高容量锂电池纳米电极材料合成表征与电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植入式医疗器件、电动汽车和通讯器材等移动式应用领域的快速发展,为锂一次和锂二次电池带来了前所未有的机遇与挑战。高容量、长寿命、高安全性的电极材料是锂电池领域研究的重点。目前锂电池中所用的传统电极材料存在着利用率低、锂离子扩散慢、极化大等问题,制约着锂电池性能的提升。纳米材料具有反应活性高、有利于电荷传导和物质输送以及独特的结构优势,可以有效地提高锂电池的性能,其组成、结构、形貌与性能之间的关系需深入研究。另一方面,以α-CuV_2O_6为代表的过渡金属钒酸盐和Si是极具潜力的锂电池电极材料。因此,本论文开展了过渡金属钒酸盐和Si纳米/微米材料的可控制备、表征与电化学性能研究。主要内容如下:
     采用水热法可控制备出α-CuV_2O_6一维纳米/微米材料,获得了α-CuV_2O_6纳米线“奥斯特瓦尔德熟化-分裂”的形成机理,详细研究了α-CuV_2O_6纳米线的嵌锂机理和电化学性能。结果表明:α-CuV_2O_6纳米线由于具有比表面积大、锂离子固态扩散路径短等优势,电化学性能得到显著提高,在20 mA/g电流密度下的放电比容量达到514 mAh/g,电荷传输反应表观活化能为39.3~35.7 kJ/mol,明显优于α-CuV_2O_6亚微米线、微米棒以及块状颗粒,在锂一次电池中表现出潜在的应用前景。
     通过水热-热处理两步反应可控制备出具有多孔结构的FeVO_4纳米棒和纳米颗粒,这种多孔材料显示出较高的放电容量和较好的循环性能,特别是FeVO_4多孔纳米棒循环20周后,放电容量仍能达到760 mAh/g,在锂二次电池负极材料中具有潜在的应用。进一步采用水热法可控制备得到了CoV_2O_6纳米线和Co_2V_2O_7微米片,并对其电化学性能进行了初步探讨。
     采用改进的溶剂热方法制备得到了Si纳米空心球,并开展了其电化学性能研究。实验发现:Si纳米空心球结构能有效缓冲充放电过程中体积膨胀所产生的应力,提高了循环性能,在2000 mA/g电流密度下循环48周后,Si纳米空心球放电容量仍然达到1095 mAh/g,为锂二次电池性能的提升提供了实验基础。
The rapid development of mobile application areas such as implantable medical devices,electric vehicles and communications equipment,has brought unprecedented opportunities and challenges for primary and rechargeable lithium batteries. High-capacity,long-life and high-safety electrode materials are the focus of research in the fields of lithium batteries.Currently,the electrochemical performance of lithium batteries is limited due to the low utilization efficiency,slow diffusion of the lithium ion as well as severe polarization problem of the traditional electrode materials.The high reactivity,favourable charge transport properties and novel structural merits of nanomaterials make them suitable alternative to effectively improve the performance of lithium batteries.On the other hand,α-CuV_2O_6 and other transition-metal vanadates,and Si are potential electrode materials for lithium batteries.The relationship between their composition,structure,morphology and properties needs to be further studied.Therefore,this dissertation focuses on the preparation,characterization and electrochemical investigation of transition metal vanadates and Si nano/microstructures.The main content is as follows.
     The one-dimensional(1D)α-CuV_2O_6 nano/microstructures were successfully synthesized via a simple and facile low-temperature hydrothermal approach based on the "Ostward ripening-splitting" mechanism.The Li-ion intercalation mechanism and electrochemical properties of theα-CuV_2O_6 nanowires were investigated in detail. Electrochemical measurement results demonstrated that the as-preparedα-CuV_2O_6 nanowires displayed a discharge capacity of 514 mAh/g at 20 mA/g,and activation energies of 35.7-39.3 kJ/mol,which are superior to that of theα-CuV_2O_6 mesowires, microrods and bulk particles due to the large surface area and short Li-ion diffusion route of the nanowires.This result indicates that theα-CuV_2O_6 nanowires are promising cathode candidates for primary lithium batteries
     Porous FeVO_4 nanorods and nanoparticles were prepared by a two-step process including a hydrothermal route and a calcination process.Electrochemical measurements revealed that the porous FeVO_4 nanomaterials exhibit further improved electrochemical performance.Particularly,the porous FeVO_4 nanorods retain a high discharge capacity of 760 mAh/g after 20 cycles,indicating their potential application in rechargeable Li batteries.Furthermore,the CoV_2O_6 nanowires and Co_2V_2O_7 microflakes were also obtained by hydrothermal method and preliminarily investigated as anode materials in rechargeable Li batteries.
