J亚群禽白血病病毒Env蛋白分子生物学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
J亚群禽白血病病毒(ALV-J)是1989年被分离、鉴定出的一个新的禽白血病病毒亚群,与其它ALV亚群比较,该亚群病毒的一个显著特点是其env基因非常独特。ALV-J env基因与其它亚群的同源性很低,但是与正常存在于鸡体内的内源性EAV-HP序列有高达97%的同源性。该亚群病毒主要引起髓细胞瘤,而其它外源性ALV亚群主要引起淋巴瘤。ALV研究资料表明其致瘤性与env密切相关。为了进一步研究Env蛋白的功能和在致瘤中的作用,本研究首先构建了一个表达ALV-J env基因细胞系,并发现了该细胞具有类转化现象;进一步研究发现Env蛋白中存在与信号转导相关的基序;根据基序功能,首次提出将ALV-J Env蛋白分为三类,即抑制型、双功能型以及激活型Env蛋白;并提出了ALV-J Env蛋白致病致瘤理论;同时对双功能型env基因进行了克隆、表达,建立了检测ALV-J Env抗原/IgG免疫复合物的ELISA方法。
     一、表达J亚群禽白血病病毒env基因细胞系的构建
     将ALV-J 4817毒株env基因插入pcDNA3.1真核表达载体构建成转移载体pcDNA-env。用转移载体pcDNA-env转染鸡胚成纤维细胞系,通过抗Zeocin药物基因筛选获得转染阳性细胞。阳性细胞经传30代后,冻存,13个月后复苏,置不含药物的培养基中传代培养。连续传40代后,分别用PCR、Southern-blot、间接免疫荧光(IFA)及Western-blot对细胞中的env基因进行了检测,并进行了抗病毒感染分析。试验结果表明,通过Zeocin药物筛选获得了稳定表达ALV-J env基因的鸡胚成纤维细胞系,命名为pcDNA-env-DF1细胞;该细胞在体外抗ALV-J感染试验中,能抵抗10~4个TCID50病毒感染。这一细胞系的构建对进一步探索env基因功能具有重要意义。
    扬州大学博士学位论文
    二、J亚群禽白血病病毒Env蛋白功能与PI3K相关
     稳定表达Al入l-J 4817毒株Env蛋白的peDNA.env一DFI细胞的生长形态特性
    研究表明,该细胞形态与正常细胞相比明显变圆、变大,提出其可能是一种类转
    化现象。利用3D矛SSM软件以及TMpred软件分别对4817毒株Env蛋白进行了
    分析,结果表明4817毒株Env蛋白具有信号转导功能,而且发现4817毒株Env
    蛋白胞浆区存在PI3K信号激活结构域Y尤月讨。用PI3K特异性抑制剂对
    peDNA·env-DFI细胞处理后发现,该细胞类转化形态能被逆转,证明peDNA-
    env一DFI细胞类转化现象直接与PI3K信号有关,提示4817毒株Env蛋白具有潜
    在的致瘤性,其机理可能通过胞浆区YxxM结构域激活PI3K,引起peDNA-env-DFI
    细胞的类转化,有关研究正在深入。
    三、J亚群禽白血病病毒Bnv蛋白分类及其特性
     对不同ALV一J Env蛋白胞浆区氨基酸序列进一步比较发现,ALV一J毒株Env蛋
    白胞浆区除了YxxM结构域外,还存在ITIM和类ITAM结构域。根据Y双M、ITAM
    和mM作用和功能,作者提出将ALV一J Env蛋白分为抑制型、双功能型以及激活
    型三类。根据这一分类原则,在检索到的33个ALV一J Env蛋白中,有28个为双
    功能型Env蛋白,3个为抑制型Env蛋白,只有4817和UD3毒株2个为激活型
    Env蛋白;而检索到的所有EAV.HP均属于抑制型Env蛋白。
     Env蛋白的抗原性分析发现,抑制型、双功能型以及激活型Env蛋白的胞浆区
    抗原性依次降低,但致病、致瘤能力越来越强,这种现象与其信号转导基序直接
    相关。分析ITIM基序对控制或抑制免疫细胞激活、增殖功能,提示抑制型、双功
    能型Env蛋白中ITIM基序与ALV一J免疫抑制相关,抑制型Env蛋白与EAV一HP可
    能是ITIM受体,EAV一HP可能为细胞内原癌基因,ALV一J env可能为病毒癌基因。
    四、J亚群禽白血病病毒双功能型即y墓因克隆及其表达
     通过组织病理检查、组织切片特异性抗原检测、细胞培养技术以及间接免疫
    荧光试验佃A)从一疑似ALv一J感染的祖代肉用型种鸡群中分离、鉴定到一株
    ALV一J病毒,命名为Js.Nt毒株。随后对该毒株的env基因进行了PCR扩增、克
    隆、序列分析、转移表达质粒构建以及表达。结果表明,该毒株Env蛋白胞浆区
    存在Y双M和ITIM结构域,属于ALV一J双功能型Env蛋白;用该毒株env基因
    以及peDNA3.1载体成功构建了转移表达质粒PcDNA.NT.env;通过peDNA一T一e。
Subgroup J avian leukosis virus (ALV-J) was first isolated in 1989 and identified as a new subgroup of avian leukosis virus. The env gene of ALV-J is very unique, has very low homology to other ALV subgroups, however, exhibits 97% identity to EAV-HP sequence, which is existed in the normal chicken's genome. ALV-J most causes myeloid leukosis, while other exogenous ALVs mainly induce lymphoid leukosis. The previous research data showed that env gene is closely related to the ALV oncogenicity, however, the function of the envlope protein is still unclear. This paper is to further investigate the uniqueness of ALV-J env gene and to explore the function of env gene in the ALV-J pathogenicity and oncogenicity.1 Development of Chicken Embryo Fibroblast Cell Line Expressing env Gene of Subgroup J Avian Leukosis VirusThe recombinant of pcDNA-env was constructed by inserting the env gene of ALV-J 4817 strain into the vector pcDNA3.1. Chicken embryo fibroblast cell line transfected with the recombinant pcDNA-env was selected for the resistant cells to Zeocin. The resistant cells were passed for 30 generations and frozen. After 13 months, these cells were refreshed and cultured in the medium free of Zeocin. After another 40 passages, env gene and Env protein in the cells were detected by PCR, Southern-blot, IFA and Western-blot. The results showed that the cells transfected with the recombinant, designated as pcDNA-env-DF1 cells, could stably express the env gene of ALV-J. And pcDNA-env-DF1 cells had the characterization of resistance to ALV-J with a dosage of 104 TCID50. The pcDNA-env-DF1 cells developed in this paper had a vital significance for further exploring the function of ALV-J env gene.
