial recrystallization anneal temperatures, deformation rates of additional cold rolling and different processes for finished product anneal on the cube texture ratio were studied. The process variables were optimized to produce anode foil with high purity aluminum containing more Fe and Si content, and the development character of cube texture during technological process of Mei aluminum was analyzed and discussed.
    On the basis of above experiments, the paper studied the developmen
引文
[1] 王祝堂,田荣璋.铝合金及其加工手册.中南大学出版社,2000,568~612
    [2] 卢载浩,董芳,刘海洋.全球铝轧制工业概览系列综述之十九——中国铝箔工业回眸与现状.轻合金加工技术,2003,31(2):1~7
    [3] Stevens J.L., Shaffer J.S., Vandenham J.T. The service life of large aluminum electrolytic capacitors: Effects of construction and application. IEEE Transactions on Industry Applications, 2002, 38(5): 1441~1446
    [4] Nakajima Y., Nakamatsu S., Shimamune T., et al. Development of liquid contacting system for forming of aluminum foil for electrolytic capacitors and its commercialization. Electrochemistry, 2001, 69(6): 483~486
    [5] 刘晓英,张利君.铝箔生产技术(2).轻金属,1996,46(9):56~60
    [6] Endou Seiichi, Inagaki Hirosuke. Control of microstructures and textures in high purity AI for advanced, high efficiency electrolytic capacitor. Materials Science Forum. v 396-402, n1, 2002, p 327~332
    [7] 王祝堂.中国现代铝加工业四十年(2).铝加工,1997(1):1~5
    [8] Watanabe K., Sakairi M., Takahashi H., et al. Formation of composite oxide films on aluminum by sol-gel coating and anodizing-For the development of high performance aluminum electrolytic capacitors. Electrochemistry, 2001, 69(6): 407~413
    [9] 钟利,赫崇富.铝箔轧制特点及轧机配置方式.轻合金加工技术.2003,31(3):1~6
    [10] 杨邦朝,冯哲圣,徐永兴.全球电极箔产业现状及发展趋势.新材料产业,2002(2):1~3
    [11] 王祝堂,郑祥健.最优化铝箔厂——建设新铝箔厂的最佳选择.轻合金加工技术,1999,27(8):1~4
    [12] 马邦娟.我国铝板带箔材市场分析及发展对策.世界有色金属,1998(5):4~6
    [13] 孔祥鹏.有色金属工业面对加入WTO的技术发展对策.河北冶金,2002(4):4~5
    [14] 马胜利,井晓天.铝及铝合金阳极氧化膜结构及其应用.兵器材料科学与工程,1998,21(4):54~57
    [15] 陈存中.有色金属熔炼与铸锭.北京:冶金工业出版社,1999.194
    [16] 杨重愚.轻金属冶金学.北京:冶金工业出版社,2002.200~201
    [17] 高亢之.电解电容器用铝箔概述.轻合金加工技术,2000,28(11):9~15
    [18] 郭瑞,刘贵云,宛亚坤.电解电容器高压阳极用铝箔研究.轻合金加工技术,2002,30(4):20~24
    [19] 王瑞梓.赋能腐蚀铝箔.轻合金加工技术,1991,22(8):2~9
    
    
    [20] 王小飞.电解电容器释疑.宁波教育学院学报,2002,No.1:7~9
    [21] Tsai, Ming-Liao. Lu, Yi-Fang. Do, Jing-Shan. High-performance electrolyte in the presence of dextrose and its derivatives for aluminum electrolytic capacitors. Journal of Power Sources, 2002, 112(2): 643-648
    [22] Morimoto, T. Tsushima, M. Che, Y. Performance of capacitors using organic electrolytes. Materials Research Society Symposium-Proceedings, 2000, v575: 357~367
    [23] Girginov, A. Zahariev, A. Klein, E. Electronic conductivity of the (+)aluminum/complex anodic film/electrolyte system. Journal of Materials Science: Materials in Electronics, 2002, 13(9): 543~548
    [24] 宋永祥.电解电容器基本性能与阳极氧化膜的关系.电子元件与材料,1996,15(1):7~12
    [25] Nakajima, Y. Nakamatsu, S. Shimamune, T., et al. Development of liquid contacting system for forming of aluminum foil for electrolytic capacitors and its commercialization. Electrochemistry, 2001, 69(6): 483~486
    [26] Wang Zhaohong, Yuan Zhanheng, Li Hui. Study of measure means of form capacity of the form-electrolyte of anodic oxide film for dielectric. Proceedings of SPIE-The International Society for Optical Engineering, 2001, v4414: 193~196
    [27] 陈平文.电解电容器用国产电极箔发展概况.电子元件与材料,1999,18(12):37~39
