超积累植物东南景天(Sedum alfredii Hance)对锌的活化、吸收及转运机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物修复技术因其高效低耗、保持水土和美化环境等特点,已引起国际土壤——植物营养学界和环境科学界的浓厚兴趣和政府部门的高度重视,有望成为一项具有广阔应用前景的治理重金属污染土壤的全新技术。而目前对植物超积累重金属机理认识的不足限制了该技术的应用和改良。东南景天(Sedum alfredii Hance)是在我国东南部地区一些古老的铅锌矿上发现的一种新的锌镉超积累植物,同时对铅具有富积作用。本研究以超积累植物东南景天为材料,采用水培和土培的方法,运用同位素示踪技术、高效液相色谱分析技术、原子吸收光谱技术等,较系统地研究了超积累生态型东南景天活化、吸收、转运重金属的机制,取得的主要研究结果如下:
     1.东南景天能增加根系与土壤的接触面积,提高对重金属的吸收。1000μmol L~(-1)Zn、200μmol L~(-1)Pb和200/1000μmol L~(-1)Pb/Zn复合处理对东南景天根系形态的影响因不同生态型而异,其中对根系长度、根系表面积、根系体积的影响较大,而对根系直径影响较小,差异不显著。1000μmol L~(-1)Zn和200/1000μmol L~(-1)Pb/Zn复合处理对超积累生态型东南景天根系生长有明显的促进作用,200μmol L~(-1)Pb、1000μmolL~(-1)Zn和Pb/Zn复合处理对非超积累生态型根系生长表现出明显的抑制作用。1000μmol L~(-1)Zn和Pb/Zn复合处理对超积累生态型东南景天根系活力没有显著影响,非超积累生态型东南景天在各处理条件下根系活力显著降低,且随着处理时间的增加没有回升。东南景天根长、根表面积、根体积与体内Pb、Zn含量呈显著或极显著正相关。也就说,超积累生态型东南景天的根长、根表面积、根体积明显大于非超积累生态型,可通过增加根长、根体积和侧根数量以增加根系与土壤的接触面积,从而提高根系对锌、铅的吸收机会,因而其体内Pb、Zn含量高。
     2.50-500μmol L~(-1)Zn处理条件下,非超积累生态型东南景天根系生长受到抑制,而500μmol L~(-1)Zn处理后超积累生态型的根系干重明显增加。Zn对超积累生态型东南景天根系活力没有显著的影响,而对非超积累生态型,当Zn浓度大于10μmol L~(-1),根系活力明显降低。随着锌浓度的增加,非超积累生态型东南景天根系膜透性、MDA含量显著增大,锌对细胞膜结构造成了很大的危害。Zn>50μmol L~(-1)使非超积累生态型东南景天SOD活性显著降低。超积累生态型东南景天根系膜透性、MDA含量、SOD酶活性、脯氨酸含量与地上部及根系锌含量相关性不显著。非超积累生态型东南景天根系活力、SOD酶活性与地上部及根系锌含量呈显著或极显著负相关,而MDA含量、脯氨酸含量与地上部及根系锌含量呈显著正相关。超积累生态型东南景天比非超积累生态型具有更强的忍耐溶液锌的能力,在同等锌浓度下,其根系生理活性高于非超积累生态型。
     3.种植超积累生态型东南景天后,根际土壤pH值较非根际土壤减低0.3个单位,
Phytoremediation is defined as the use of plants to decontaminate and/or remove pollutants from the environment. It has emerged as an alternative technique for removing toxic metals from soil and offers the benefits of being in situ, cost-effective and environmentally sustainable Plants with high metal uptake and accumulation capacity have been termed as hyperaccumulator species. At present, more than 450 species of hyperaccumulators belonging to 45 families have been identified. Unfortunately, most of them are low biomass and slow growing, severely limiting their potential for large-scale decontamination of polluted soils. Transferring the genes conferring the hyperaccumulating phenotype to plants that produce more shoot biomass and metal accumulation capacity has been suggested as a potential approach for making phytoremediation a viable commercial technology. However, progress towards this goal has been hindered by a lack of understanding of the basic biochemical, physiological, and molecular mechanisms involved in heavy metal hyperaccumulationSedum aljredii Hance has been identified as a new Zn-hyperaccumulating plant species native to China. We have found two contrasting ecotypes of Sedum aljredii Hance. One is a Zn/Cd hyperaccumulator designatured as the hyperaccumulating ecotype (HE) from the old mined area, while another is a non-hyperaccumulator designatured as non-hyperaccumulating ecotype (NHE) from the agricultural area of Hangzhou surburb, Zhejiang Province of China. In this study, solution culture experiment, soil culture experiment and simulation experiment were carried out to characterize Zn activation, uptake and transport in Sedum aljredii Hance by means of a series of chemical, biochemical methods, such as radiotracer techniques, AAS for elements determination, organic acid quantitation determined with HPLC, and so on. The major results were summarized as follows:1. Heavy metal uptake was enhanced in hyperaccumulator ecotype of Sedum aljredii Hance by increasing the contact area between soot and soil. Root length, root surface-area and root volume increased obviously due to 1000 umol L~(-1) Zn and/or 200/500 umol L~(-1) Pb/Zn combined treatments for the HE, whereas significantly decreased due to 200 μmol L~(-1)Pb, 1000 μmol L~(-1)Zn or Pb/Zn combined treatment for the NHE. Zinc and Pb concentrations in both ecotypes of Sedum aljredii Hance were positively correlated with root length, root surface area and root volume 1000 μmol L~(-1)Zn and/or 200/1000 umol L~(-1) Pb/Zn combined treatments had little impact on root activity of the HE. Root activity of HE decreased by 200 umol L~(-1) Pb treatment in the first 2 days, but recovered afterwards
    and close to the control at day 10 of the treatment. However, root activity of the NHE decreased by each metal treatment, and was not recovered with the advance of treatment time. Zn concentrations in the leaves and stems of the HE were 41 and 34 times higher, whereas lead concentrations were 1.9 and 2.4 times greater respectively, than those of the NHE when grown at 1000 μmol L~(-1) Zn and/or 100 μmol L~(-1) Pb. At combined supply of 500/100 μmol L~(-1) Zn/Pb, however, zinc concentrations in the stems and leaves of the HE decreased, while lead concentrations in the stems increased significantly, as compared with those of single metal treatment. Lead uptake of the HE was enhanced by Zn addition.2. Zn treatments had little impact on root activity of the HE, however, root activity of NHE decreased significantly when Zn concentration > 10 μmol L~(-1). Relatively conductance ratio of cell membrane and MDA concentration in NHE increased with increasing of Zn level in the solution. SOD activity of NHE was decreased significantly when Zn concentration > 50 μmol L~(-1). Cell membrane, MDA concentration, SOD activity, and proline concentration in root of HE were not correlated with Zn concentration in shoot and root of HE. Minimal linear relationships between root activity, SOD activity and Zn concentration in shoot and root of NHE were observed, however, MDA and pro
引文
1. Alkorta I, Garbisu C. Phytoremediation of organic contaminantsin soils. Bioresource Technology, 2001, 79: 273-276.
    2. Allen DL and Jarrell WM Proton and copper adsorption to maize and soybean root cell walls. Plant Physiol., 1989, 89: 823-832.