    2 Function of Envelope Protein of Subgroup J Avian Leukosis Virus Associating with PI3KThe observation in pcDNA-env-DFl cells expressing Env protein of ALV-J 4817 strain showed that the cells appeared large size and became round in morphology comparing with normal cell. The cells look like transformed. Analysis results with 3D-PSSM software showed that there is signal transduction in Env protein of 4817. The further analysis for signal transduction motif released that there is a YxxM motif in cytoplasmic tail of the protein, which could specifically activate PI3K signal pathway. And the changed morphology of the cells could be reversed to normal by inhibitor LY294002 specific to PI3K. These results proved the phenomenon of the cells was directly related to the PI3K and indicated the envelope protein had potential oncogenicity and could activate PI3K through YxxM motif to result in the phenomenon. Some experiments associated with the phenomenon are being undertaken.3 Classification and Characterization of Envelope Protein of Subgroup J Avian Leukosis VirusFurther analysis showed that not only YxxM motif, but also ITIM and ITAM-like were existed in cytoplasmic tails of different ALV-J envelope proteins. Based on significance of YxxM and ITAM motifs in conducting active signal to induce cell proliferation and tumorogenisis, significance of ITIM in conducting inhibitory signal to control or inhibit cell proliferation and tumorogenisis and the distribution of these motifs in ALV-J envelope proteins, ALV-J envelope proteins were classified as three types, designated as inhibitive envelope protein, bi-functional envelope protein and active envelope protein. According to this classification, 28 of 33 ALV-J envelope proteins (Download from Genbank) were bi-functional envelope protein, 3 ones were inhibitive envelope protein and only 4817 and UD3 strain's envelope proteins were active envelope proteins, while all EAV-HPs (Download from Genbank) were classified as inhibitive envelope protein. Based on mechanisms in signal transduction of these signal motifs, three models of signal transduction of the three types of envelope protein were figured out.Antigenic analysis of envelope suggests that the antigenicity of cytoplasmic tail of inhibitive, bi-functional and active envelope proteins be not only directly related to these motifs, but also decreas
引文
1. www Medical. webends. com/kw/Alpharetrovirus
    2. Coffin J M, Hughes S H, Varrnus H E. Retroviral pathogenesis. In Retroviruses, Cold Spring Harbor Laboratory Press, 1997
    3. Spencer J L. Critttenden LB Burmester B. R. et al. Lymphoid Leukosis: Interrelation among virus infection s in hen, eggs, embryo and chickens. Avian disease. 1977; 21: 331-345
    4. Spencer JL. Process towards eradication of lymphoid leucosis viruses- a view. Avian Pathology 1978; 13: 599-619
    5. Payne L N, Brown S R, Bumstead N, et al. A novel subgroup of exogenous avian leukosis virus in chickens. J Gen Virol. 1991; 72 (Pt 4): 801-7
    6. Bai J, Howes K, Payne L N, et aL. Sequence of host range determinants in the env gene of a full-length infectious proviral clone of exogenous avian leucosis HPRS-103 confirms that it represents a new subgroup (designated J). J Gen Virol. 1995; 76: 181-187
    7. Bai J, Payne L N, Sktnner M A, et aL. HPRS-103 (exogenous avian leukosis virus, subgroup J) has an env gene related to those of endogenous elements EAV-0 alld ESland an E element found previously only in sarcoma viruses. J Virol. 1995; 69: 779-784
    8. Goodwin M A, Hafner S, Bounous D Let al. Meyloid leukosis, is a misnomer: multiple and diverse tumor morphotyes are found in broiler bleeder that are infected with J-ALV. Proceedings of the 135th American Veterinary Medicine Association annual convention Baltimore. 1998; 183
    9. Fadly A M, Davison T F, Payne L N. Avian leukosis vtrus infectton and shedding in brown leghorn chickens treated with coritcosterone or exposed to varioue stressors. Avian Pathol. 1989; 18: 283-289
    10. Baba T W, HumpHiries E H. Avian Leukosis virus infection: analysis of viremia and DNA integration in susceptible and resistant chicken lines. J Virol. 1984; 51: 123-130
    11. Baba T W, Humphfries E H. Differential response to avian leukosis virus infection exhibited by two chicken lines. Virol. 1984; 135: 181-188
    12. Payne L N. Myeloid leukaemogenicity and transmisstion of the HPRS-103 strain of avian leukosis virus. Leukemia. 1992; 6: 1167-1176
    13. Payne L N, Brown S R, Bumstead Net al. A novel subgroup of exogenous avian leukosis virus in chickens. J Gen Virol. 1991; 72: 801-807
    14. Koch G, Van der Veide J, Hartog L. Horizontal and vertical transmission of ALV-J and ALV-A virus in broiler breeder chickens. Avian Pathol. 2000; t2: 447-459
    15. Landmanl W J M and Koch G.. Age resistance, horizontal and vertical transmission of a Dutch ALV-J isolate. Http://www. gd-dieren.nl/pages/english/publicat/epualvj.htm
    16.杜岩,崔治中,秦爱建等从市场商品肉鸡中检出 J 亚群禽白血病病毒中国家禽学报 1999; 1: 1-4
    17. Benson SJ, Ruis BL, Garbers AL, et al. Independent isolates of the emerging subgroup J avian leukosis virus derive froma common ancestor. J Virol. 1998; 72 (12): 10301-4
    18. Aly M M. Isolation of a subgroup J-like avian leucosis virus associated with myeloid leucosis in meat-type chickens in Egypt. Proceeding of the International Symposium on ALV-J and other Avian Retroviruses Rauischholzhauzen Germany.. 2000; 165-176
    19. Neumann U, Berrocal A, Fadly AM. Morphological evidence for avian leucosis virus (ALV) subgroup J myelocyto matosis observed in broiler parent flocks in Costa Rica. Proceeding of the International Symposium on ALV-J and other Avian Retroviruses Rauischholzhauzen Germany. 2000; 181-183
    20. Buscaglia C, Del Barrio E I, Flamini MA. The proceeding of the International Symposium on ALV-J and other Avian Retroviruses Rauischholzhauzen Germany. 2000; 177-180
    21. Bagust T T. Avian Lenkosis virus-J in Australia: scenarios and options for control. Proceeding of the International Symposium on ALV-J and other Avian Retroviruses Rauischholzhauzen Germany 2000; 256-265
    22. Dren C. S. N, Tovari J. The proceeding of the International Symposium on ALV-J and other Avian Retroviruses Rauischholzhauzen Germany. 2000; 184-191
    23.叶建强,秦爱建,刘岳龙,等祖代肉用鸡群禽白血病病毒感染的实验室诊断中国兽医科技2002;32(3):18-19
    24.杨玉莹,叶建强,赵振华,等.J亚群禽白血病病毒的分离与鉴定中国病毒学2003;18(5)
    25.朱立平,陈学清.免疫学实验技术第一版.人民军医出版社出版.2000:148-149
    26. Xu B, Dong W, Yu C, et al. Occurrence of avian leukosis virus subgroup J in commercial layer flocks in China. Avian Pathol. 2004; 33(1): 13-7