    [28] Nomoto, S. Nakata, H. Yoshida, A., et al. Advanced capacitor and their application. Journal of Power Sources, 2001, v97-98: 807~811
    [29] 高亢之.电解电容器负(阴)极用铝箔的制造技术.轻合金加工技术,2001,29(4):1~7
    [30] 冯哲圣,杨邦朝,肖占文.电解电容器用铝箔交流腐蚀理论扩面倍率K的计算机模拟计算.功能材料,2001,32(1):50~51
    [31] 肖占文.电容器铝箔交流腐蚀扩面机理研究.电子元件与材料,2001,2l(2):13~15
    [32] 徐友龙,曹婉真,孟中岩.高压电解电容器阳极铝箔扩面腐蚀机理的研究.西安交通大学学报,1995.No.1:11~12
    [33] Matsushima Manabu. Aluminum electrolytic chip capacitors evolve with SMT technology. Journal of Electronic Engineering, 1992, v29, n309: 98~100
    [34] Pfeilmaier Peter. Aluminum electrolytic capacitors for industrial electronics: Optimized design keeps costs on target. Components, 1996, 31(5): 47~49
    [35] Evans David A. High energy density electrolytic capacitor. NASA Conference Publication, 1996, No.3337: 189~193
    [36] 徐胜亮,余海涛,李玉玲.电解电容器用铝箔现状及其发展趋势.电子元件与材料.1994,13(4):11~14
    [37] 张三平,李跃喜,邹瑞海,等.电解电容器铝箔纯交流腐蚀工艺影响因素的研究.中国腐蚀
    
    与防护学报.1996,16(2):133~139
    [38] Seki Fumie. Cube-oriented regions in inhomogeneous rolling texture and recrystallization texture of high purity aluminum sheets. Journal of Japan Institute of Metals, 2002, 66(2): 117~121
    [39] Watanabe K., Sakairi M., Takahashi H., et al. Formation of composite oxide films on aluminum by sol-gel coating and anodizing-For the development of high performance aluminum electrolytic capacitors. Electrochemistry, 2001, 69(6): 407~413
    [40] Tada Kiyoshi, Awaya Kurata. Influence of oxide films formed by final annealing on the D.C. etching property of aluminum foil for electrolytic capacitors. Journal of Japan Institute of Light Metals, 50(11): 590~593
    [41] Oh Han-Jun, Park Gyeong-Su Kim Jung-Gu, et al. Surface roughness factor of anodic oxide layer for electrolytic capacitors. Materials Chemistry and Physics, 2003, 82(2): 331~334
    [42] Osawa N., Fukuoka K. Pit nucleation behavior of aluminium foil for electrolytic capacitors during early stage of DC etching. Corrosion Science, 2000, 42(3): 585~597
    [43] 凌亚标,尚振山,张声鹏.提高电解电容器用铝箔质量初探.轻合金加工技术,1999,27(7):27~31
    [44] Goad D.G.W., Uchi H., Modelling the capacitance of d.c. etched aluminum electrolytic capacitor foil. Journal of Applied Electrochemistry, 2000, 30(3): 285~291
    [45] 余忠,杨邦朝.电容器用铝箔阳极氧化膜的改性研究.功能材料,1999,30(4):382~384
    [46] 曹富荣,段日瑚,吴庆龄.电容器铝箔比容的研究.轻合金加工技术,1994,22(4):33~37
    [47] 李念奎,叶淑芬.工业因素对高纯铝立方织构的影响.轻合金加工技术,1993,21(11):19~23
    [48] Tada Kiyoshi, Awaya Kurata, Influence of oxide films formed by final annealing on the D.C. etching property of aluminum foil for electrolytic capacitors. Journal of Japan Institute of Light Metals, 2000, 50(11): 590~593
    [49] Tu G.C., Lin C.F., Peng Y.M., Effect of indium impurity on the DC-etching behaviour of aluminum foil for electrolytic capacitor usage. Corrosion Science, 1997, 39(9): 1531~1543
    [50] Hibino Atsushi, Okido Masazumi, Oki Takeo. Generation of pit and interfacial impedance characteristics of aluminum foil for electrolytic capacitor in an acid solution. Journal of Japan Institute of Light Metals, 1994, 44(5): 298~304
    [51] 侯振庆.工艺因素对电解电容器阳极箔比电容的影响[J].轻合金加工技术,1997,25(12):25~28
    [52] J. Hasenclever, G. Scharf. Evolution of Microstructure and Texture in Al 99/99-Foils for High Voltage Electrolytic Capacitors. Materials Science Forum, 1996, v217~222: 565~569
    [53] T. Suzuki, K. Arai, M. Shiga, and Y. Nakamura. Impurity Effect on Cube Texture in Pure Aluminum Foils[J]. Metall. Trans. A, 1985, 16(A): 27.