     Silicon hollow nanospheres were successfully synthesized via a modified solvothermal approach.The growth mechanism and electrochemical properties of the Si hollow nanospheres were further investigated in detail.The results show that the Si hollow nanospheres retain a high capacity of 1095 mAh/g after cycling up to 48 cycles at 2000 mA/g.The superior electrochemical performance rises from the fact that the hollow nanospherical structure can reduce the stress caused by the volume change of the Si electrode during the charge/discharge process and restrain the aggregation of the nanomaterials.This work opens a new route for the performance improvement of rechargeable Li battery.
引文
[1]2003年世界卫生报告,世界卫生组织网站http://www.who.int/whr/2003/en/Chapter6-en.pdf.
    [2]Skarstad P M.Battery and capacitor technology for uniform charge time in implantable cardioverter-defibrillators.J.Power Sources,2004,136(2):263-267
    [3]Drews J,Fehrmann G,Staub R,et al.Primary batteries for implantable pacemakers and defibrillators.J.Power Sources,2001,97-98:747-749
    [4]Crespi A M,Sonja K,Somdahl C L,et al.Evolution of power sources for implantable cardioverter defibrillators.J.Power Sources,2001,96:33-38
    [5]Takenchi K J,Marschilok A C,Davis S M,et al.Silver vanadium oxides and related battery applications.Coord.Chem.Rev.,2001,219:283-310
    [6]吴宇平,戴晓兵,马军旗等.锂离子电池——应用与实践.北京:化学工业出版社,2004
    [7]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术.北京:化学工业出版社,2007
    [8]陈军,陶占良,荀兴龙.化学电源——原理、技术与应用.北京:化学工业出版社,2006
    [9]黄彦瑜.锂电池发展简史.物理学史和物理学家,2007,36(8):643-651
    [10]Takeuchi E S,Thiebolt W C,The reduction of silver vanadium oxide in lithium/silver vanadium oxide cells.J.Electrochem.Soc.,1988,135(11):2691-2694
    [11]Whittingham M S.Lithium batteries and cathode materials.Chem.Rev.,2004,104:4271-4302.
    [12]Vincent C A,Scrosati B.Modern batteries:an introduction to electrochemical power sources.2nd ed.London:Arnold,1997
    [13]Armand M.Materials for advanced batteries(Murphy D W,Broodhead J,Steele B C H,Editors),New York:Plenum Press,1980
    [14]Mizushimaa K,Jonesa P C,Wisemana J P,Goodenough,J B.Li_xCoO_2:A new cathode material for batteries of high energy density.Mater.Res.Bull.,1980,15(6):783-789.
    [15]Nagaura T,Tozawa K.Lithium ion rechargeable battery.Prog.Batteries Solar Cells,1990,9:209
    [16]吕鸣祥,黄长保,宋玉瑾.化学电源.天津:天津大学出版社,1992
    [17]Winter M,Brodd R J.What are batteries,fuel cells,and supercapacitors? Chem.Rev.,2004,104:4245-4269
    [18]Tarascon J M,Armand M.Issues and challenges facing rechargeable lithium batteries.Nature,2001,414:359-367
    [19]李景虹.先进电池材料.北京:化学工业出版社,2004
    [20]Linden D,Reddy T B.Handbook of batteries,3rd ed.New York:McGraw-Hill Inc,2002
    [21]Guo Y G,Hu J S,Wan L J.Nanostructured materials for electrochemical energy conversion and storage devices.Adv.Mater.,2008,20:2878-2887
    [22]唐致远,邱瑞玲,刘东兴等.锂一次电池正极材料钒酸银的研究进展.化工进展,2008,27(11):1772-1776
    [23]陈军,陶占良,袁华堂.锂离子二次电池电极材料的研究进展.电源技术,2007,31(12):946-950
    [24]Wu Y P,Jiang C,Wan C,et al.Modified natural graphite as anode material for lithium in batteries.J.Power Sources,2002,111:329-334
    [25]Wu X D,Wang Z X,Chen L Q,et al.Surface compatibility in a carbon-alloy composite and its influence on the electrochemical performance of Li/ion batteries.Carbon,2004,42:1965-1972
    [26]段雪峰,刘贵昌.锂离子电池炭负极材料研究现状与发展.炭素技术,2004,3(23):27-41
    [27]赵铁鹏,高德淑,李朝晖等.锂离子电池硅基负极材料改性研究进展.电源技术,2009,33(1):65-68
    [28]赵古诗,何向明,万春荣等。锂离子电池硅基负极材料研究进展.稀有金属材料与工程.2007,36(8):1490-1494