    27. Gharaibeh S, Brown T, Villegas P, et al. Myelocytoma in a 24-day-old commercial broiler [DB/OL]. Http://www.Vetuga.edu/ivcvrn/1999
    28. Payne L N, Gillespie A M, Howes K. Recovery of acutely transforming viruses from myeloid leukosis induced by the HPRS-103 strain of avian leukosis virus. Avian Dis. 1993; 37: 438-450
    29. Bai J, Payne L. N, & Skinner M. A. HPRS-103 (exogenous sequences, avian leukosis virus, subgroup J) has an env gene related to those of endogenous elements EAV-0 and E51 and an E element found previously only in sarcoma viruses. J Virol. 1995; 69: 779-784
    30. Ruddell A. Transcription regulatory elements of the avian retroviral long terminal repeat. Virology. 1995; 206: 1-7
    31. Zachow, K. R. and K. F. Conklin. CArG, CCAAT, and CCAAT-Iike protein binding sites in avian retrovirua long terminal repeat enhancers. Journal of Virology. 1992; 66: 1959-1970
    32. Rabson, A. B., and B. J. Graves. Synthesis and processing of viral RNA In: J. M. Coffin, Hughes, S. H., and H. E. Varmun(ed), Retroviruses, Cold Spring Harbor Laboratory Press, Plainview, N. Y. 1997; PP. 205-261
    33. Aiyar AD, Cobrinik ZGe, H-J Kung, et al. Interaction between retroviral U5 RNA and the TPC loop of the tRNA Trp palmer is erquired for efficient iniation of reverse transcription. Journal of Virology. 1992; 66: 2464-34372
    34. Chiu R, Orandgenett DP. Avian Retrovirus DNA Internal Attachment Site Requirements for Full-Site Integration In Vitro. J. Virol. 2000; 74: 8292-8298
    35. Bovce-Jacino MT, O'Donoghue K, Faras AJ. Multiple complex families of endogenous retroviruses are highly conserved in the genus Gallus. J Virol. 1992; 66(8): 4919-29
    36. Smith LM, Brown SR, Howes K, et al. Development and application of polymerase chain reaction (PCR) tests for the detection of subgroup J avian leukosis virus. Virus Res. 1998; 54(1): 87-98
    37. Bova C A, Manfredi J P, Swanstrom R. env genes of avian retroviruses: nucleotide sequence and molecular recombinants define host range determinants. Virology. 1986; 152 (2): 343-354
    38. Bova C A, Olsen J C, Swanstrom R. The avian retrovirus env gene family: molecular analysis of host range and antigenic variants. J Virol. 1988; 62(1): 75-83
    39. Dorner A J, Coffin J M. Cell determinants for receptor interaction and cell killing on the avian retrovirus glycoprotern gp85. 1986; 45(3): 365-374
    40. Brown D W, Robinson H L. Influence of env and long terminal repeat sequences on the tissue tropism of avian leukosis viruses J Virol. 1988; 62(12): 4828-4831
    41. Chesters PM, Howes K, Petherbridge L, et al. The viral envelope is a major determinant for the induction of lymphoid and myeloid tumours by avian leukosis virus subgroups A and J, respectively. J Gen Virol. 2002; 83 (Pt 10): 2553-61
    42. Smith L M, Toye A A, Howes K, et al. Novel endogenous retroviral sequences in the chicken genome closely related to HPRS103 (subgroup J) avian leukosis virus. J. Gen. Virol. 1999; 80: 261-268
    43. Venugopal K, Smith L M, Howes K, et al. Antigenic variants of J subgroup avian leukosis virus: sequence analysis reveals multiple changes in the env gene. J Gen Virol. 1998; 79 (Pt 4): 757-66
    44. Schwartz D E, Tizard R, Gilbert. Nucleotide sequence of Rous sarcoma virus. Cell. 1983; 32: 853-869
    45. Tsichlis P N, Donehower L, Hager G. Sequence comparison in the crossover region of an oncogenic avian retrovirus recombinant and its nonocogenic parent: genetic regions that control growth rate and oncogenic potential. Mol Cell. 1982; 2: 1331-1338
    46. Guo W, Winistorfer SC, Stoltzfus CM. Selective inhibition of splicing at the avian sarcoma virus src 3'splice sits by direct-repeat posrtranscriptional elements. Jourmal of Virology. 2000; 74: 8513-8523
    47. Russell PH, Ahmad K, Howes K, et al. Some chickens which are viramic with subgroup J avian leucosis virus have antibody-forming ceiling but no circulating antibody, Res Vet Sci. 1997; 63(1): 81-3
    48.金奇 主编 医学分子病毒学 科学出版社 2001
    49. Benson, S. J., Ruis, B. L., Fadly, A. M. et al. The unique envelope gene of the subgroup J avian leukosis virus derives from ev/J proviruses, a novel family of avian endogenous viruses. J Virol. 1998; 72: 10157-10164
    50. Scharenberg AM. The inhibitory receptor superfamily potential releavance to atopy. Curt Opin Immunol, 1999; 11: 621
    51.杨玉莹J亚群白血病病毒内蒙株的分离鉴定以及部分分子生物学特性研究.博士学位论文[D].内蒙古农业大学.2003
    52. Caroline Denesvre, Denis Soubieux, Gaelle Pin, et al. Interference between avian endogenous ev/J 4.1 and exogenous ALV-J retroviral envelope Journal of General Virology. 2003; 84: 3233-3238
    53. Silva RF, Fadly AM, Hunt H. D. Hypervariability in the Envelope Genes of Subgroup J Avian Leukosis Viruses Obtained from Different Farms in the United States. Virology. 2000; 272: 106-111
    54. Islam MQ, Islam K. A new functional classification of tumor suppressing genes and its therapeutic implications. Bioassays. 2000; 22: 274
    55. Sacco MA, Flannery DM, Howos K. Avian endogenous retroviruse EAV-HP share regions of identity with avian leukosis subgroup J and the avian retrotransposon ART-CH. J Virol. 2000; 74(3): 31296—1306
    56. Venugopal K, Smith L M, Howes K. Antigenic variants of J subgroup avian leukosis virus: sequence analysis reveals multiple changes in the env gene. Avian Patho. 1998; 27(Ⅰ): 91-92
    57. Kharitonenkov A, Chert Z, Sures I, et al. A family of proteins that inhibiit signalling through tyrosine kinase receptors. Nature. 1997; 386: 181
    58.秦爱建.J 亚群白血病病毒囊膜蛋白env基因的生物学和生物化学特性.博士学位论文[D],扬州大学,1999
    59. Weiss R, Teich N, Varmus H. RNA tumor viruses, Molecular biology of tumor viruses. Second edition. Cold Spring Harbor Laboratory. 1982
    60. Hunter R and R Swanstrom. Retrovirus envelope glycoproteins. In Retrovirus Stragegies of Replication. Eds. R Swanstrom and P. K. Vogt. Berlin, Springer Verlag. 1990; 187-253
    61. Sommerfelt, M. A. Retrovirus receptor. J Gen Virol. 1999; 80: 3049-3064
    62. Adkins H B, Blacklow S C, Young, J A T. Two Functionally Distinct Forms of a Retroviral Receptor Explain the Nonreciprocal Receptor Interference Among Subgroups B, D, and E Avian Leulkosis viruses. J Virol. 2001; 75: 3520-3526
    63. Snitkovsky S, Young J A T. Cell-Specific Viral Targeting Mediated by a Soluble Retroviral Receptor-ligand Fusion Protein. Proc Natl Acad Sci. USA. 1998; 95: 7063-7068
    64. Young J A T. Avian Leukosis virus-Receptor Interactions. Avian Pathol.1998; 27: S21-25