    
    
    [54] 李念奎.提高高纯铝箔立方织构的工艺途径.轻合金加工技术.1995,23(4):18~23
    [55] 王治国,李念奎.高纯铝铸锭冶金质量对高压电解电容器用箔生产工艺和产品质量的影响.轻合金加工技术.1997,25(11):9~13
    [56] 张新明,孟亚,周鸿章,等.Fe杂质对高纯铝再结晶织构及比电容的影响.中国有色金属学报.1999,9(3):19~23
    [57] 傅高升,康积行.工业纯铝中铁和硅的作用分析于初探.特种铸造及有色合金,1999,增刊第1期
    [58] 初丛海.工业高纯铝熔铸中铁、硅杂质的控制.轻合金加工技术,1996,24(8):11~13
    [59] 李成利.高纯铝化学成分对高压电解电容箔质量的影响[J].铝加工,1998,21(5):39~43
    [60] Caicedo-Martinez C.E., Koroleva E.V., Thompson G.E., et al. Influence of impurities in aluminium on surface treatment. Corrosion Science, 2002, 44(11): 2611~2620
    [61] 张静,彭建,潘复生.工业纯铝中的化合物相[J].轻合金加工技术,2000,28(5):1~6
    [62] Hirsch J., Karhausen K.F., Lochte L. Advances in industrial aluminium research and development. Materials Science Forum, 2002, v396-402(3): 1721~1730
    [63] J. Hirsch, K. Lücke. The Application of Quantitative Texture Analysis for Investigating Continous and Discontinuous Recrystallization Process of Al-0.01Fe[J]. Acta Metall., 1985, 33(10): 1927~1938
    [64] S. BENUM, E. NES. Effect of precipition on the evolution of cube recrystallisation texture. Acta mater. 1997, 45(11): 4593~4602
    [65] Haiou Jin, Shig Saimoto. The role of specific impurities in the evolution of deformation textures. Scripta Materialia, 2002, 46: 275~279
    [66] 崔祺,张伟斌.高纯电容铝箔中残留杂质化合物的研究.中南矿冶学院学报,1986,49(3):39~42
    [67] Ito Kunio, Lucke Kurt. Effect of annealing temperatures on the compositions of r-orientation in al-0.04%fe alloy. Journal of Japan Institute of Light Metals, 1978, 28(5): 241~246
    [68] 谭树松.有色金属材料学[M].北京:冶金工业出版社,1993.54.
    [69] 蒋显全,周鸿章.热精轧工艺对LG5M箔织构和比电容的影响.轻合金加工技术,1995,23(12):15~18
    [70] 李玉梅.高纯铝铸锭的铁、硅、铜含量控制.轻合金加工技术.2002,30(10):8~10
    [71] 徐进,毛卫民,冯惠平,等.Cu对高压电解电容器阳极铝箔再结晶织构的影响.北京科技大学学报 2002,24(2):133~136
    [72] Vatne H.E., Engler O., Nes, E. Effect of precipitates on texture development. Materials Science Forum, 1994, 157-6(pt2): 1501~1506
    [73] 刘楚明,张新明,陈志永,等.微量元素对高纯铝箔立方织构的影响.中南工业大学学报(自
    
    然科学版),2001,32(2):176~179
    [74] 邓运来,张新明,刘楚明,等.微量稀土对高压阳极电容铝箔织构演变的影响.功能材料 2002,33(1):50~53
    [75] 郑子樵,张纬斌.组织结构对电容铝箔腐蚀形貌和比电容的影响.中南矿冶学院学报,1983,35(1):111~113
    [76] Sebald R., Gottstein G. Modeling of recrystallization texture: Interaction of nucleation and growth. Acta materialia, 2002, 50(6): 1587~1598
    [77] L.S.Shvindlerman, Grain boundary misorientation changes during grain growth in pure aluminum, Materials Science Forum, 1994, 157-162: 1057~1062
    [78] Tomoaki YAMANOI, Masashi SAKAGUCHI, Minoru HASEGAWA. Effect of Si content on recrystallized structure of Al-1.2%Fe alloy foils, 轻金属, 1988, 38(2): 77~83
    [79] 顾景诚,孙兴信.原料组织遗传性对铝及铝合金显微组织的影响.轻合金加工技术,1995,23(4):32~36
    [80] R.A. Vandermeer. The migration of high angle grain boundaries during recrystallization. Interface Science, 1998, v6: 95~104
    [81] 孙中禹,徐友龙,曹婉真.高纯铝再结晶品粒度对比电容的影响.电子元件与材料.1995,14(5):45~47
    [82] D.G.W. GOAD, H. UCHI. Modelling the capacitance of D.C. etched aluminium electrolytic capacitor foil. Journal of applied electrochemistry, 2000, v30: 285~291