    3. Aprill W, Sims RC. Evaluation of the use of prairie grases for stimulating PAH treatment in soil. Chemosphere, 1990, 20: 253-265.
    4. Assuncao AGL, Costa Martins PDA, Foleter SDE, Vooijs R, Schat H, Aarta MGM. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant, Cell and Environment, 2001, 24:217-226.
    5. Baker AJM and Brooks RR. Terrestrial higher plants which hyperaccumulate metallic elememts. Biorecovery, 1989, 1:81-97.
    6. Baker AJM, McGrath SP, Reeves RD, Smith JAC. Metal hyperaccnmulator plants: a review of the ecology and physiology resource for phytoremediation of metal-polluted soils. In: Phytoremediation of contaminated soil and water. Terry N., Banuelos G. and Vangronsveld J.(eds). Lewis publishers, 2000, 85-107.
    7. Baker AJM, Walker PL. Ecophysiology of metal uptake by tolerant plants. In AJ Shaw, ed, Heavy Metal Tolerance in Plants: Evolutionary Aspects. CRC Press, Boca Raton, FL, pp 1990, 155-177.
    8. Basu U, Basu A, Taylor GJ. Differential exudation of polypeptides by roots of aluminumresistant and sensitive cultivates of Triticum aestivum L. in response to aluminum stress. Plant Physiol., 1994, 106: 151-158.
    9. Bennett R J, Breen CM. Aluminum toxicity: towards an understanding of how plant root react to the physical environment. Dev. Plant Soil Sci., 1981, 50:103-116.
    10. Bernal MP and McGrath SP. Effects of pH and heavy metal concentration in solution culture on the proton release, growth and elemental composition of Alyssum murale and Raphanus sativus L. Plant and Soil, 1994, 166:83-92.
    11. Bernal MP, McGrath SP, Miller AJ and Baker AJM. Comparsion of the chemical changes in the rhizosphere of the nicker hyperaccumulator Alyssum murale with the non-accumulator Raphanus sativus. Plant and Soil, 1994, 164:251-259.
    12. Bert V, Macnair MR, De Laguerie P, Sanmitou-Laprade P, Petit D Zinc tolerance and accumulation in metallicolous populations of Arabidopsis haileri (Brassicaceae). New Phytol., 2000, 146: 225-233.
    13. Beyer.WN. Damage to the forest ecosystem on Blue mountain from zinc mining, Trace Subst. Environ. Health, 1988, 22: 249-262.
    14. Bollag JM. Laccase mediated detoxification of phenolic compounds. Appl. Environ. Microbiol., 1988, 54: 3086-3091.
    15. Bradford M M. A rapid and sensitive method for the quantification of microgram qualities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72:248-254
    16. Brooks RR. Plants That Hyperaccnmulate Heavy Metals. CAB International, Wallingford, UK, 1998.
    17. Brown SL, Chaney RL, Angle JS and Baker AJM. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Soc Am J, 1995a, 59:125-133.
    18. Brown SL, Chaney RL, Angle JS and Baker AJM. Zinc and cadmium uptake by hyperaecumulator Thlaspi Caerulescens and metal tolerant Silene vulgaris grown on sludge-amended soils. Environ. Sci. Technol, 1995b, 29:1581-1585.
    19. Brown SL, Chaney RL, Angle JS, Baker AJM Phytoremediation potential of Thlaspi caerulescens and Bladder campion for zinc and cadmium-contaminated soil. J.Environ.Qual.,1994,23:1151-1157
    20. Burke JP, Fenton MR. Effect of zinc~deficient diet on lipid peroxidation in liver tumor subcellular membranes. Experimental Biology and Medicine, 1985,179:187-191.
    21. Cakmak I, Marschner H. Increase in membrane permeability and exudation in roots of Zn deficient efficient Plants. Plant siology, 1988, 132: 356-361.
    22. Causton D.R. Plant growth analysis: the variability of relative growth rate within a sample [J]. Ann. Bot., 1991,67:137-144
    23. Chaney RL, Malik M, Li YM, Brown SL, Angle JS and Baker AJM. Phytoremediation of soil metals. In Proceedings international seminar on use plants for environmental remediation. Kosaikaikan, Tokyo, Japan, 1997, 49-65.
    24. Chardonnens AN, Koevoets PLM, Zanten AV, Schat H and Verkleij JAC. Properties of enhanced tonoplast zinc transport in naturally selected zinc-tolerant Silene vulgaris. Plant Physiology, 1999,120: 779-785.
    25. Chaudhry T M. Phytoremediation - focusing on accumulator plants that remediate metal contaminated soils. Australasian J Ecotoxicol. 1998, 4: 37-51.
    26. Chen XB, Wright JV, Conca JL. et al. Evaluation of heavy metal remediation using mineral apatite.Water. Air and Soil Pollution, 1997, 98:57-78
    27. Chlopecha A and Adriano DC. Mimicked In-situ stabilization of metals in a cropped soil bioavailability and chemical form of zinc, Environ. Sci. Technol, 1996, 30: 3292-3303.
    28. Cieslinski G, et al Low molecular weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil, 1998, 203:109-117.
    29. Cieslinski, G., Vanrees KCJ, Szmigielska AM, Huang PM. Low molecular weight organic acids relesed from roots of durum wheat and flax into sterile nutrient solution. Journal of plant nutrition. 1997,20: 753-764
    30. Clarkson DT and Hanson JB. Proton fluxes and the activity of a stelar proton pump in onion roots. J. Exper Bot., 1986, 37:1136-1150.
    31. Conklin DS and Kung C. Interactions between gene products involved in divalent cation transport in Saccharomyces cerevision. Mol Gen Genet., 1994,244:303-311.