    65. Bates P, Rong L, Varmus H E. Genetic Mapping of the Cloned Subgroup A Avian Sarcoma and leukosis Virus Receptor Gene to the TVA Locus. J Virol. 1998; 72: 2505-2508
    66. Adkins H B, Brojatsch J, Young J A T. Identification and Charactertzation of a Shared TNFR-Related Receptor for Subgroup B, D, and E Avian Leukosis Viruses Reveal Cysteine Residues Required Specifically for Subgroup E Viral Entry. J Virol. 2000; 74: 3572-3578
    67. Buscaglia C, Del Barrio ET, FLamini MA et al. Proceedings of the International Symposium on ALV-J and Other Avian Retroviruses.Germany: Rauischolzhauzen. 2000; 177-180
    68. Banet. Proceedings of the International Symposium on ALV-J and Other Avian Retroviruses.Germany: Rauischolzhauzen, 2000
    69. Payne L N, Gillespie A M, Howes K. Induction of myeloid leukosis and other tumours with the HPRS-I03 strain of ALV. The veterinary record. 1991; 16:447-448
    70. Purchase H G, Okazaki w, Vogt P K. Oncogeniciity of avian leukosis viruses of different subgroups and of mutants of sarcoma viruses. Infect Immun.1997; 15 (2): 423-428
    71. Fields BN, Knipe DM, Howley PM et al. Fundamental Virology, 3 rd ed. Philadelphia: Lippincott-Raven, 1996
    72. Ritter GDJ, Mulligan J, Lydy SL, et al. Cell fusion activity of the simian immunodeficiency virus envelope protein is modulated by the intracytoplasmid domain Virology. 1993; 197:255-264
    73. Einfeid DA, Hunter E. Expression of the TM protein of Rous sarecoma virus in the absence of SU shows that this domain is capable of oligomerizaton and intracellular transport. J Virol. 1994; 68:2513-2520
    74. Burns JC, Friedmann T, DrrieverW, etal. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vector: Concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA. 1993; 90: 8033-8037
    75. Weiss R A. Cellular receptors and viral glycoproteins involved in retrovirus entry. The Retroviridae. 1992, II: 1-108
    76. Adkins I T B, Brojatsch J, Naughton J. Identification of a Cellular Receptor for Subgroup E Avian Leukosis Virus. Proc Natl Acad Scf. USA. 1997; 94:11617-11622
    77. Young JA T. Avian leukosis virus-receptor interactions. Avian Pathol.1998; 27: 21-25
    78. Smith E J, Brojatsch J, Naughton J. The CARI Gene Encoding a Cellular Receptor Specific for Subgroup B and D Avian Leukosis Viruses Maps to the Chicken tvb Locus.J Vtrol. 1998; 72:3501-3503
    79. Brojatsch J, Naughton J, Rolls MM. CARI, a TNFR-related Protein is a Cellular Receptor for Cytopathic Avian Leukosis-Sarcoma Viruses and Mediates Apoptosis.Cell. 1996; 87: 845-855
    80. Hunt H.D, Lee L F, Foster D, et al. A Genetically Engineered Cell Line Resistant to Subgroup J Avian Leukosis Virus Infection (C/J) Virology. 1999; 264:205-210
    81. Heather B, Adkin, Jurgen Brojatsch, et al. Identification and Charaterization of a share TNFR-related receptor for subgroup B, D, and E avian leukosis viruses reveal cysteine residues required specifically for subgroup E viral entry. Journal of Virology. 2000; 74: 3572-3578
    82. Hoatlin ME, Kozak SL, Lilly F, et al. Activation of erythropoietin receptors by Friend viral gp55 and by erythropoietin and down-modulation by the murine Fv-2r resistance gene Proc Natl Acad Sci USA. 1990; 87(24): 9985-9
    83. Weiss S, Koing B, MullerH-J, et al. Synthetic human tRNAlys3 and natural bovine tRNAlys3 interact with HIV-lreverse transcriptase and serve as specific primer for retroviral cDNA synthesis. Gene 1992; 111: 183-197
    84.张莉,王世珍,刘佳建.牛泡沫病毒内部启动子的克隆及功能分析.病毒学报.2000;16(3):227-231
    85. Krasilnikov MA. Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry. 2000; 65 (1): 59-67
    86. Klaus Okkenhaug. Bart Vanhaesebroeck. PI3K in lymphocyte development, differentiation, and activation. Nature reviews, immunology. 2003; 3: 317-330
    87. Robin W, Freeburn, Karen L, et al. Evidence that SHIP-1 contributes to phosphatidylinositol 3,4,5-trisphosphate metabolism in T lmphocytes and can regulate novel phosphoinositide 3-Kinase effectors. The Journal of Immunology. 2002; 169: 5441-5450
    88. Hauptli D, Bruckner L, Ottiger HP. Use of reverse transcriptase polymerase reaction for detection of vaccine contamination by avian leukosis virus. J Virol Methods. 1997; 66(1): 71-81
    89. Smith EJ, Williams SM, Fadly AM. Detection of avian leukosis virus subgroup J using the polymerase chain reaction. Avian. Dis. 1998; 42(2): 375-80
    90. Venugopal K, Howes K, Barron G S, et al. recombinant env-gp85 of (subgroup J) avian Leukosis Virus: antigenic characteristics and useful as a diagnostic reagent. Avian Disease. 1997; 41: 283-287
    91. Qin Aijian, Ping Wu, Lucy Lee et al. Development and characterization of monoclonal antibodies to avian leucosis virus subgroup J. Poster in 136th Americall Veterrnary Madicine Association Annual Convention, New Orens, USA. 1999; Ⅰ: 1-14
    92. Hunt Henry, Aly Fadly. Analysis of Serum Antibody to ALV-J in Commercial Broilers: Corelation Between Elisa, Flow Cytometry and Virus Neutralizatio, International Symposium on ALV-J. 2000, June 5
    93.秦爱建,刘岳龙,周绮雯等.J亚群禽白血病病毒的免疫荧光检测效果.中国预防兽医学报.2001:3:214-216
    94.叶建强,秦爱建,邵红霞等.J亚群禽白血病(ALV-J)ELISA检测方法的建立,中国兽医学报.2005
    95. Matthias P, Wymann, Luciano Pirola. Structure and function of phosphoinositide 3-kinases, Biochimical Biophysica Acta. 1998; 1436: 127-150
    96. Carpenter CL, Auger KR, Duckworth BC, et al. A tightly associated serine/threonine protein kinase regulates phosphoinositide 3-kinase activity Mol. Cell. Biol. 1993; 13: 1657-1665
    97. Dhand R, Hiles I, Panayotou G, et al., PI 3-kinase is a dual specificity enzyme: autoregulation by an intrinsic protein-serine kinase activity EMBO J. 1994; 13: 522-533
    98. Stoyanova S, Bulgarelli-Leva G., Kirsch C, et al. Lipid kinase and protein kinase activities of G-protein-coupled phosphoinositide 3-kinase g: structure-activity analysis and interactions with wortmannin. Biochem. J. 1997; 324: 489-495
    99. Vanhaesebroeck B, Welham M J, Kotani K, et al. p110d, a novel phosphoinositide 3-kinase in leukocytes Proc. Natl. Aead. Sci. U. S. A. 1997; 94: 4330-4335
    100. Stack JH, Emr SD, Vps34p required for yeast vacuolar protein sorting is a multiple specificity kinase that exhibits both protein kinase and phosphatidylinositol-specifie PI 3-kinase activities. J. Biol. Chem. 1994; 269: 31552-31562
    101. Lopez-Ilasaea M, Crespo P, Pellici PG., et al. Linkage of G Protein-Coupled Receptors to the MAPK Signaling Pathway Through PI 3-Kinase Science. 1997; 275: 394-397
    102. Choi KY, Satterberg B, Lyons DM, et al. Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae Cell. 1994; 78: 499-512
    103.金伯泉.细胞与分子免疫学[M],第二版,科学出版社,2001