    [29]Kasavajjula U,Wang C S,Appleby A J.Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells.J.Power Sources,2007,163(2):1003-1039
    [30]Idota J,Kubota T,Matsufuji A,et al.Tin-base amorphous oxide:a high-capacity lithium-ion storage material.Science,1997,276:1395-1397
    [31]王忠,田文怀,李星国.锡锑合金/石墨复合材料作为锂离子电池负极的研究.功能材料,2007,1(38):109-112
    [32]Park M S,Wang G X,Kang Y M,et al.Preparation and electrochemical properties of SnO_2nanowires for application in lithium-ion batteries.Angew.Chem.Int.Ed.,2007,46:750-753
    [33]Lou X W,Wang Y,Yuan C L,et al.Template-free synthesis of SnO_2 hollow nanostructures with high lithium storage capacity.Adv.Mater.,2006,18:2325-2329
    [34]Derrien G,Hassoun J,Panero S,et al.Nanostructured Sn-C composite as an advanced anode materials in high-performance lithium-ion batteries.Adv.Mater.,2007,19:2336-2340
    [35]Hassoun J,Panero S,Simon P,et al.High-rate,long-life Ni-Sn nanostructured electrodes for lithium-ion batteries.Adv.Mater.,2007,19:1632-1635
    [36]Poizot P,Laruelle S,Grugeon S,et al.Nano-sized transition-metal oxide as negative-electrode materials for lithium-ion batteries.Nature,2000,407:496-499
    [37]Lou X W,Deng D,Lee J Y,et al.Self-supported formation of needlelike Co_3O_4 nanotubes and their application as lithium-ion battery electrodes.Adv.Mater.,2008,20:258-262
    [38]Reddy M V,Yu T,Sow C H,et al.α-Fe_2O_3 nanoflakes as an anode material for Li-ion batteries.Adv.Funct.Mater.,2007,17:2792-2799
    [39]Chen J,Xu L N,Li W Y,et al.α-Fe_2O_3 nanotubes in gas sensor and lithium-ion battery applications.Adv.Mater.,2005,17:582-586
    [40]Nishijima M,Tadokoro N,Takeda Y,et al.Li deinterealation-inierealation reaction and structural change in lithium trasitio metal nitride,LiTMnN4.J.Eleetroehem.Soc.,1994,141 (11): 2966-2971
    [41] Gregory D H, O'Meara P M, Gordon A G, et al. Layered ternary transition metal nitrides: synthesis, structure and physical properties. J. Alloys Compd., 2001,237-244: 317-318
    [42] Yang J, Takeda Y, Imanishi N, et al. Tin-containing anode materials in combination with Li_(2.6)Co_(0.4)N for irreversibility compensation. J. Electrochem. Soc, 2000,147 (5): 1671-1676
    [43] Prosini P P, Cardellini F. Electrochemical lithium extraction from β-lithium nitride. Electrochem. Commun., 2002,4: 853-856
    [44] Denis S, Baudrin E, Orsini F, et al. Synthesis and electrochemical properties of numerous classes of vanadates. J. Power Sources, 1999, 81-82: 79-84
    [45] Orsini F, Baudrin E, Denis S, et al. 'Chimie douce' synthesis and electrochemical properties of amorphous and crystallized LiNiVO_4 vs. Li. Solid State Ionics, 1998,107: 123-133
    [46] Kim S S, Ikuta H, Wakihara M. Synthesis and characterization of MnV_2O_6 as a high capacity anode material for a lithium secondary battery. Solid State Ionics, 2001, 139: 57-65
    [47] Morishita T, Konno H, Izumi Y, et al. Oxidation state of vanadium in amorphous MnV_2O_6 formed during discharge-charge cycle and the improvement of its synthesis condition. Solid State Ionics, 2006, 177: 1347-1353
    [48] Lei S J, Tang K B, Jin Y, et al. Preparation of aligned MnV_2O_6 nanorods and their anodic performance for lithium secondary battery use. Nanotechnology, 2007, 18: 1-7
    [49] Liu H W, Tang D G. Synthesis of ZnV_2O_6 powder and its cathodic performance for lithium secondary battery. Mater. Chem. Phys., 2009, 114 (2-3): 656-659