    32. Cram WJ. Compartmentation and exchange of chloride in carrot root tissue. Biochim Biophys Acta. 1968,163: 339-353.
    33. Cunninngham SD. Phytoremediation of contaminated soil. Trend Biotechnol. 1995.13 (9):393-397.
    34. Delhaize E. Genetic control and manipulation of root exudates. In: Johnsen C, Lee KK, Sharma KK, et al eds. GeneticM anipulation of Crop Plants to Enhance Integrated Nutrient M anagement in Cropp ing System. ICR ISA T, India, 1995,145-152.
    35. Donnelly PK, Hedge RS, and Fletcher JS. Growth of PCB-degrading bacteria on compounds from photosynthetic. Chemosphere, 1984,28:981-988.
    36. Ebbs SD, Lasat MM, Brady DJ. et al. Phytoextraction of cadmium and zinc from a contaminated soil. J. Environ. Qual., 1997,26:1424-1430.
    37. Ebbs SD. and Kochian L.V. Phytoextraction of zinc by oat (Avena sativa), barley(Hordeum vulgare), and Indian mustard(Brassica juncea). Environ. Sci. Technol., 1998, 32:802-806.
    38. Ebbs SD and Kochian LV. Toxicity of zinc to Brassica species: Implication for phytoremediation, J. Environ. Qual., 1997,26: 776-781.
    39. Ebbs SD and Kochian LV. Phytoextraction of zinc by oat (Avena sativa), barley(Hordeum vulgare), and Indian mustard(Brassica juncea), Environ. Sci. Technol., 1998, 32: 802-806.
    40. Edie D, Broderius M, Fett J. and Gurinot ML. A noval iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the national academy of sciences. USA, 1996, 93:5624-5628.
    41. Elliott HA and G.A. Brown Comparative evaluation of NTA and EDTA for extractive decontaminatin of Pb-polluted soils , Water .Air and Soil Pollution, 1989, 45: 361-369.
    42. Elliott HA and Shastri NL. Extractive decontamination of metal-polluted soils using oxalate Water .Air and Soil Pollution, 1999, 110:335-346.
    43. Elroy, A C. and Truelove B. The rhizosphere. New York: Springe Verlag Beidelberg. 1986. 25-73
    44. Ernst WHO, Verkleij JAC, and Schat H. Metal tolerance in plants. Acta Botanica Neerlandica, 1992,41,229-248.
    45. Ernst.WHO. Decontamination of mine sites by plants: An analysis of the efficiency, In Proceedings of the conference on environment contamination, Venice; CEP Consultants: Edinburgh, 1988, p305-310.
    46. Femalndez S, Secane S, Merino A. Plant heavy metal concentrations and soil biological properties in agricultural serpentine soil. Communication in Soil Science and plant Analysis, 1999,30:1867-1864
    47. Fernandez S, Seoane S, Merino A. Plant heavy metal concentrations and soil biological properties in agricultural serpentine soils. Communications in So il Science and Plant Aalysis, 1999, 30:1867-1884.
    48. Fletcher JS and Hedge RS. Release of phenols by perennial plant roots and their potential importance in bioremediation. Chemosphere, 1995, 31: 3009-3016.
    49. Foehes D, Claassen N, Jungk A. Phosphorus efficiency of plant. I: External and internal P requirement and P efficiency of different plant species.Plant soil, 1988,110: 10-109.
    50. Frey B, Keller C, Zierold K, Schulin RDistribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ., 2000, 23: 675-687.
    51. Gabbrielli R, Mattioni C and Vergnano O. Accumulation mechanisms and heavy metal tolerance of a nickle hyperaccumulator. J. Plant Nutr., 1991,14:1067-1080.
    52. Gardner WK, Barber D A, Parbery DG. The acquisition of phorphorus by Lupinus albus L Ⅲ. The probable mechanism by which phorphorus movement in the soil/root interface is enhanced. Plant Soil, 1983,70: 107-124.
    53. Geiger G., P. Federer and H.Sticker. Reclamation of heavy metal contaminated soils : Field soils germination experiments, J.Environ Qual, 1993,22:201-207
    54. Giannopolitis CV, Ries S K. Superoxide dismutase I.Occurrence in higher plasts. Plant Physiol., 1977,59:309-314.
    55. Giusquiani PL. Concezzi M. Businelli, et al. Fate of pig sludge liquid fraction in calcareous soil: Agricultural and Environmental Implications. J. Environ. Qual., 1998,27:364-371
    56. Gordon M, et al. Phytoremediation of trichloroethylene with hybrid poplars. Environ. Health Prosp., 1998, 32 : 1001-1004.
    57. Gordon M, et al. Phytoremediation of trichloroethylene with hybrid poplars [J] . Environ. Health Prosp., 1998, 32 : 1001-1004.
    58. Grill E, Winnacker EL and Zenk MH. Phytochelations: the principal heavy-metal compexing peptides of higher plants. Science, 1985,230:674-676.
    59. Grolrau V, Plantureux S and Guchert. Influence of plant morphology on root exudation of maize subjected to mechanical inpedance in hydroponic conditions Plant and Soil. 1998, 201:231-239
    60. Guerinot ML and Eide D. Zeroing in on zinc uptake in yeast and plants. Current Opinion in Plant Biology, 1999, 2:244-249.
    61. Guirguis MA, Kunc F, Vancura V. Presence and oxidation of amino acids in rhizosphere and non-rhizosphere soil. Folia Microbiol. 1969,14:1-12
    62. Hart JJ, DiTomaso JM, Linscott DL, Kochian LV. 1992. Characterization of the transport and cellular compartmentation of paraquat in roots of intact maize seedlings. Pestic Biochem Physiology 43, 212-222.
    63. Hayens RJ. Ion exchange properties of roots and ionic interactions within the root POPLsm: Their role in ion accumulation by plants. Bot. Rev. 1980,46: 75-99.
    64. He Bing, Yang Xiao-e. Sedum alfredii: A New Lead-Accumulating Ecotype. Acta Botanica Sinica, 2002,44:1356-1370.
    65. Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and Stoichiometry of fatty acid peroxidation. Arch Biochem, Biophys, 1968,125: 189-198.
    66. Heinrich D. Chemotactic attraction of Azospirillum lipoferuny by wheat roots and characterization. Can. J. Microbial, 1985, 31: 26-31.
    67. Heyter PG, Prichard WWA new class of uncoupling agents: carbonyl cyanide phenyl hydrazones. Biochem Biophys Res Commun., 1962,7: 272-276.
    68. Hilter LU. Neuere erfahrungen und probleme dufdem gebietder bodenbakteriologie und unter besondererberu cksichtigung der grundungung und brache. Arb Dtsch Land Wirt. Ges., 1904.98: 59-78.