    104. Stepbens LR, Hughes KT, Irvine RF. Pathway of phosphatidylinositol (3,4,5)-trisphosphate synthesis in activated neutrophils. Nature. 1991; 351: 33-39
    105. Hawkins PT, Jackson TR, Stephens LR. Platelet-derived growth factor stimulates synthesis of Ptdlns (3,4,5) P3 by activating a Ptdlns (4,5) P2 3-OH kinase. Nature. 1992; 358: 157-159
    106. Schu PV, Takegawa K, Fry MJ, et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science. 1993; 260: 88-91
    107. Escobedo JA, Navankasattusas S, Kavanaugh WM, et al. cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF beta-receptor. Cell .1991; 65: 75-82
    108. Skolnik EY, Margolis B, Mohammad Mi, et al. Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell. 1991; 65: 83-90
    109. Otsu M, Hiles I, Gout I, et al. Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell. 1991; 65: 91-104
    110. Yu H, Chen JK, Feng S, et al. Structural basis for the binding of proline-rich peptides to SH3 domains Cell. 1994; 76: 933-945
    111. Kapeller R, Prasad KV, Janssen O, et al. Identification of two SH3-binding motifs in the regulatory subunit of phosphatidylinositol 3-kinase. J. Biol. Chem. 1994; 269: 1927-1933
    112. Harrison-Findik D, Susa M, Varticovski L. Association of phosphatidylinositol 3-kinase with SHC in chronic myelogeneous leukemia cells. Oncogene. 1995; 10: 1385-1391
    113. Soitoff SP, Cantley LC. p120cb1 is a cytosolic adapter protein that associates with phosphoinositide 3-kinase in response to epidermal growth factor in PC12 and other cells. J. Biol. Chem. 1996; 271: 563-567
    114. Dombrosky-Ferlan PM, Corey SJ. Yeast two-hybrid in vivo association of the Src kinase Lyn with the proto-oneogene product Cb1 but not with the p85 subunit of PI 3-kinase. Oncogene. 1997; 14: 2019-2024
    115. Hunter S, Koch BL, Anderson SM. Phosphorylation of cbi after stimulation of Nb2 cells with prolactin and its association with phosphatidylinositol 3-kinase. Mol. Endocrinol. 1997; 11: 1213-1222
    116. C.M. Pleiman, W.M. Hertz, J.C. Cambier, Activation of phosphatidylinositol-3' kinase by Src-family kinase SH3 binding to the p85 subunit. Science. 1994; 263: 1609-1612
    117. Diekmann D, Brill S, Garrett MD, et al. Bcr encodes a GTPase-activating protein for p21rac. Nature. 1991; 351:400-402
    118. Zheng Y, Bagrodia S, Cerione RA. Activation of phosphoinositide 3-kinase activity by Cdc42Hs binding to p85. J. Biol. Chem. 1994; 269: 18727-18730
    119. Tolias KF, Cantley LC, Carpenter CL, et al. Rho family GTPases bind to phosphoinositide kinases. J. Biol. Chem. 1995; 270:17656-17659
    120. Hu P, Mondino A, Skolnik EY, et al. Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85. Mol. Cell.Biol. 1993; 13: 7677-7688
    121. Klippel A, Escobedo JA, Hu Q, et al. A region of the 85-kilodalton (kDa) subunit of phosphatidylinositol 3-kinase binds the 110kDa catalytic subunit in vivo. Mol Cell Biol. 1993; 13(9): 5560-6
    122. Dhand R, Hara K, Hiles I, et al. PI 3-kinase: structural and functional analysis of intersubunit interactions. EMBO J. 1994; 13: 511-521
    123. Holt KH, Olson L, Moye-Rowley WS, et al. Phosphatidylinositol 3-kinase activation is mediated by high-affinity interactions between distinct domains within the p110 and p85 subunits. Mol. Cell. Biol. 1994; 14: 42-49
    124. Klippel A, Escobedo JA, Hirano M, et al. The interaction of small domains between the subunits of phosphatidylinositol 3-kinase determines enzyme activity. Mol Cell Biol. 1994; 14(4): 2675-85
    125. Zvelebil MJ, MacDougall L, Leevers S, et al., Structural and functional diversity of phosphoinositide 3-kinases. Phil. Trans. R. Soc. Lond. B. 1996; 351: 217-223
    126. Taylor SS, Knighton DR, Zheng J, et al. Structural framework for the protein kinase family. Annu. Rev. Cell Biol. 1992; 8: 429-462
    127. Wymann MP, Bulgarelli-Leva G, Zvelebil MJ, et al. Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction. Mol. Cell. Biol. 1996; 16: 1722-1733
    128. Arcaro A, Wymann MP. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem J. 1993; 296 (Pt 2): 297-301
    129. Vlahos CJ, Matter WF, Hui KY, et al. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-l-benzopyran-4-one (LY294002). J.Biol.Chem.1994; 269: 5241-5248
    130. Vanhaesebroeck B, Leevers SJ, Panayotou G, et al. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem. Sci. 1997; 22:267-272
    131. Rodriguez-Viciana P, Warne PH, Dhand R, et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature. 1994; 370: 527-532
    132. Kodaki T, Woscholski R, Hallberg B, et al. The activation of phosphatidylinositol 3-kinase by Ras. Curr. Biol. 1994; 4:798-806
    133. Feig LA, Schajhausen B. Signal transduction. The hunt for Ras targets. Nature 370 (1994) 508^509
    134. Rodriguez-Viciana P, Warne PH, Khwaja A, et al. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell. 1997; 89:457-467
    135. Marte BM, Rodriguez-Viciana P, Wennstrom S, et al. R-Ras can activate the phosphoinositide 3-kinase but not the MAP kinase arm of the Ras effector pathways. Curr Biol. 1997; 7(1): 63-70
    136. Geer P, Hunter T, Lindberg RA. Receptor protein-tyrosine kinases and their signal transduction pathways Annu. Rev. Cell Biol. 1994; 10:251-337
    137. Klippel A, Reinhard C, Kavanaugh WM, et al. Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol. Ceil. Biol. 1996; 16:4117-4127
    138. David A Fruman and Lewis C Cantley. Phosphoinositide 3-kinae in immunology systems. Seminars in Immunology. 2002; 14:7-18
    139. Kapeller R, Prasad KV, Janssen O, et al. Identification of two SH3-binding motifs in the regulatory subunit of phosphatidylinositol 3-kinase J. Biol. Chem. 1994; 269:1927-1933
    140. HarrisonFindik D, SusaM, Varticovski L, et al. Association of phosphatidylinositol 3-kinase with SHC in chronic myelogeneous leukemia cells. Oncogene. 1995; 10:1385-1391
    141. Soltoi SP, Cantley LC. Is a Cytosolic Adapter Protein That Associates with Phosphoinositide 3-Kinase in Response to Epidermal Growth Factor in PC 12 and Other Cells. J. Biol. Chem. 1996; 271: 563-567
    142. Dombrosky-Ferlan PM, Corey SJ. Yeast two-hybrid in vivo association of the Src kinase Lyn with the proto-oncogene product Cbl but not with the p85 subunit of PI 3-kinase. Oncogene. 1997; 14:2019-2024
    143. Hunter S, Koch BL, Anderson SM. Phosphorylation of cbl after Stimulation of Nb2 Cells with Prolactin and Its Association with Phosphatidylinositol 3-Kinase Mol. Endocrinol. 1997; 11: 213-1222
    144. Liu X, Marengere LE, Koch CA, et al. The v-SrcSH3 domain binds phosphatidylinositol 3'-kinase. Mol. Cell.Biol. 1993; 13: 5225-5232