    [50] http://www.fda.gov/hearthealth/treatments/rnedicaldevices/icd.html, and http://www.guidantlawyers.com/defibrillator_functions.html
    [51] Takeuchi E S, Thiebolt W C. The reduction of silver vanadium oxide in lithium/silver vanadium oxide cells. J. Electrochem. Soc, 1988, 135 (11): 2691-2694
    [52] Takeuchi E S, Piliero P. Lithium/silver vanadium oxide batteries with various silver to vanadium ratios. J. Power Sources, 1987, 21 (2): 133-141
    [53] Crespi A, Schmidt C, Norton J, et al. Modeling and characterization of the resistance of lithium/SVO batteries for implantable cardioverter defibrillators. J. Electrochem. Soc, 2001, 148(1):A30-A37
    [54] Takeuchi K J, Leising R A, Palazzo M J, et al. Advanced lithium batteries for implantable medical devices: mechanistic study of SVO cathode synthesis. J Power Sources, 2003, 119-121:973-978
    [55] Sorensen E M, Izumi H K,Vaughey J T, et al. Ag_4V_2O_6F_2: An electrochemically active and high silver density phase. J. Am. Chem. Soc, 2005, 127 (17): 6347-6352
    [56] Leising R A, Esther S T. Synthesis and characterization of a new trimetallic cathode material for lithium batteries. J. Power Sources, 1997, 68 (2): 730-734
    [57] Kawakita J, Makino K, Katayama Y, et al. Preparation and characteristica of (Na_yAg_(1-y))_2V_4O_(11) for lithium secondary battery cathodes. J. Power Sources, 1998, 75 (2): 244-250
    [58] Anguchamy Y K, Lee J W, Popov B N. Electrochemical performance of polypyrrole/silver vanadium oxide composite cathodes in lithium primary batteries. J. Power Sources, 2008,184: 297-302
    [59] Chen K M, Merritt D R, Howard W G, et al. Hybrid cathode lithium batteries for implantable medical applications. J. Power Sources, 2006,162 (2): 837-840
    [60] Gomadam P M, Merritt D R, Scott E R, et al. Modeling Li/CFx-SVO hybrid-cathode batteries. J. Electrochem. Soc, 2007,154 (11): A1058-A1064
    [61] Shen G Z, Chen D. Self-coiling of Ag_2V_4O_(11) nanobelts into perfect nanorings and microloops. J. Am. Chem. Soc, 2006,128: 11762-11763
    [62] Zhang S Y, Li W Y, Li C S, et al. Synthesis, characterization, and electrochemcial properties of Ag_2V_4O_(11) and AgVO_3 1-D nano/microstructures. J. Phys. Chem. B, 2006, 110: 24855-24863
    [63] Mao C J, Wu X C, Pan H C, et al. Single-crystalline Ag_2V_4O_(11) nanobelts: hydrothermal synthesis, field emission, and magnetic properties. Nanotechnology, 2005,16: 2892-2896
    [64] Sakurai Y, Ohtsuka H, Yamaki J. Rechargeable copper vanadate cathodes for lithium cell. J. Electrochem. Soc, 1988,135 (1): 32-36
    [65] Takeda Y, Itoh K, Kanno R, et al. Characteristics of brannerite-type CuV_(2-x)Mo_xO_6 (0≤x≤1) cathode for lithium cells. J. Electrochem. Soc, 1991,138 (9): 2566-2571
    [66] Kamata M, Oriji G, Katamaya Y, et al. Lithium insertion behavior of ε-Cu_(0.9)V_2O_5. Solid State Ionics, 2002,146: 95-100
    [67] Morcrette M, Rozier P, Dupont L, et al. A reversible copper extrusion-insertion electrode for rechargeable Li batteries. Nat. Mater., 2003,2: 755-761
    [68] Morcrette M, Martin P, Rozier P, et al. Cu_(1.1)V_4O_(11): A new positive electrode material for rechargeable Li batteries. Chem. Mater., 2005, 17: 418-426
    [69] Bodenez V, Dupont L, Morcrette M, et al. Copper extrusion/reinjection in Cu-based thiospinels by electrochemical and chemical routes. Chem. Mater., 2006,18:4278-4287
    [70] Eguchi M, Iwamoto T, Miura T, et al. Lithiation characteristics of α-CuV_2O_6 and other nCuO·V_2O_5 oxides. Solid State Ionics, 1996, 89: 109-116