    69. Hoffland B, Romheld V, Marschner H. Citric acid exudation and precipitation of calcium citrate in the rhizosphere of white lupin(Lupinus albus L.).Plant Cell Environ., 1992, 12:285-292
    70. Huang C, MJ Webb. Graham RD. Pot size affects expression on Mn efficiency in barley. Plant and Soil, 1996,178: 437-447.
    71. Huang JW, et al. Phytoremediation of Uranium contaminated soils: role of organic acid in triggering Uranium hyperaccumulation in plant. Envi ron. Sci. Technol., 1998, 32:2004-2008.
    72. Inskeep WP, et al. Thermodynamic prediction for the effect of root exudates on mental speciation in the rhizosphere. J. plant, 1986.9 (3): 567-586.
    73. Joner EJ, et al. Nutritional constraints to degradation of polycyclic aromatic hydrocarbons in simulated rhizosphere. Soil. Biol. Soil Chem., 2002, 34: 59-864.
    74. Jones DL., Kochian LV. Aluminium-organic acid interaction in acid soil. I. Effect of root derived organic acids on the kinetics of Al dissolution. 1996,182: 221-228.
    75. Jones DL, Perter RD. Role of root drived organic acids in the mobilization of nutrient from the rhizosphere. Plant Soil. 1995,166: 247-257.
    76. Jones DL, Darrah .R. and Kochian LV. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant and Soil, 1996,180: 57-66.
    77. K Kalbitz, S Solinger, JH Park, et al. Controls on the dynamics of dissolved organic matter in soil. Soil Science, 2000,165(4): 277-304.
    78. Kalbitz K and R Wennich. Mobilization of heavy metal and in polluted wetland soil and its dependence on dissolved organic matter. The sci. of the total environ., 1998, 209: 27-39.
    79. Kalbitz K, Popp P, Geyer W, et al. β -HCH mobilization in polluted wetland soils as influenced by dissolved organic matter. Sci. Total Environ., 1997, 204:37-48.
    80. Kamizono A., Nishizawa M., Teranishi Y. and Kimura A. Identification of a gene conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevision. Mol Gen Genet., 1989,219:161-167.
    81. Kandeler E, Kampichler C, Horak O. Influence of heavy metals on the functional diversity of soil microbial communities. Biol Ferti Soils, 1997, 23 (3): 299-306
    82. Kastori R, Plesnicar M, Sakac D, Pankovic D, Arsenihjevic-Maksimovic I. Effect of excess lead on sunflower growth and photosynthesis. Journal of Plant Nutriton, 1998, 21(l):75-85.
    83. Khan AG. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 2000,1: 197-207.
    84. Kilibanov AM, et al. Horseradish peroxidase for the removal of carcinogenic aromatic amines from water. Enzyme Microb. Technol., 1981, 3: 119-121.
    85. Knight B, Zhao FJ., McGrath SP. and Shen ZG. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant and Soil, 1994, 197: 71-78.
    86. Kochian LV, Lucas WJ. Potassium transport in corn roots. I. Resolution of kinetics into a saturable and linear component. Plant Physiol., 1982,70: 1723-1731.
    87. Kochian LV. Mechanisms of micronutrient uptake and translocation in plants. In: Mortvedt JJ, ed. Micronutrients in agriculture. Soil Science Society of America No. 4, Madison, WI: The American Society for Agronomy, 1991. 229-296.
    88. Kochian LV. Zinc absorbtion from hydroponic solutions by plant roots. In: Robson AD, ed. Zinc in soil and plants. Dordrecht, Boston, London: Kluwer Academic Publishers, 1993, 45-57.
    89. Kramer U, Cotter-Howells JD, Charnock JM., Baker AJM and Smith JAC. Free histidine as a metal chelator in plants that accumulate nickel. Nature, 1996, 379: 635-638.
    90. Kramer U, Pickering IJ, Prince RC, Raskin I. and Salt DE. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiology, 2000,122:1343-1353.
    91. Kramer U, Smith RD, Wenzel WW, Raskin I and Salt DE. The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Physiology Plant, 1997,115:1641-1650.
    92. Krishnamurti G.S.R., Cieslinski G., Huang P.M. and Van Rees K.C.J. Kinetics of cadmium release from soils as influenced by organic acids: Implication in cadmium availability. J. Environ. Qual., 1997,26:271-277.
    93. Krishnamurti G.SR, Huang PM, Van Rees KCJ, Kozak LM and Rostad HPW. Speciation of particulate-bound cadmium of soils and its bioavailability. The Analyst, 1995,120:659-665.
    94. Kupper H, F Kupper, M Spiller. Environmental relevance of heavy metalsubstituted chlorophylls using the example of water plants. J. Exp.Bot., 1996,47: 259-266
    95. Kupper H, Lombi E, Zhao FJ, McGrath SP. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta, 2000, 212: 75-84.
    96. Kupper H, Zhao FJ, McGrath SP. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol., 1999, 119: 305-311.
    97. Laemmli UK. Cleavage of structural proteins during the assembly in the head of bacteriophase T4. Nature ,1970,227:680
    98. Lageman.R, Electroreclamation application in the Netherlands. Environ. Sci. Technol., 1993, 27(13):2648-2650
    99. Lasat MM, Baker AJM and Kochian LV. Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol., 1998, 118:875-883.
    100.Lasat MM, Baker AJM and Kochian LV. Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and non-accumulator species ofThlapi. Plant Physiol., 1996, 112: 1715-1722.
    l0l.Lasat MM, Pence NS, Garvin DF, Ebbs SD and Kochian LV. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J. Exp. Bot., 2000, 51:71-79.
    102. Leigh RA, TomosAD. Ion distribution in cereal leaves: pathways and mechanisms. Philos. Trans R. Soc.Lond-biol.Sci.1993, 341:75-86
    103. Li L. and Kaplan J. Defects in the yeast high affinity iron transport system result in increased metal sensitivity because of the increased expression of transporters with a broad transition metal specificity. J. Biol Chem., 1998, 273:22181-22187.
    104. Long XX, Yang XE, Ye ZQ, Ni WZ. Study of the differences of uptake and accumulation of zinc in four species of Sedum. Acta Bot Sin, 2002,44(2): 152-157.
    105. Lynch JM and Whipps JM. Substrate flow in the rhizosphere.Plant and Soil, 1990,129: 1-10.
    106. Ma JF, Hiradate S, Nomoto K, and Iwashita Internal detoxification mechanism of Al in Hydrangea. Identification of Al form in the leaves. Plant Physiol., 1997a, 117: 753-759.
    107. Ma JF, Hiradate S, Nomoto K, et al. Internal detoxification mechanism of Al in hydrangea -Identification of Al form in the leaves. Plant Physiol., 1997,113:1033-1039.