    145. Pleiman CM, Hertz WM, Cambier JC. Activation of phosphatidylinositol-3' kinase by Src-family kinase SH3 binding to the p85 subunit. Science. 1994; 263:1609-1612
    146. Wang J, Auger KR, Jarvis L, et al. Direct Association of Grb2 with the p85 Subunit of Phosphatidylinositol 3-Kinase. J. Biol. Chem.1995; 270:12774-12780
    147. Gout I, Dhand R, Hiles ID, et al. The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell. 1993; 75:25-36
    148. Rebecchi MJ, Scarlata S. Pleckstrin homology domains: a common fold with diverse functions. Annu. Rev. Biophys. Biomol. Struct. 1998; 27: 503-528
    149. Shaw G The pleckstrin homology domain: an intriguing multifunctional protein module. BioEssays. 1996; 18:35-46
    150. Franke TF, Kaplan DR, Cantley LC, et al. Direct Regulation of the AKT Proto-oncogene product by Phosphatidylinositol-3,4-bisphosphate. Science.1997; 275: 665-668
    151. Andjelkovic M, Alessi DR, Meier R, et al. Role of Translocation in the Activation and Function of Protein Kinase B J. Biol. Chem.1997; 272:31515-31524
    152. Alessi DR, Andjelkovic M, Caudwell B, et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996; 15: 6541-6551
    153. Andjelkovic M, Jakubowicz T, Cron P, et al Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors Proc. Natl. Acad. Sci. U.S.A. 1996; 93:5699-5704
    154. Klippel A, Kavanaugh WM, Pot D, et al. A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain Mol.Cell. Biol. 1997; 17:338-344
    155. Alessi DR, James SR, Downes CP, et al. Characterization of a 3-phospho inositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha. Curr. Biol. 1997; 7: 261-269
    156. Alessi DR, Deak M, Casamayor A, etal. 3-phosphoinositide-dependent protein kinase-1 (PDK.1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr.Biol. 1997; 7: 776-789
    157. Stokoe D, Stephens LR, Copeland T, et al. Dual Role of Phosphatidylinositol (3, 4, 5) Trisphosphate in activation of Protein Kinase B. Science.1997; 277: 567-570
    158. Stephens L, Anderson K, Stokoe D, et al. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science. 1998; 279:710-714
    159. Cheatham B, Vlabos, Cheatham L, et al. Phosphatidylinostol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol. 1994; 14:4902-4911
    160. Cohen P, Oarker PJ, Woodgett JR, Molecular Basis of Insulin Actin. Plenum Press 1985
    161.Deprez J, Vertommen D, Alessi DR, et al. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem. 1994; 272: 17269-17275
    162. Shah OJ, Anthony JC, Kimball SR, et al. 4E BPI and S6K1: translational integration sites for nutrition and hormonal information in muscle. J Physiol Endocrinol Metab. 2000; 297: E715-729
    163. Dudek H, Datta SR, Franke TF, et al. Reulation of neuronal survival by the serine-threonine protein kinase Akt. Science. 1997; 275: 661-665
    164. Kauffmann Zeh A, Rodriguez Viviana P, ULrich E, et al. Suppression of c-myc-induce apoptosis by Ras signaling through PI3K and PKB. Nature 1997; 35: 5445-5458
    165. Kennedy SG, Wagner AJ, Conzen SD, et al. The PI3-kinase/Akt signaling pathway delivers an anti-apoptic signal. Gene Dev. 1997; 11: 701-713
    166. Kulik G, Klippel A, Weber MJ. Antiapoptotic signaling by the insulin like growth factor 1 receptor, phosphatidylinositol 3-kinase, and Akt. Mil Cell Biol 1997; 17:1595-1606
    167. Ahmed NN, Grimes HL, Bellacosa A, et al. Transduction of interleukin-2 antiapopotic and proliferative signal via Akt protein kinase. Proc Natl Acad Sci USA 1997; 94: 3627-3632
    168. Delpeso L, Gonzalez-Garcia M, Page C, et al. Interleukin-3-induced phospho rylation of BAD through the protein kinase Akt. Science. 1997; 278:687-689
    169. Crowder RJ, Freeman RS. The survival of sympathetic neurons promoted by potassium depolarization, but not by cyclic AMP, requires phosphatidylinositol 3-kinase and Akt. J neurochem. 1999; 73:466-475
    170. Khwaja A, Rodriguez-Viciana P, Wenstrom S, et al. Matrix adfesion and Ras transformation both activate a phosphinositide 3-OH kinase and protein kinase B.Akt cellular survival pathway. EMBO J. 1997; 16:2783-2793
    171.Gerber HP, McMurtrcy A, Kowalski J, et al. Vascular endothelial growth factor regulates endotheliai cell survival through the phosphatidylinositol 3-kinase /Akt signal transduction pathway. Requirement for FIK-1/KDK activation. J Biol Chern. 1998; 273: 30336-30343
    172. Kennedy SG, Kandel ES, Cross TK, et al. Akt/protein kinase B inhibits cell death by - preventing the release of cytochrome c from mitochondria. Mol Cell Biol. 1999; 19: 800-5810
    173. Parry R, Smith G, Reif K, et al. Activation of the PI3K effector protein kinase B following ligation of CD28 or Fas.Bipchem Soc Trans. 1997; 25.S589
    174. Gibson S, Tu S, Oyer R, et al. Epidermal growth factor protects epithelial cells against Fas-induced apoptosis. Requirement for Akt activation. J Biol Chem 1999; 274: 17612-17618
    175. Weinkove D, Neufeld TP. Regulation of imaginal disc cell size, cell number and organ size by Drosophila class I (A) phosphoinositide 3-kinase and its adaptor. : Curr Biol. 1999; 9 (18): 1019-29
    176. Leevers SJ, Weinkove D, MacDougall LK, et al. The Drosophila phospho inositide 3-kinase Dp110 promotes cell growth. EMBO J. 1996; 15:6584-6594
    177. Bohni R, Riesgo-Escovar J, Oldham S, et al. Autonomous control of cell andorgan size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell.1999; 97:865-875
    178. Huang H, Potter CJ, Tao W, et al. PTEN affects cell size, cell proliferation and apoptosis during Drosophila eye development. Development. 1999; 126: 5365-5372
    179. Montagne J, Stewart MJ, Stocker H, et al. Drosophila S6 kinase: A regulator of cell size. Science. 1999; 285:2126-2129
    180. Sara C, Kozma, George Thomas. Regulation of cell size in growth, development and human disease:PI3K, PKB and S6K Bio Essays. 2002; 24:65-71
    181. Junger, Rintelen MA, Stocker F, et al. The Drosophila Forkhead transcription factor FOXO mediates the reduction in ceil number associated with reduced insulin signaling. J. Biol. 2003; 2:20
    182. Chou MM, Hou W, Johnson J, et al. Regulation of protein kinase C zeta by PI. 3-kinase and PDK-1. Curr. Biol. 1998; 8: 1069-1077
    183. Le Good JA, Ziegler WH, Parekh DB, et al. Protein kinase C isotypes are controlled by phosphoinositide 3-kinase through the upstream kinase PDK1. Science.1998; 281: 2042-2045
    184. Lane HA, Fernandez A, Lamb NJ, et al. p70s6k function is essential for G1 progression Nature.1993; 363:170-172