    [71] Wei Y J, Nam K W, Chen G, et al. Synthesis and structural properties of stoichiometric and oxygen deficient CuV_2O_6 prepared via co-precipitation method. Solid State Ionics, 2005, 176: 2243-2249
    [72] Andrukaitis E. Study of lithium insertion into Me~xV_2O_(5+x/2), Me=copper, iron or chromium. J. Power Sources, 1997, 68:656-659
    [73] Andrukaitis E, Cooper J P, Smit J H. Lithium intercalation in the divalent metal vanadates MeV_2O_6 (Me=Cu, Co, Ni, Mn or Zn). J. Power Sources, 1995, 54:465-469
    [74] Kim Y T, Gopukumar, Lim K B, et al. Novel synthesis of high-capacity cobalt vanadate for use in lithium secondary cells. J. Power Sources, 2002, 112: 504-508
    [75] Hibino M, Ozawa N, Murakami T, et al. Lithium insertion and extraction of cobalt vanadium oxide. Electrochem. Solid-State Lett., 2005, 8 (10): A500-A503
    [76] Shirakawa J, Nakayama M, Uchimoto Y, et al. Multiple scattering calculation for Co K-edge XANES spectra of nanometer-scale metal deposited during Li insertion into LiCoVO_4. Electrochem. Solid-State Lett., 2006,9 (4): A200-A202
    [77] Ichikawa S N, Hibino M, Yao T. Structural change induced by electrochemical lithium insertion in cobalt vanadium oxide. J. Electrochem. Soc, 2007,154 (12): A1156-A1159
    [78] Hayashibara M, Eguchi M, Miura T, et al. Lithiation characteristics of FeVO_4, J. Power Sources, 1997,98: 119-125
    [79] Patoux S, Richardson T J. Lithium insertion chemistry of some iron vanadates. Electrochem. Commun., 2007, 9: 485-491
    [80] Wei Y J, Ryu C W, Cheng G, et al. X-ray diffraction and raman scattering studies of electrochemically cycled CuV_2O_6. Electrochm. Solid-State Lett. 2006, 9(11): A487-A489
    [81] Cao X Y, Xie J G, Zhan H, et al. Synthesis of CuV_2O_6 as a cathode material for rechargeable lithium batteries from V_2O_5 gel. Mater. Chem. Phys. 2006, 98: 71-75
    [82] Sharma R A, Seefurth R N. Thermodynamic properties of the lithium-silicon system. J. Electrochem. Soc., 1976,123 (12): 1763-1768
    [83] Weydanz W J, Mehrens-Wohlfahrt M, Huggins R A. A room temperature study of the binary lithium-silicon and the ternary lithium-chromium-silicon system for use in rechargeable lithium batteries. J. Power Sources, 1999, 81-82: 237-242
    [84] Nesper R, Scheering von H G. Li_(21)Si_5, a Zintl phase as well as a Hume-Rothery phase. J. Solid State Chem. 1987, 70 (1): 48-57
    [85] Boukamp, B A, Lesh G C, Huggins R A. All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc, 1981,128 (4): 725-729
    [86] Bourderau S, Brousse T, Schleich D M. Amorphous silicon as a possible anode material for Li-ion batteries. J. Power Sources, 1999, 81-82: 233-236
    [87] Dimov N, Kugino S, Yoshio M. Mixed silicon-graphite as anode materials for lithium ion batteries influence of preparation conditions on the properties of the material. J. Power Sources, 2004,136: 108-114
    [88] Datta K M, Kumta P N. Silicon and carbon based composite anodes for lithium ion batteries. J. Power Sources, 2006, 150: 557-563
    [89] Liu W R, Wang J H, Wu H C, et al. Electrochemical Characterizations on Si and C-Coated Si Particle Electrodes for Lithium-Ion Batteries. J. Electrochem. Soc, 2005, 152 (9): A1719-A1725
    [90] Yoshio M, Wang H Y, Fukuda K, et al. Carbon-coated Si as a lithium-ion battery anode materiasl. J. Electrochem. Soc, 2002, 149 (12): A1598-A1603
    [91] Wen Z S, Yang J, Wang B F, et al. High capacity silicon/carbon composite anode materials for lithium ion batteries. Electrochem. Commun., 2003, 5: 165-168