    108. Ma JF, Ryan PR, and Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science, 2001, 6:73-278.
    109. Ma JF, Zheng SJ, Hiradate S. and Matsumoto H. Detoxifying aluminum with buckwheat. Nature. 1997b, 390:569-570.
    110.Macklon AES, Ron MM, Sim ACortical cell fluxes of ammonium and nitrate in excised root segments of Allium cepa L: studies using 15N. J Exp Bot., 1990,41: 359-370.
    111.Macnair MR, Baker AJM. Metal tolerance in plants: evolutionary aspects. In ME Farago, ed, Plants and the Chemical Elements. VCH, Weinheim, Germany, 1994, pp 68-86.
    112.Macnair MR, Bert V, Huitson SB, Saumitou-Laprade P, Petit D. Zinc tolerance and hyperaccumulation are genetically independent characters. Proc R Soc Lond B. 1999, 66: 2175-2179.
    113.Macnical RD and Beckett. Critical tissue concentrations of potentially toxic elements. Plant and Soil, 1985,85:107-129.
    114.Marschner H. Mineral nutrition of higher plants. 2ed. Academic Press. San Diego. CA. USA. 1995.
    115.Marschner P, Crowley DE., Higashi RM. Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non mycorrhizal peper(Capsicum annuum L.). Plant Soil. 1997,189:11-20
    116.Mazhoudi S, Chaoui A, Ghorbal M H, Ferjani E E. Response of antioxidant enzymes to excess copper in tomato(Lycopersicon esculentum, Mill.) Plant Science. 1997,127,129-137
    117. McGrath SP, Sidoli CMD., Baker AJM., The potential for the use of metal-accumulating plants for the in situ decontamination of metal-polluted soils. In: Integrated soil and sediment reseach:A basis for proper protection, Eijsackers Ji\ and Harriers T. (eds), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993, p673-676.
    118. McGrath SP and Dunham SJ. Potential phytoextraction of zinc and cadmium from soils using hyperaccumulator plants. In: Proceedings international seminar on use plants for environmental remediation. Kosaikaikan, Tokyo, Japan, 1997, p100-117.
    119. McGrath SP, Shen ZG. and Zhao FJ. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucm grown in contaminated soils. Plant and Soil, 1997, 188: 153-159.
    120.McGrath SP and Zhao FJ. Phytoextraction of metals and metalloids from contaminated soils.Curr. Opin. Biotechnol, 2003, 14: 277-282.
    121.Mench M, et al. Metal binding with root exudates of low molecular weight. J. Soil Sci., 1988,39: 521-527.
    122.Mench M, Martin E. Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. Plant and Soil, 1991,132: 187-196
    123.Mench M, Fargues S. Metal Uptake by Iron2efficient and Inefficient Oats. Plant Soil,1994, 165: 227-233.
    124.Mengel K. and Schubert S. Active extrusion of protons into deionized water by roots of intact Tosc. Sci. Nat. Mem., 1948, 55: 49-74.
    125. Merckx R, Ginkel, JHV, Sinnaeve J and Cremers A. Plant induced-changes in the rhizosphere of maixe and wheat II .Complexation of cobalt, zinc and manganese in the rhizosphere of maize and wheat. Plant and Soil, 1986, 96: 95-97
    126. Miguel A. Pineros and LV. Kochian. Differences in Whole-Cell and Single-Channel Ion Currents across the Plasma Membrane of Mesophyll Cells from Two Closely Related Thlaspi Species. Plant Physiol., 2003,131: 583-594.
    127. Miller RM. Biosurfactant-facilitated remediation of metalcontaminated soils. Environ Health Perspect, 1995, 103:59-62.
    128.Minguzzi C and Vergnano O. Conteruto di nichel nell ceneri di Alyssum bertolonii. Desv. Atti. Soc. maize plants. Plant Physiol., 1985,79: 344-348.
    129. Mitch M. Lasat, Alan J. M. Baker, and Leon V. Kochian Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in thlaspi caerulescens. Plant Physiol., 1998,118:875-883.
    130. Mitch M. Lasat, Alan J. M. Baker, and Leon V. Kochian Physiological characterization of root Zn2+ absorption andtranslocation to shoots in Zn hyperaccumulator andnonaccumulator species- of thlaspi. Plant Physiol. 1996,112: 1715-1722.
    131.Mullins GL, Sommers LE. Cadmium and zinc influx characteristics by intact com (Zea mays L.) seedlings. Plant Soil 1986, 96: 153-164.
    132. Newman LA, Strand SE, Choe N, Duffy J, Ekuan G, Ruszaj M. Uptake and transformation of trichloroethylene by hybrid poplar. Environmental Science and Technology, 1997, 31: 1062-1067.
    133. Ni TH, Wei Y Z. Subcellular distrbution of Cadmium in mining ecotype Sedum al£rdii[J]. Acta Bot. Sin. 2003,45(8): 925-928.
    134.Nicell JA, et al. Reactor development for peroxidase catalyzed polymerization and precipitation of phenols from wastewater. Water Res .1993,11: 629-1639.
    135.Nies DH, Silver S. Ino effux system involved in bacterial metal resistances. J. Ind. Microbiol. 1995,14:186-199
    136.Nishizono H, Ichikawa H, Suziki S, and Ishii F. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant and soil, 1987,101:15-20.
    137.Nriagu JO and J.M.Pacyna. Quantitative assessment of worldwild contamination of air, water and soils by trace metals, Nature, 1988, 333(12): 134-139.
    138. Ortiz DF, et al. Transport of metal binding peptides by HMT1, a fission yeast ABC type vacuolar membrane protein.J Biol. Chem., 1995,270: 4721-4728.
    139. Parker DR, Norvel WA, Chanev RL. GEOCHEM—PC: a chemical speciation program for IBM and compatiblePersonal computers. In: LoeppertR H, Schwab A P, Goldberg S(eds.). Chemical Equilibrium and Reaction Models. Special Publication No. 42. Soil Science Society of America, Madison, WI, 1994: 253—269.
    140. Pence SN., Larsen PB., Ebbs SD., Letham DLD, Lasat MM, Garvin DF, Eide D. and Kochian LV. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens, Proceedings of the National Academy of Science USA, 2000, 97: 4956-4960.
    141. Pierce WS, Higinbotham N Compartments and fluxes of K+, Na+, and Cl~- in Avena coleoptile cells. Plant Physiol., 1970, 46: 666-673
    142.Pineros MA, Shaff JE. and Kochian LV. Development, characterization, and application of a cadmium-selective microelectrode for the measuremen of cadmium fluxes in roots of Thlaspi species and wheat. Plant Physiol., 1998, 116:1393-1401.