    185. Chung J, Grammer TC, Lemon KP, et al. PDGF-and insulin-dependent pp70 S6k activation mediated by phosphatidylinositol 3-OH kinase Nature. 1994; 370:71 -75
    186. Han JW, Pearson RB, Dennis PB, et al. Rapamycin, wortmannin, and the methylxanthine SQ20006 inactivate p70s6k by inducing dephosphorylation of the same subset of sites. J. Biol.Chem. 1995; 270:21396-21403
    187. Burnett PE, Barrow RK, Cohen NA, et al. RAFT1 phosphorylation of translational regulators p70 S6 kinase and 4E-BP1. Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 1432-1437
    188. Kitamura T, Ogawa W, Sakaue H, et al. Caspase-dependent activation of cyclin-dependent kinases during Fas-induced apoptosis in Jurkat cells. Mol. Cell. Biol. 1998; 18: 3708-3717
    189. Reif K, Burgering BM, Cantrell DA. Phosphatidylinositol 3-Kinase Links the Interleukin-2 Receptor to Protein Kinase B and p70 S6 Kinase. J. Biol. Chem. 1997; 272:14426-14433
    190. Proud CGp70 S6 kinase: an enigma with variations. Trends Biochem. Sci. 1996; 21:181-185
    191. Thomas G, Hall MN. TOR signalling and control of cell growth. Curr. Opin. Cell Biol. 1997;9: 782-787
    192. Hawkins PT, Eguinoa A, Qiu RG, et al. PDGF stimulates an increase in GTP-Rac via activation of phosphoinositide 3-kinase. Curr. Biol.1995; 5:393-403
    193. Wennstrom S, Hawkins P, Cooke F, et al. Activation of phospho-inositide 3-kinase is required for PDGF-stimulated membrane ruffling. Curr. Biol. 1994; 4:385-393
    194. Wymann M, Arcaro A. Platelet-derived growth factor-induced phosphatidyl inositol 3-kinase activation mediates actin rearrangements in fibroblasts. Biochem. J. 1994; 298: 517-520
    195. Vanhaesebroeck B. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem. 2001; 70: 535-602
    196. Vanhaesebroeck B. Signaling by distinct classes of phosphoinositide 3-kinases. Exp Cell Res.1999; 253(1): 239-254
    197. di Campli A, Valderrama F, Babia T, et al. Morphological changes in the Golgi complex correlate with actin cytoskeleton rearrangements. Cell Motil. Cytoskeleton.1999; 43:334-348
    198. Roymans D. Phosphatidylinositol 3-kinases in tumor progression Eur J Biochem.2001; 268 (3): 487
    199. Li Z, Wahl MI, Eguinoa A, et al. Transphosphorylation of Bruton's Tyrosine Kinase in concert with Src family kinases. Proc. Natl. Acad. Sci. U.S.A. 1997; 94:13820^13825
    200. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002; 296 (5573): 1655-1657
    201. Alexandra Arcaro, Marketa J Zvelebil, Christian Wallasch, et al. Class II Phosphoinositide 3-Kinases Are Downstream Targets of Activated Polypeptide Growth Factor Receptors. Molecular and Cellular Biology. 2000; 3817-3830
    202. Rameh LE, Cantley LC. The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem. 1999; 274: 8347-8350.
    203. Vivanco I, Sawyers CL. The phosphatidylinositoi 3-Kinase-AKT pathway in human cancer. Nat Rev Cancer 2002; 2: 489-501
    204. Toker A, Cantley LC. Signalling through the lipid products of phospho inositide-3-kinase. Nature. 1997; 387(6634): 673-676
    205. Hirsch E, Katanaev VL, Garlanda C, et al. Central role for G protein-coupled phospho inositide 3-kinase gamma in inflammation. Science. 2000; 287(5455): 1049-53
    206. Sasaki T, Irie-Sasaki J, Jones RG, et al. Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science. 2000; 287(5455): 1040-6
    207. Satterthwalte AB, Li Z, Witte ON: Btk function in B cell development and response. Semin Immunol. 1998; 10: 309-316
    208. Akagi T, Shishido T, Murata K, et al. v-Crk activates the phosphoinositide 3-kinase/AKT pathway in transformation. Proc. Natl. Acad. Sci. USA. 2000; 97: 7290-7295
    209. Scharenherg AM, Kinet JP. The emerging field of receptor-mediated inhibitory signaling: SHP or SHIP Cell. 1996; 87(6): 961-4
    210. Feldhahn N, Schwering I, Lee S, et al. Silencing of B cell receptor signals in human naive B cells. J Exp Med. 2002; 196 (10): 1291-305
    211. Klaus Okkenhaug, Bart Vanhaesebroeck. PI3K in lymphocyte development, differentiation and activation. Nature reviews immunology, 2003; 3: 317-330
    212.李正发,沈晓梅,赵仁彬.磷酰肌醇-3 激酶途径在慢性髓细胞白血病细胞增殖和抗凋亡中的作用.云南医药.2003;24(2):81-82
    213. Klaus Okkenhaug, Bart Vanhaesebroeck. PI3K in lymphocyte development, differentiation and activation. Nature reviews immunology. 2003; 3: 317-330
    214. Donahue A C, Fruman D A. PI3K signaling controls cell fate at many points in B lymphocyte development and activation. Seminars in Cell & Developmental Biology. 2004; 15: 183-197
    215. Miettinen HM, Matter K, Hunziker W, et al. Fc receptor endocytosis is controlled by a cytoplasmic domain determinant that actively prevents coated pit localization. J Cell Biol. 1992; 116: 875-888
    216. Daeron M, Malbec O, Latour S, et al. Distinct intracytoplasmic sequences are required for endocytosis and phagocytosis via murine Fc gamma RII in mast cells Int. Immunol. 1993; 5: 1393-1401
    217. Muta T, Kurosaki T, Misulovin Z, et al. A 13-amino-acid motif in the cytoplasmic domain of FcgammaRIIB modulates B-cell receptor signalling. Nature. 1994; 368: 70-73
    218. Janos Gergely, Israel Pecht, Gabriella Sarmay. Immunoreceptor Tyrosine-based Inhibition Motif-Bearing Receptors Regulate the Immunoreceptor Tyrosione-Based Activation Motif-Induced Activation of Immune Competent Cells. Immunology Letters. 1999; 68: 3-15
    219. Isakov N. ITIMs and ITAMs: the yin and yang of antigen and Fc receptor-linked signaling machinery. Immunol Res. 1997; 16: 85
    220. Ravetch J V, Lanier L L. Immune inhibitory receptors. Science. 2000; 290: 84-89
    221. Cambier J C. Inhibitory receptors abound? Prec. Natl. Acad. Sci. USA, 1997; 94: 5993-5995
    222. Maresco D L, Osborne J M, Cooney D, et al. The SH2-Containing 5'-Inositol Phosphatase (SHIP) is tyrosine phosphorylated after Fc receptor clustering in monocytes. Journal of Immunology. 1999; 162: 6458-6465
    223. Ferjoux G, Lopez F, Esteve J P, et al. Critical Role of Src and SHP-2 in sst2 Somatostatin Receptor-mediated Activation of SHP-1 and Inhibition of Cell Proliferation. Mol Biol Cell. 2003; 14(9): 3911-3928
    224. Cambier J C. Antigen and Fc receptor signaling. The awesome power of the immunoreceptor tyrosine-based activation motif (ITAM). .J Immunol. 1995; 155: 3281-3285
    225.金伯泉.细胞与分子免疫学[M],第二版,科学出版社,2001
    226. Dacron M. Building up the family of ITIM-bearing negative co-receptors. Immunol. Lett. 1996; 54: 73-76
    227. Sarmay G, Koncz G, Gergely J. Human Type Ⅱ Fegamma Receptors Inhibit B Cell Activation by Interacting with the p21ras-dependent Pathway J. Biol. Chem. 1996; 271: 30499-30504