    [83] Qing Liu, Niels Hansen. Microstructural study of deformation in grain boundary reion during plastic deformation of polycrystalline aluminium. Materials Science and Engineering, 1977, A234-236: 672~675
    [84] 周江,左宏卿.铝箔退火时组织与性能的变化.轻金属,1998,48(3):53~56
    [85] A. Godfrey, D.Juul Jensen, N.Hansen. Slip Pattern, Microstructure and Local Crystallography in Aluminium Single Crystal of Brass Orientation {110} <112>. Acta mater., 1998, 46(3): 823~833
    [86] Kim K.H., Lee D.N., Analysis of deformation textures of asymmetrically rolled aluminum sheets. Acta materialia, 2001, 49(13): 2583~2595
    [87] 凌亚标,张声鹤,谭澄宇,等.高纯铝铸轧坯均匀化对其箔材组织结构的影响.铝加工,1996,19(3):38~41
    [88] Delannay L., Mishin Q.V., Juul Jensen D., et al, Quantitative analysis of grain subdivision in cold rolled aluminium. Acta Materialia, 2001, 49(13): 2441~2451
    [89] 望月隆.铝电解电容器用电极箔[J].轻合金加工技术,1988,16(9):17~19
    [90] Kim S.H., Erb U., Aust K.T., et al. Effect of texture on the corrosion behaviour of high purity aluminum, Materials Science Forum, 2002, 408-412(11): 1043~1048
    
    
    [91] 杨俊杰,李尧,陈洪.中高压铝电解电容器阳极铝箔的比电容.湖北工学院学报,1998,n1:11~13
    [92] Ratchev Peter, Labie Riet, Verlinden Bert, et al. About the reasons of streaks appearance on the surface of etched plates of commercial purity AA1080 aluminum. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 2000, 91 (6): 510~515
    [93] 杨邦朝,肖占文.预处理对铝箔电蚀特性的影响.电子元件与材料,1997,17(3):13~15
    [94] 陈增来.电解电容器的最新进展.电子质量,1994,No.10:3~9
    [95] Raabe D., Zhao Z., Mao W. On the dependence of in-grain subdivision and deformation texture of aluminum on grain interaction. Acta Materialia, 2002, 50(17): 4379~4394
    [96] Neumann L., Kopp R., Ludwig A., et al. Simulation of casting, homogenization, and hot rolling: Consecutive process and microstructure modelling for aluminium sheet production. Modelling and Simulation in Materials Science and Engineering, 2004, 12(1): 19~31
    [97] 张华,唐伟,梁延彬.热终轧温度对纯铝板组织与性能的影响.轻合金加工技术,1997,25(10):21~22
    [98] Chang-Hee Choi, Kwanak-ku Kim, Dong Nyung Lee. Texture control of aluminum alloy sheet. TMS Annual Meeting Feb 9~13 1997: Synthesis/Processing of Light Metallic Materials 11: 37~48
    [99] LIU Chu-ming, ZHANG Xin-ming, CHEN Zhi-yong, et al. Effect of hot finishing rolling on cube texture in high purity aluminum foils. Trans. Nonferrous Met. Soc. China, 2001, 11(1): 103~107
    [100] G. Gottstein, R. Sebald. Modeling of recrystallization textures. Journal of materials processing technology, 2001, 117(3): 282~287
    [101] Reber F. R., Haenel W. Czubayko U., et al. Modeling of recrystallization texture: Interaction of nucleation and growth. Acta Materialia, 2002, 50(6): 1587~1598
    [102] R.K. Bolingbroke, G.J. Marshall, R.A. Ricks. The influnce of initial microstructure on the recrystallization textures of aluminum alloys after hot deformation by laboratory simulation.