    143. Pitman MG. Uptake and transport of ions in barley seedings. II .Evidence for two active stages in transport to the shoot. Austral. J.Biol. Sci., 1972,25:655-658.
    144. Prasad DDK.ARK Prasad . Effect of lead and mercury on chlorophyll synthesis in mung bean seedlings. Phytochemistry, 1987, 26: 881-883
    145. Raskin I., Kumar P.B.A.N., Dushenkow S. and Salt D.E. Phytoremediation of metals:Using plants to remove pollutants from the environment. Curr.Opin.Biotechnol., 1997, 8: 221-226.
    146.Rauser W.E. Phytochelatins and related peptides structure, biosynthesis, and function. Plant Physiol., 1995, 109: 1141-1149.
    147. Rauser WE. Compartmental efflux analysis and removal of extracellular cadmium from roots. Plant Physiol., 1987, 85: 62-65
    148. Rauser WE. Structure and function of metal chelators produced by plants. Cell Biochemistry and Biophysics, 1999,31:19-48.
    149. Reeves R D, Baker J M. Metal-accumulating plants. In: Phytoremediation of toxic metals: Using plants to clean up the environment. Raskin H. and Ensley B D. (eds)John Wiley & Sons,Ins. 2000,193-230.
    150. Reilly KA, et al. Dissipation of PAHs in the rhizosphere. J. Environ. Qual., 1996. 25: 3-4.
    151. Reilly, K A., Banks MK., Schwab AP. Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. Journal of Environment Quality. 1996,25:212-219
    152. Roberts S.K. and Tester M. Inward and outward K+-selective currents in the plasma membrane of protoplasts from maize root cortex and stele. Plant J. 1995, 8: 811-825.
    153. Roberts SK and Tester M. Permeation of Ca2+ and monovalent cations through an outwardly rectifying channel in maize root stelar cells. J. Exper. Bot., 1997, 48:839-846.
    154. Robinson NJ., Tommey AM, Kuske C and Jackson PJ. Plant metallothioneins. Biochem J., 1993, 295:1-10.
    155.Romheld V. The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: An ecological approch. Plant and Soil, 1991,130:127-134.
    156. Rovira, AD, Foster RC and Martin JK. Note on terminology: origin, nature and nomenclature of the organic materials in the rizosphere. In: Harley, J. C. and Scott-Russelleds. The soil-root interface.London: Academic Press. 1979.
    157. Salt DE, Blaylock M, Kumar N, et al. A noval strategy for the removal of toxic metals from the environment using plants. Bio/Technology, 1995,13:468-474
    158. Salt D E, Smith R D, Raskin I. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, 49: 643-668.
    159. Salt DE and Kramer U. Mechanisms of metal hyperaccumulation in plants. In: Phytoremediation of toxic metals: Using plants to clear up the environment. Raskin H. and Ensley B.D. (eds), John Wiley & Sons. Inc. 2000, p231-246.
    160. Salt D.E. and Rauser W.E. Mg ATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiology, 1995,107: 1293-1301.
    161. Salt D.E. and Wagner G.J. Cadmium transport across tonoplast of vesicles from oat roots. J.BiolChem., 1993,268: 12297-12302.
    162. Salt DE, Kato N, Kramer U, Smith RD and Raskin I. The role of root exudates in nickle hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. In: Phytoremediation of contaminated soil and water. Terry N. and Banuelos G. (eds), Lewis publishers, Boca Raton. 2000, pi 89-200.
    163. Salt DE, M Blaylock, PBA Nanda-Kumar et al. Phytoremediation:A noval strategy for the removal of toxic metals from the environment using plants. Bio/Techoiogy, 1995, 13:468-474.
    164. Salt DE, Pickering IJ, Prince R.C, Gleba D., Dushenkov S., Smith R.D. and Raskin A.I. Metal accumulation by aquacultured seedings of Indian mustard. Envir. Sci. Technol., 1997, 31:1636-1644.
    165. Salt DE, Prince RC, Backer AJM, Raskin I and Pickering IJ. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ. Sci. Technol., 1999, 33: 713-717.
    166. Salt DE, Prince R.C, Pickering IJ and Raskin I. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol., 1995,109:1427-1433.
    167. Salt DE. Phytoextraction: present applications and future promise. In: Wise DL, (eds.), Bioremediation of Contaminated Soils. New York, Marcel Dekker. 2000.
    168. Sandmann ER, et al. Enumeration of 2242D2degading microorganism in soils and crop plant rhizosphere using indicatormedia: high populations associated with sugarcane ( S accharumofficinaram). Chemosphere, 1984,13: 1073-1084.
    169. Santa Maria GE, Cogliatti DH. Bidirectional Zn-fluxes and compartmentation in wheat seedling roots. Journal of Plant Physiology, 1988,132: 312-315.
    170. Sattelmacher B, Klotz F, Marschner H. Influence of the nitrogen level on root growth and morphology of two potato varieties differing in nitrogen acquisition.Plant Soil, 1990, 123:131-137.
    171. Schachtman DP and Baker SJ. Molecular approaches for increasing the micronutrient density in edible protion of food crops. Field Crops Research, 1999,60:81-92.
    172. Schnoor JL, Light LA, McCutchem SC, Wolfe NL Carreira L H. Phytoremediation of rgainc and nutrient contaminants. Environmental Science and Technology, 1995,29: 318-324
    173.Senden MHMN, Van Paassen FJM, VanDer Meer AJGM and Wolterbeek HTH. Cadmium-citric acid-xylem cell wall interactions in tomato plants. Plant Cell Environ., 1990,15:71-79.
    174. Shen Jianbo, Zhang Fusuo, Huang Qin and Mao Daru. Determination of organic acids in root exduates by high performance liquid chromatography: I Development and assessment of chromatographic condition. Pedosphere, 1998, 8(2): 97-104.
    175. Steer J, Harris JA. Shift in the microbial community in rhizosphere and non-rhizosphere soils during the growth of A grostisstolonif era. Soil. Biol. Soil Chem., 2000,32: 869-878.
    176. Storm L, Olsson T, Tyler G. Difference between calcifuge and acidifuge plants in root exudation of low molecular organic acids. Plant soil. 1994,167: 239-245
    177.Strasdeit H, Duhme AK, Kneer R, Zenk MH, Hermes C and Nolting HF. Evidence for discrete Cd (SCYs)4 units in cadmium phytochelation complex from EXAFS spectroscope. J.Chem. Soc. Chem. Commun., 1991,16:1129-1130.