    228. Jeffrey Ravetch, Lewis L Lanier. Immune Inhibitory Receptors. Science, 2000; 290(5489): 84-89
    229. Uhr JW, Moller G. Regulatory effect of antibody on the immune response. Adv. Immunol. 1968; 8: 81-127
    230. Rojo S, Burshtyn DN, Long EO, et al. Type I transmembrane receptor with inhibitory function in mouse mast cells and NK cells. J. Immunol. 1997; 158: 9-12
    231. Ravetch JV, Luster AD, Weinshank R, et al. Structural heterogeneity and functional domains of murine immunoglobulin G Fc receptors. Science. 1986; 234: 718-725
    232. Dacron M, Latour S, Malbec O, et al. The same tyrosine-based inhibition motif, in the intracytoplasmic domain of FcRIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity. 1995; 3: 635-646
    233. Binstadt BA, Brumbaugh KM, Dick C J, et al. Sequential involvement of Lck and SHP-1 with MHC-recognizing receptors on NK cells inhibits FcR-initiated tyrosine kinase activation. Immunity. 1996; 5: 629-638
    234. Binstadt BA, Brumbaugh KM, Leibson PJ. Signal transduction by human NK cell MHC-recognizing receptors, Immunoi. Rev. 1997; 155: 197-203
    235. Malbec O, Fong DC, Turner M, et al. FcReceptor I-Associated lyn-Dependent Phosphorylation of FcReceptor IIB During Negative Regulation of Mast Cell Activation J. Immunol. 1998; 160: 1647-1658
    236. Smith KGC, Tarlinton DM, Doody G. M, et al. Inhibition of the B cell by CD22: a requirement for Lyn. J. Exp. Med. 1998; 187: 807
    237. MaedaA, Scharenberg AM, Tsukada S, et al. Paired immunoglobulin-like receptor B (PIR-B) inhibits BCR-induced activation of Syk and Btk by SHP-1, Oncogene 1999; 18: 2291
    238. Tamir I, Dal Porto JM, Cambier JC. Cytoplasmic protein tyrosine phos-phatases SHP-1 and SHP-2: regulators of. B cell signal transduction. Curr. Opin. Immunol. 2000; 12: 307-315
    239. Rohrschneider LR, Fuller JF, Wolf I, et al. Structure, function, and biology of SHIP proteins Genes & Dev. 2000; 14(5): 505 - 520
    240. Liu Q, Sasaki T, Kozieradzki I, et al. SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid cell survival. Genes Dev. 1999; 13: 786-191
    241.Helgason CD. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev. 1998; 12:1610 -1620
    242. Rohrschneider LR, Fuller JF, Wolf I, et al. Structure, function, and biology of SHIP proteins Genes Dev. 2000; 14: 505
    243. Bolland S, Pearse RN, Kurosaki T, et al. SHIP modulates immune receptor responses by regulating membrane association of Btk. Immunity. 1998; 8: 509-516
    244. Scharenberg AM, El-Hillal O, Fruman DA, et al. Phosphatidylinositol-3, 4, 5-trisphosphate controls calcium signaling by initiating Tec-kinase dependent activation of PLCg, EMBO J. 1998; 17:1961-1972
    245. Aman MJ, Lamkin TD, Okada H, et al. The Inositol Phosphatase SHIP Inhibits Akt/PKB Activation in B Cells J. Biol. Chem. 1998; 273:33922
    246. Binstadt BA, Brumbaugh KM, Dick CJ, et al. Sequential involvement of lck and SHP-1 with MHC-recognizing receptors on NK cells inhibits FcR-initiated tyrosine kinase activation. Immunity. 1996; 5:629-638
    247. Ono M, Bolland S, Tempst P, et al. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor FcgRIIB. Nature 383(1996) 263-266
    248. Qin A, Lee LF, Fadly A, et al. Development and characterization of monoclonal antibodies to subgroup J avian leukosis virus, Avian Dis.2001; 45(4): 938-45
    249. Sung HW, Reddy SM, Fadly AM, et al. High virus titer in feather pulp of chickens infected with subgroup J avian leukosis virus. Avian Dis. 2002; 46(2): 281-6
    250. ULmer JB, Donnelly JJ, Perker SB, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science, 1993; 259:1745-1749
    251. Wang B, Ugen Kl, Srikantan V, et al. Gene inoculation generates immune responses against immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA. 1993; 90:4156-4160
    252. Fynan E.F, Weloster R.G, Guller DH, et al .DNA vaccines, protective immnization by parental, mucosal and gene gun inoculations. Proc Natl Acad Sci USA. 1993; 90:11478-1482
    253. Davis H, Michel M.L, Mancici M, et al. Direct gene transfer in skeletal muscle: Plasmid DNA based immunization against a hepatitis B Virus surface antigen. Vaccine. 1994; 12:1503-1509
    254. Xiang ZQ, Steve LS, Cjheng J, et al, Immune response to nucleic acid vaccines to rabies, virus, Virology, 1995; 209: 569-579
    255. Sedegah M, Hedstrom R, Hobart P, et al. Protection against malaria by immunization with plasmid DNA encodinng circum sporozoite protein. Proc Natl Acad Sci .USA, 1993; 91:9866-9870
    256. Anke Klippel, Maria-Amelia Escobedo, Activation of Phosphatidylinositol 3-K.inase Is Sufficient for Cell Cycle Entry and Promotes Cellular Changes Characteristic of Oncogenic Transformation Molecular and Cellular Biology, October 1998; Vol. 18, No. 10.5699-5711
    257. Vlahos CJ, Matter WF, Hui KY, et al. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4- morpholinyl)-8-phenyl-4H-l-benzopyran-4-one (LY294002) J. Biol. Chem., 1994;Vol. 269, Issue 7, 5241-5248
    258. Hugo Stocker and Ernst Hafen. Genetic control of cell size, Current Opinion in Genetics & Development 2000; 10:529-535
    259. Jessica S Britton, Wendy K Lockwood. Drosophila's Insulin/PI3-Kinase Pathway Coordinates Cellular Metabolism with Nutritional Conditions, Developmental Cell, 2002; 2:239-249
    260. Alykhan F Shamji, Integration of Growth Factor and Nutrient Signaling: Implications for Cancer. Biology Molecular Cell, 2003; 12:271-280
    261. Hunter M G, Avalos B R. Phosphatidylinositol 3'-Kinase and SH2-containing inositol phosphatase (SHIP) are recruited by distinct positive and negative growth-regulatory domains in the granulocyte colony-stimulating factor receptor the Journal of Immunology. 1998; 160: 4979-4987
    262. Qiurong Liu, Takehiko Sasaki, Ivona Kozieradzki, et al. SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid cell survival. Genes & Development. 1999; April, 1.Vol. 13, No. 7, pp. 786-791
    263. Chyi-Sing Hwang, Ching-Ho Wang. Serologic profile of chickens infected with subgroup J Avian Leukosis Virus Avian Diseases. 2002; 46(3): 598-604
    264. Oliver Billker, Andreas Popp, Volker Brinkmann, et al. Distinct mechanisms of internalization of Neisseria gonorrhoeae by members of the CEACAM receptor family involving Racl- and Cdc42-dependent and -independent pathways. The EMBO Journal, 2002; 21(4): 560-571
    265. Flint SJ, Enquist LW, Racanillo VR, et al. Principles of virology-Molecular Biology, Pathogenesis, and Control of Animal Viruses, second edition, ASM press, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700