    [92] Holzapfel M, Buqa H, Scheifele W, et al. A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. Chem. Commun. 2005, 1566-1568
    [93] Saint J, Morcrette M, Larcher D, et al. Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites. Adv. Funct. Mater., 2007, 17: 1765-1774
    [94] Lee H Y, Lee S M. Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochem. Commun., 2004,6:465-469
    [95] Eom J Y, Park J W, Kwon H S, et al. Electrochemical insertion of lithium into multiwalled carbon nanotube/silicon composites produced by ballmilling. J. Electrochem. Soc, 2006,153 (9):A1678-A1684
    [96] Wang G X, Yao J, Liu H K. Characterization of nanocrystalline Si-MCMB composite anode materials. Electrochem. Solid State Lett. 2004,7 (8): A250-A253
    [97] Wang G X, Ahn J H, Yao J, et al. Nanostructured Si-C composite anodes for lithium-ion batteries. Electrochem. Commun., 2004, 6: 689-692
    [98] Hg S H, Wang J Z, Wexler D, et al. Amorphous carbon-coated silicon nanocomposites: a low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries. J. Phys. Chem. C, 2007, 111: 11131-11138
    [99] Ng S H, Wang J Z, Wexler D, et al. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew. Chem. Int. Ed., 2006,118:7050-7053
    [100] Lee H Y, Lee S M. Graphite-FeSi alloy composite as anode materials for rechargeable lithium batteries. J. Power Sources, 2002,112: 649-654
    [101] Li T, Cao Y L, Ai X P, et al. Cycleable graphite/FeSi_6 alloy composite as a high capacity anode material for Li-ion batteries. J. Power Sources, 2008,184:473-476
    [102] Park M S, Lee Y J, Rajendran S, et al. Electrochemcial properties of Si/Ni alloy-graphite composite as an anode material for Li-ion batteries. Electrochem. Acta, 2005, 50: 5561-5567
    [103] Park M S, Rajendran S, Kang Y M, et al. Si-Ni alloy-graphite composite synthesized by arc-melting and high-energy mechanical milling for use as an anode in lithium-ion batteries. J. Power Sources, 2006,158: 650-653
    [104] Kim J H, Lim H, Sohn H J. Addition of Cu for carbon coated Si-based composites as anode meterials for lithium-ion batteries. Electrochem. Commun., 2005, 7: 557-561
    [105] NuLi Y N, Wang B F, Yang J, et al. Cu_5Si-Si/C composites for lithium-ion battery anodes. J. Power Sources, 2005,153: 371-374
    [106] Bourderau S, Brousse T, Schleich D M. Amorphous silicon as a possible anode material for Li-ion batteries. J. Power Sources, 1999, 81: 233-236
    [107] Takamur T, Ohara S, Uehara M, et al. A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life. J. Power Sources, 2004, 129: 96-100
    [108] Ohara S, Suzuki J Sekine K, et al. Li insertion/extraction reaction at a Si film evaporated on a Ni foil. J. Power Sources, 2003, 119-121: 591-596
    [109] Jung H, Park M, Yoon Y G, et al. Amorphous silicon anode for lithium-ion rechargeable batteries. J. Power Sources, 2003,115: 346-351
    [110] Hatchard T D, Dahn J R. In situ XRD and electrochemcial study of the reaction of lithium with amorphous silicon.J.Electrochem.Soc.,2004,151:A838-A842
    [111]Yang H B,Fu P P,Zhang H F,et al.Amorphous Si film anode coupled with LiCoO_2cathode in Li-ion cell.J.Power Sources,2007,174(2):533-537
    [112]Shi D Q,Tu P,Yuan Y F,et al.Preparation and electrochemical properties of mesoporous Si/ZrO_2 nanocomposite film as anode material for lithium ion battery.Electrochem.Commun.,2006,8:1610-1614.