    [103] 张辉,钟华萍.工业纯铝多道次热轧工艺的实验模拟.轻合金加工技术.1999.027(010).20~22
    [104] B. Ren, J.M.Morris. Microstructure and Texture Evolution of A1 during Hot and Cold Rolling[J]. Metall. Mater. Trans. A, 1995, 26(A): 31~33
    [105] 刘楚明,张新明,陈志永.高纯铝在轧制及退火过程中微观组织与织构的演变.轻合金加工技术,2001,29(1):18~21
    [106] David Harry Rogers, William Thompson Roberts. Rolling texture in aluminum sheet. Z.Metallkde. 1974, Bd65 H.2: 100~105
    [107] Xiao Yaqing, Liu Chuming, Jiang Shunong. Influnce of hot-rolling temperature and multistage annealing upon the cube texture of high purity aluminum capacitor foils. Material Science
    
    Forum, 2002, v408-412, nⅡ 1449~1452
    [108] Hutchinson W. B., Ushioda K. Texture development in continuous annealing. Scandinavian Journal of Metallurgy, 1984, 13(5): 269~275
    [109] Driver Julian, Perocheau Franck. Modelling hot deformation and textures of aluminium alloys. Materials Science Forum, 2000, 331(Ⅰ): 43~56
    [110] 刘楚明,周鸿章.微量铍对高压阳极电容铝箔再结晶织构形成的影响.轻合金加工技术.2001.029(006):15~18
    [111] Klyszewski Andrzej, Lech-Grega Marzena, Szymanski Wojciech, et al. The texture and structure of commercial purity aluminium after hot rolling. TMS Annual Meeting, 2003: 45~49
    [112] Takata Naoki, Ikeda Ken-Ichi, Yoshida Fuyuki. Effect of thermo mechanical treatment on cube texture in aluminum foils for electrolytic capacitor. Journal of Japan Institute of Light Metals, 2003, 53(5): 218~223
    [113] Radhakrishnan B, Sarma G, Weiland H., et al. Simulations of deformation and recrystallization of single crystals of aluminium containing hard particles. Modelling and Simulation in Materials Science and Engineering, 2000, 8(5): 737~750
    [114] C. A. Stickles, R. H. Bush. Preciptation in the sysem Al-0.05 Wt Pct Fe. METALLURGICAL TRANSAACTIONS, 1971, August v2: 2031~2042
    [115] Jin Haiou, Saimoto Shig. The role of specific impurities in the evolution of deformation textures. Scripta Materialia, 2002, 46(4): 275~279
    [116] Pan fusheng, Peng jian, Tang aitao, et al. The effects of the additional rolling and annealing on the cube texture in the high-purity aluminum foils for capacitors. Materials Science Forum, 2003, v437-438: 455~458
    [117] Ikeda K., Takata N., Yoshida F., et al. Influence of pertial annealing temperature on cube texture in high purity aluminum foils. Materials Science Forum, 2002, v396-402 (1): 569~574
    [118] Kunio Ito, Kurt Lucke, Rolf Rixen. The Influence of Pre-annealing and Annealing Temperatures on the Recrystallization Textures of Cold Rolled Aluminium-Iron Alloys. Z.Metallkde. 1976, 67(5): 338~347.