    178.Takagi S, K Nomoto & T Tkaemoto. Physiological aspect of muginetic acid, a possible phytosiderophore of graminaceous plant. Journal of Plant Nutrient, 1984, 7: 469-477
    179.Takijima Y and F. Katsumi, Cadmium contamination of soils and rice plants caused by zinc mining: I . Production of high cadmium rice on the paddy fields in lower reaches of the mine station, Soil Sci. Plant Nutr, 1973, 19: 29-38.
    180.Thomine S, Wang R, Ward JM. Cdmium and iron transport by members of a plant metal transporter family in Arabdopsis with homology to Nramp gene. Proc. Natl. Acad.USA. 2000,97: 4991-4996.
    181. Thornton B. Indirect compartmental analysis of copper in live ryegrass roots: comparison with model systems. J Exp Bot. 1991,42: 183-188.
    182. Tyler G., Storm L. Differing organic acid exudation pattern explains calcifuge and acidifuge behavior of plants. Annals of Botany. 1995, 75: 75-78.
    183. Van Der Lelie N, Schwitzguebel JP, Glass DJ, Vangronsveld J, Baker AAssessing phytoremediation's progress in the United States and Europe. Environ Sci Technol., 2001, 35: 446-452
    184. Van Der Zaal EJ, Neuteboom LW, Pinas JE, Schat H, Verkleij J. and Hooykaas PJJ. Overexpression of a zinc transporter gene from Arabidopsis can lead to enhanced zinc resistance and zinc accumulation. Plant Physiol., 1999, 119:1-9.
    185. Vance ED, Brookes PC, Jenkinsons DS .An extraction method for measuring soil microbial biomass C, Soil Biol. Biochem, 1987, 19: 703-707.
    186. Vazquez MD, Poschenrieder C, Barcelo J, Baker AIM, Hatton P and Cope G.H. Compartment of zinc in roots and leaves of the zinc hyperaccumultor Thlaspi caerulescens J& C Presl. Bot Acta, 1994,107: 243-250.
    187. Vazquez MD, Poschenrieder C, Madico J, Hatton P, Baker AJM, Cope GH. Localization of zinc and cadmium in Thlaspi caerulescens (Brassicacease). A metallophyte that can hyperaccumulate both metals. J. Plant Physiol., 1992,140: 350-355.
    188.Veltrup W. Characteristics of zinc uptake by barley roots. Physiologia Plantarum, 1978, 2:190-194
    189. Verkleij JAC, Schat HMechanisms of metal tolerance in higher plants. In AJ Shaw, ed, Heavy Metal Tolerance in Plants: Evolutionary Aspects. CRC Press, Boca Raton, FL, 1989, pp 179-193
    190. Vogeli-Lange R. and Wagner G.J. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium-binding peptides. Plant Physiology, 1990, 92:1086-1093.
    191. Wagner G.J. Accumulation of cadmium in crop plants and its consequences to human health, Advance in Agronomy, 1991, 51:173-212.
    192.Warembourg F R Billes G Estiamting carbon transfers in the rhizosphere. In: Harley JL, Russell RS, eds The Soil-Root Interface, Cademic Press, London, 1979: 183-196.
    193.Weckx J E, Clifsters, M M. Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiology and Biochemistry, 1997, 35(5): 405-410.
    194. Wegner L.H. and Raschke K. Ion channels in the xylem paraenchyma of barley roots. Plant Physiol., 1994,105: 799-813.
    195. Wenhua Zhang, Fenqin Zhang, Zhenguo Shen., et al. Charges of H+ Pumps of Tonoplast Vesicle from Wheat Roots in Vivo and Vitro Under Aluminium Treatment and Effect of Calcium[J]. J of Plant Nut., 1998, 21(12): 2512-2526
    196.Wenzel WW, Adriano DC, Salt D, et al. Phytoremediation:a plant-microbe-based remediation system. In: Bioremediationof contaminated soils. Agronomy Monograph, 1999:37.
    197. White CW, Baker FD, Chaney RL and Decker AM. Metal complexation in xylem fluid Ⅱ.Theoretical equilibrium model and computational computer program. Plant Physiol., 1981, 67: 301-310.
    198. White PJ. Phytoremediation assisted by microorganisms. Treands in Plant Science, 2001, 6:502-502
    199. Whiting SN. Chang in phytoavailability of zinc to plant sharing a rhizosphere with the zinc hyperaccumulator Thlaspi caerulescens J&C. Presl. In: proceeeding of extended abstracts from the fourth international conference on the biogeochemistry of trace elements. Iskander IK et al. (eds), Berkeley, CA. 1997, p469-470.
    200. Whiting, SN. DeSouza MP, Terry N. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ. Sci. Technol., 2001, 35:3144-3150.
    201. Wolfe NL, Ou TY, Carreira L. Biochemical remediation ofrNT contaminated soils. Washington DC: Rept US Army Corps Eng, 1993.
    202. Wormy A, Krzeslowka M. Plant cell response to Pb. Acta Societatis Botanicorum Poloniae. 1993, 62, 101-105.
    203. Wray W, Boulinkas T, Wray W P, et al. Silver staining of proteins in polyacrylamide gels. Anal. Biochem., 1981, 118:197-203.
    204. Xian X F. Effect of chemical forms of cadmium, zinc and lead in polluted soil on their uptake by cabbage plants. Plant and Soli, 1989, 113:257-264.
    205. Yang X, Baligar VC, Martens DC, Clark RB. Cadmium effects on influx and transport of mineral nutrients in plant species. Journal of Plant Nutrition, 1996, 19:643-656.
    206. Yang X, Romheld V, Marschner H, Chancy RL. Application of chelator buffered nutrient solution technique in studies on zinc nutrition in rice Plant (Oryza Satliva L.) Plant and soil, 1994, 1631: 85-94.
    207. Yang XE, Long XX. Ye HB, He ZL, Calvert DV & Stoffella PJ. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil. 2004, 259: 181-189.
    208. Ye HB, Yang XE, He B, Long XX. Growth response and metal accumulation of Sedum alfredii to Cd/Zn complex-polluted ion levels. Acta Botany Sinic., 2003, 45, 1030-1036.
    209. Yoshitami KJ, Shann JR. Corn (Zea mays L.) root exudates and their impact on 14C-pyrene mineralization. Soil biology & biochemistry, 2001, 33: 1769-1776.
    210. Zang F, Romheld V. and Marschner H. Release of zinc mobilizing root exudates in different plant species as affected by zinc nutritional status. J. Plant. Nutr., 1991, 14(7): 675-686.