    [113]Hatchard T D,Topple J M,Fleischauer M D,et al.Electrochemcial performance of SiAlSn films prepared by combinatorial sputtering.Electrochem.Solid State Lett.,2003,6-7:A129-A132
    [114]Kim Y L,Lee H Y,Jang S W,et al.Electrochemcial characteristics of Co-Si alloy and multilayer films as anodes for lithium ion microbatteries.Electrochimica Acta,2003,48:2593-2597
    [115]Kim J B,Jun B S,Lee S M.Improvement of capacity and cyclability of Fe/Si multilayer thin film anodes for lithium rechargeable batteries.Electrochimica Acta,2005,50:3390-3394
    [116]张宏芳,伏萍萍,松英杰等.锂离子电池用“三明治”型Si/Fe/Si薄膜负极材料的制备及其性能.物理化学学报,2007,23(7):1065-1070
    [117]Ohara S,Suzuki J,Sekine K,et al.A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life.J.Power Sources,2004,136:303-306
    [118]Li H,Huang X J,Chen L Q,et al.The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature.Solid State Ionics,2000,135:181-191
    [119]Holzapfel M,Buqa H,Hardwick L,et al.Nano silicon for lithium-ion batteries.Electrochim.Acta,2006,52:973-978
    [120]Zhou G W,Li H,Sun H P,et al.Controlled Li doping of Si nanowires by electrochemical insertion method.Appl.Phys.Lett.,1999,75(6):2447-2449
    [121]Shin H C,Corno J A,Gole J L,et al.Porous silicon negative electrodes for rechargeable lithium batteries.J.Power Sources,2005,139:314-320
    [122]Lee J K,Kung M C,Trahey L,et al.Nanocomposites derived from phenol-functionalized Si nanoparticles for high performance lithium ion battery anode.Chem.Mater.,2009,21:6-8
    [123]Chan C K,Peng H L,Liu G,et al.High-performance lithium battery anodes using silicon nanowires.Nat.Nanotechnol.,2008,3:31-35
    [124]Kim H,Han B,Choo J,et al.Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries.Angew.Chem.Int.Ed.,2008,47:10151-10154
    [125]张立德.牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [126]Li X X,Cheng F Y,Guo B,et al.Template-Synthesized LiCoO_2,LiMn_2O_4,and LiNi_(0.8)Co_(0.2)O_2 Nanotubes as the Cathode Materials of Lithium Ion Batteries.J.Phys.Chem.B,2005,109,14017-14024
    [127]Jiao F,Bruce P G.Mesoporous crystalline β-MnO_2-a reversible positive electrode for rechargeable Lithium Batteries.Adv.Mater.,2007,19,657-660
    [128]Armstrong A R,Armstrong G,Ganales J,et al.Lithium-ion intercalation into TiO_2-B nanowires.Adv.Mater.,2005,17:862-865
    [129]Park M S,Wang G X,Kang Y M,et al Preparation and electrochemical properties of SnO_2nanowires for application in lithium-ion batteries.Angew.Chem.Int.Ed.,2007,46:750-753
    [130]Burda C,Chen X,Narayanan R,et al.Chemistry and properties of nanocrystals of different shapes.Chem Rev.,2005,105:1025-1102
    [131]Arico A S,Bruce P,Scrosati B,et al.Nanostructured materials for advanced energy conversion and storage devices.Nat.Mater.,2005,4:366-377
    [132]Bruce P G,Scrosati B,Tarascon J M.Nanomaterials for rechargeable lithium batteries.Angew.Chem.Int.Ed.,2008,47:2-19
    [133]刘海涛,杨郦,张树军等.无机材料合成.北京:化学工业出版社.2003
    [134]徐如人,庞文琴.无机合成与制备化学.北京:高等教育出版社.2001
    [135]Feng S H,Xu R R.New materials in hydroyhermal synthesis.Acc.Chem.Res.,2001,34:239-247.
    [136]Wang X,Zhuang J,Peng Q,Li Y D.A general strategy for nanocrystal synthesis.Nature,2005,437:121-124
    [137]Wang X,Li Y D.Solution-based synthetic strategies for 1-D nanostructures.Inorg.Chem.,2006,45:7522-7534
    [138]Cushing B L,Kolesnichenko V L,O'Connor C J.Recent advances in the liquid-phase syntheses of inorganic nanoparticles.Chem.Rev.,2004,104:3893-3946
    [139]马礼敦.近代X射线多晶体衍射——实验技术与数据分析.北京:化学工业出版社,2004
    [140]Izumi F,Ikeda T.A rietveld-analysis programm RIETAN-98 and its applications to zeolites.Mater.Sci.Forum,2000,321-324:198-205
    [141]吴刚 主编.材料结构表征及应用.北京:化学工业出版社,2002
    [142]王中林(美)主编 曹茂盛,李金刚译.纳米材料表征.北京:化学工业出版社,2006
    [143]Satterfield C N(美)著 庞礼 等译,李国英校.实用多相催化.北京:北京大学出版社,1990
    [144]查全性.电极过程动力学导论.北京:科学出版社,2004
    [145]藤岛昭,相泽益男等著,陈震,姚建年译 电化学测定方法.北京:北京大学出版社,1995
    [146]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002
    [147]Bard A J,Faulkner L R.Electrochemical methods fundamentals and applications.2nd ed.John wiley & Sons,2003