    [119] 小管张弓,孙明仁.高纯铝(1).轻金属.1989.000(010):55~58,48
    [120] Murakami Takeshi. Sharpening of cube texture in high purity aluminum foil by two step partial annealing and light rolling. Materials Science Forum, 2002, 396-402(1): 417~422
    [121] Murakami Takeshi. Influence of repeating of partial annealing and light rolling process on cube texture in high purity aluminum foil. Keikinzoku/Journal of Japan Institute of Light Metals, 2002, 52(11): 541~546
    [122] 王轶农,蒋奇武,赵骧等.冷轧高纯铝板再结晶织构的演变特征.2000,东北大学学报(自
    
    然科学版),21(1):84~87
    [123] Kamijo Taichi, Seki Fumie, Tamai Hiroki, et al. Significance of intermediate thermo-mechanical treatments for formation of cube texture in high purity aluminum foils. 1999, 49(12): 589~594
    [124] 徐进,毛卫民,冯惠平等.退火加热过程对高压电解电容器阳极铝箔立方织构的影响.中国有色金属学报,2001,11(1):42~44
    [125] Huh M.Y., Kim J.K., Jang H. et al. Study of annealing texture components in high purity aluminums. Materials Science Forum, 2002, 408-412(1): 815~820
    [126] Zhang Xin-Ming, Liu Sheng-Dan, Tang Jian-Guo, et al. Mechanism of strengthening of cube texture for high purity aluminum foils by additional annealing. Transactions of Nonferrous Metals Society of China (English Edition), 2003, 13(3): 499~503
    [127] 高海燕,何生辉.国产高纯铝箔最终退火工艺对表面立方织构度的影响.南通工学院学报,2003,16(1):17~19
    [128] Ikeda K. Tsumagari K. Yoshida F., et al. Analysis of cube texture in high purity aluminum foils for electrolytic capacitor by EBSP method. Keikinzoku/Journal of Japan Institute of Light Metals, 2001, 51(2): 119-124
    [129] 马英晓.杨平.余永宁.毛卫民.高纯电子铝箔立方织构形成的微观过程 北京科技大学学报,2003,25(2):147~150
    [130] Kajikhara K., Tokuda K., Sugizaki Y. el al. The formation process of cube texture during the final annealing in high-purity aluminum foil. Keikinzoku/Journal of Japan Institute of Light Metals, 2001, 51(3): 182-187
    [131] [美] L.F.蒙多尔福.铝合金的组织和性能[M].王祝堂,张振录,郑璇,等译.北京:冶金工业出版社,1988.183.
    [132] Cui Qi, Saitoh Hiroshi, Ohori, Koichi. Effect of partial annealing and light cold rolling on the formation of cube texture in a 3004 aluminum alloy. Keikinzoku/Journal of Japan Institute of Light Metals, 1999, 49(12): 583-588
    [133] 杨平,孙祖庆,毛卫民.取向成像:一种有效研究品体材料组织、结构及取向的技术.中国体视学与图像分析,2001,6(1):50~53
    [134] Dingley D.J. A comparison of diffraction techniques for the SEM. Scanning electron microscopy, 1981; Ⅳ: 273~286
    [135] Hjelen J, Qrsund R and Nes E. On the origin of recrystallization textures in aluminum. Actametall. mater, 1991, 39: 1377~1404.
    [136] Kunze K. Wright S.I. Adams B.L. et al. Advances in automatic EBSP single orientation measurements. Textures and Microstructures, 1993, 20: 41~54
    [137] MAO Wei-min and ZHANG Xin-ming.Quantitative Texture Analysis of Crystalline
    
    Materials[M].Beijin: Metallurgical Industry Press, 1995, 89
    [138] Chin, G. Y. Texture in research and practice. Grewen. J., wasserman. G. (Eds.), Berlin, 1969: 51~80
    [139] Helming, K., S. Matthies und G. Vinci: ODF-representation by means of sections. In: J.S. Kallend and G. Gottstein (Eds.): Proc. Eighth Int. Conf. Text. Mat. (ICOTOM 8). Warrendale (1988), PA TMS, 55~60.
    [140] Dons A. L., Nes E. Nucleation of cube texture in aluminium. Materials Science and Technology, 1986, 2(1): 8~18
    [141] 金鹤鸣,姜新力,姚骏恩.中国电子显微分析仪器市场.分析仪器市场调查与分析.北京:海洋出版社,1998.第四章.p113~152
    [142] 姚骏恩.电子显微镜的现状与展望.电子显微学报,1998,17(6):767~776
    [143] 廖乾初.场发射扫描电镜进展及基物理基础.电子显微学报,1998,17(3):311~318
    [144] Oscarsson A., Hutchinson W. B., Ekstrom, H. E. Influence of initial microstructure on texture and earing in aluminium sheet after cold rolling and annealing. Materials Science and Technology, 1991, 7(6): 554-564
    [145] D. N. Lee, G. Gottstein. Textures of Materials. Icotom-13. Materials Science Forum, v408-412: 1~1803
    [146] 刘楚明,张新明,陈志永等.中间退火对高纯铝立方织构的影响.金属热处理,2001,No.3:28~30
    [147] 刘楚明,张新明,陈志永等.成品退火对高纯铝立方织构的影响.中南工业大学学报,2001,32(1):85~88
    [148] 黎勇,陈文,温庆红.热终轧温度及预先退火对高压阳极箔立方织构影响的研究.铝加工,2001,24(2):8~12
    [149] 张静.AA1235合金铝箔的组织控制和工艺优化.博士论文,重庆大学,1999年11月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700