    211. Zhang. PC and T. A. Ryan. In vitro soil Pb solubility in the presence of hydroxyapatite, Environ. Sci. Technol, 1998, 32: 2763-2768.
    212. Zhang PC. Transformation of Pb(Ⅱ) from cerrusite to chloropyromorphite in the presence of hydroxyapatite under varying conditions of pH, Environ. Sci. Technol,, 1999,33:625-630
    213. Zhao F J, Lombi E, Breedon T, McGrath SP. Zinc hyperaecumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ. 2000, 23:507-514.
    214. Zheng Z, Sheth U, Nadig M, et al. A model for the role ofthe proline-linked petose phosphate pathway in polymeric dye-tolerance in oregano. Process Biochemistry, 2001, 36:941-946.
    215. Zhou LX. Wong JWC. 2001. Effect of dissolved organic matter from sludge compost on soil copper sorption. J. Environ Qual., 2001, 30:878-883.
    216.鲍士旦主编.土壤农化分析(第三版),中国农业出版社,2000
    217.陈怀满.土壤-植物系统中的重金属污染.北京:科学出版社,1996.
    218.陈利锋,宁玉立,徐雍,等.抗感赤霉病小麦品种超氧化物歧化酶和过氧化酶的活性比 较.植物病理学报,1997,27(3):209-213.
    219.陈同斌,陈志军.水溶性有机质对土壤中镉吸附行为的影响.应用生态学报 2002,13(2):183-186.
    220.陈英旭,林琦,陆芳,等.有机酸对铅、镉植株危害的解毒作用研究.环境科学学报,2000,20(4):467-472.
    221.关松荫,1986,土壤酶极其研究法,农业出版社.
    222.黄泽春,陈同斌,雷梅.陆地生态系统中水溶性有机质的环境效应.生态学报,2002,22(2):259-269.
    223.旷远文,温达志,钟传文,周国逸.根系分泌物及其在植物修复中的作用.植物生态学报 2003,27(5):709-717.
    224.李廷强,杨肖娥.土壤中水溶性有机质及其对重金属化学与生物行为的影响.应用生态学报,2004,(6):1083-1087.
    225.李廷强,杨肖娥,龙新宪.东南景天提取污染土壤中锌的潜力研究.水土保持学报,2004,18(6):79-83.
    226.廖敏,谢正苗,黄昌勇.镉在土水系中的迁移特征.土壤学报,1998,35(2):179-184
    227.林琦,陈英旭,陈怀满,等.根系分泌物与重金属的化学行为研究.植物营养与肥料学报,2003,9(4):425-431
    228.刘莹,盖钧镒,吕彗能.作物根系形态与非生物胁迫耐性关系的研究进展[J].植物遗传资源学报,2003,4(3):265-269.
    229.刘世亮,骆永明,曹志洪,等.多环芳烃污染土壤的微生物与植物联合修复研究进展.土壤,2002,2:257-265.
    230.龙新宪,杨肖娥,叶正钱.超积累植物的金属配位体及其在植物修复中的应用.植物生理学通讯,2003,39(1):71-77.
    231.龙新宪.东南景天(Sedum alfxedii H)对锌的耐性和超积累机制研究.浙江大学博士论文 2002.
    232.陆文龙,曹一平,张福锁.根分泌的有机酸对土壤磷和微量元素的活化作用.应用生态学报,1999,10(3):379-382.
    233.骆永明.强化植物修复的螯合诱导技术及其环境风险.土壤,2000,2:57-74.
    234.庞士铨.植物逆境生理学基础.哈尔滨:东北林业大学出版社,1990.
    235.沈宏,严小龙.根系分泌物研究现状及其在农业环境领域的应用.农村生态环境,2000,16(3):51-54.
    236.陶红群,李晓林,张俊伶.丛枝菌根菌丝对重金属元素Zn和Cd吸收的研究.环境科学学报,1998,5:545-548.
    237.王爱国,罗广华,邵从本,等.大豆种子超氧化物歧化酶的研究.植物生理学报.1983,(9):77-84.
    238.王大力.全球CO_2浓度变化与植物的化感作用.生态学报,1999,19(1):122-127.
    239.王果,李建超,杨佩玉等.有机物料影响下土壤溶液中镉形态及其有效性的研究,环境科学学报,2000,20(5):621-626.
    240.王建林,刘芷宇.重金属在根际中的化学行为:土壤中铜吸附的根际效应.环境科学学报,1991,11(2):178-185.
    241.魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨.生态学杂志,2004,23(1):65-72.
    242.吴启堂 土壤 1993,25:257-259.
    243.徐勤松,施国新,杜开和.锌胁迫下水车前叶细胞自由基过氧化损伤与超微结构变化之间关系的研究.植物学通报,2001,18(5):597-604.
    244.徐仁扣,季国亮,蒋新.低分子量有机酸对高岭石中铝释放的影响.土壤学报,2002,39,(3):334-340.
    245.许光辉和郑元洪主编,1986,土壤微生物分析方法手册,农业出版社
    246.杨居荣,鲍子平,张素芹.镉在植物细胞内的分布及其可溶性.中国环境科学,1993,13(4):263-268.
    247.杨仁斌,曾清如,周细红,等.刘声扬.植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应.农业环境保护,2000,19(3.):152-155.
    248.杨肖娥,龙新宪,倪吾钟.超积累植物吸收重金属的生理及分子机制.植物营养与肥料学报,2002,8(1):8-15.
    249.杨肖娥,龙新宪,倪吾钟,等.东南景天(Sedum alfredii H)——一种新的锌超积累植物..科学通报,2002,47(13):1003-1006.
    250.杨肖娥,龙新宪.古老镉锌矿山生态型东南景天对耐性及超积累特性的研究[J].植物生态学报,2001,25(6):665-672.
    251.袁可能.土壤化学.北京:农业出版社.1990.
    252.张福锁,曹一平.根际动态过程与植物营养.土壤学报,1992,29(8):239-250.
    253.张福锁.根分泌物及其在植物营养中的作用(综述).北京农业大学学报,1992,18(4):353-356.
    254.张福锁.环境胁迫与植物根际营养.北京:中国农业出版社,1998,2-50.
    255.张玉秀,柴团耀.植物耐重金属机理研究进展.植物学报,1999,41(5):453-457
    256.张志良.植物生理学实验指导.高等教育出版社出版.1990,88-91
    257.赵爱芬,赵雪,常学礼.植物对污染土壤修复作用的研究进展.土壤通报,2000,31(1):43-46.
    258.中国科学院上海植物生理研究所,上海市植物生理学会编.现代植物生理学实验指南.北京:科学出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700