    [148]Li R F,Luo Z T,Papadimitrakopoulos F.Redox-assisted asymmetric Ostwald ripening of CdSe dots to rods.J.Am.Chem.Soc.,2006,128:6280-6281
    [149]Li H B,Chai L L,Wang X Q,et al.Hydrothermal growth and morphology modification of β-NiS three-dimensional flowerlike architectures. Cryst. Growth Des., 2007, 7: 1918-1922
    [150] Li B X, Xu Y, Rong G X, et al. Vanadium pentoxide nanobelts and nanorolls: from controllable synthesis to investigation of their electrochemical properties and photocatalytic activities. Nanotechnology, 2006, 17: 2560-2566
    [151] Wu D, Liu J, Zhao X N, et al. Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts. Chem. Mater., 2006,18: 547-553
    [152] Beninati S, Fantuzzi M, Mastragostino M, et al. MW-assisted synthesis of SVO for ICD primary batteries. J. Power Sources, 2006,157:483-487
    [153] Nordlinder S, Augustsson A, Schmitt T, et al. Redox Behavior of Vanadium Oxide Nanotubes As Studied by X-ray Photoelectron Spectroscopy and Soft X-ray Absorption Spectroscopy. Chem. Mater., 2003,15: 3227-3232
    [154] Souza E A, Landers R, Tabacniks M H, et al. Cathodic behavior of co-sputtered Cu/V oxides thin films. Electrochim. Acta, 2006, 51: 5885-5891
    [155] Long J W, Dunn B, Rolison D R, et al. Three-dimensional battery architectures. Chem. Rev., 2004, 104: 4463-4492
    [156] Wang G L, Zhang B, Wayment J R, et al. Electrostatic-gated transport in chemically modified glass nanopore electrodes. J. Am. Chem. Soc, 2006,128: 7679-7686
    [157] Oka Y, Yao T, Yamamoto N, et al. Hydrothermal synthesis, crystal structure, and magnetic properties of FeVO_4-II. J. Solid State Chem. 1996,123: 54-59
    [158] Kurzawa M, Tomaszewicz E. Diffuse reflectance spectra of iron (III) vanadates. Spectrochim. Acta A, 1999, 55: 2889-2892
    [159] Denis S, Baudrin E, Touboul M, et al. Synthesis and electrochemical properties of amorphous vanadates of general formula RVO_4 (R=In, Cr, Fe, Al, Y) vs. Li. J. Electrochem. Soc, 1997,144 (12): 4099-4019
    [160] Poizot P, Baudrin E, Laruellle S, et al. Low temperature synthesis and electrochemical performance of crystallized FeVO_4·1.1H_2O. Solid State Ionics, 2000, 138: 31-40
    [161] Baudrin E, Laruelle S, Denis S, et al. Synthesis and electrochemical properties of cobalt vanadates vs. lithium. Solid State Ionics, 1999,123: 139-153
    [162] Denis S, Baudrin E, Orsini F, et al. Synthesis and electrochemical properties of numerous classes of vanadates. J. Power Sources, 1999, 81-82: 79-84
    [163] Wu Z C, Yu K, Zhang S D, et al. Hematite hollow spheres with a mesoporous shell: controlled synthesis and applications in gas sensor and lithium ion batteries. J. Phys. Chem. C, 2008,112:11307-11313
    [164] Zhong Z, Ho J, Teo J, et al. Synthesis of porous α-Fe_2O_3 nanorods and deposition of very small gold particles in the pores for catalytic oxidation of CO. Chem. Mater., 2007, 19: 4776-4782
    [165] Gou X L, Wang G X, Kong X Y, et al. Flutelike porous hematite nanorods and branched nanostructures: synthesis, characterization and application for gas-sensing. Chem. Eur. J., 2008,14: 5996-6002
    [166]Idota Y.Nonaqueous secondary battery.Eur.Pat.0567149 A1,1993-10-27
    [167]Denis S,Dedryvere R,Baudrin E,et al.~(57)Fe Molssbauer study of the electrochemical reaction of lithium with triclinic iron vanadate.Chem.Mater.,2000,12:3733-3739
    [168]Denis S,Baudrin E,Orsini F,et al.Synthesis and electrochemical properties of numerous classes of vanadates.J.Power Sources,1999,81-82:79-84
    [169]武汉大学,吉林大学等校编(曹锡章,宋天佑,王杏乔修订).无机化学.北京:高等教育出版社,2000
    [170]Baudrin E,Denis S,Orsimi F,et al.On the synthesis of monovalent,divalent and trivalent element vanadates.J.Mater.Chem.,1999,9:101-105
    [171]Neiner D,Chiu H W,Kauzlarich S M.Low-temperature solution route to macroscopic amounts of hydrogen terminated silicon nanoparticles.J.Am.Chem.Soc.,2006,128:11016-11017
    [172]Peng Q,Dong Y J,Li Y D.ZnSe semiconductor hollow microspheres.Angew.Chem.Int.Ed.,2003,42:3027-3030
    ##属性不符

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700