苯基修饰二氧化硅膜的制备及氢气分离研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微孔SiO2膜具有高温稳定性好、机械强度高、耐各种酸碱性介质腐蚀的特点,在涉及高温和腐蚀性气体的分离过程中具有其它膜材料无可比拟的优越性。但因为SiO2膜具有较强的亲水性,不能应用于湿热环境下,通过表面改性的方法制备水热稳定性良好的微孔SiO2膜是当前的研究方向。
     本论文主要采用含有疏水基团苯基的硅烷前驱体苯基三乙氧基硅烷(PTES)与正硅酸乙酯(TEOS)在酸性条件下进行共水解缩聚反应,通过调节修饰基团的添加量以及水的加入量制备苯基修饰的SiO2溶胶,在洁净室条件下利用dip-coating技术,将修饰后的溶胶涂覆到γ-Al2O3/α-Al2O3多孔陶瓷载体上,得到以γ-Al2O3/α-Al2O3为支撑体的微孔SiO2膜。应用原子力显微镜(AFM)、扫描电镜(SEM)、红外光谱(FT-IR)、N2吸附、光学接触角测量仪、核磁共振(NMR)以及热重分析(TG)等测试手段表征载体以及膜材料的形貌、孔结构和疏水性能,探讨苯基修饰的微孔SiO2膜疏水机理,并在自制的气体渗透装置上,研究了H2和CO2在疏水微孔SiO2膜中的输运和分离行为。
     实验结果表明,α-Al2O3多孔陶瓷的孔径在62nm左右,孔隙率达到39%,符合气体渗透的要求;苯基修饰对SiO2膜的孔结构没有产生太大影响,膜材料依然为典型的微孔结构,孔径分布在0.4-0.5nm之间,分布狭窄;接触角测量结果显示修饰后SiO2膜表现出良好的疏水性能,并且材料的疏水性随着PTES添加量的增加而增强,且n(PTES)/n(TEOS)=0.6时膜材料对水的接触角增大到115±0.5o。FT-IR结果证明随着PTES加入量的增大,SiO2膜的Si-OH吸收峰明显逐渐减弱,苯基吸收峰逐渐增强,而且出现单取代吸收峰,表明苯基基团成功修饰到膜材料表面;NMR结果证明修饰后样品表面存在Si-C6H5基团,浓度达到4.64mmol/g,而表面羟基的浓度从8.87mmol/g下降到5.84mmol/g。将修饰前后的膜材料置于潮湿环境下陈化30d,发现修饰后膜材料的孔结构几乎没有发生改变,保持了良好的微孔结构,而未修饰的膜材料孔结构由典型微孔结构转变为介孔结构,表明修饰后的膜材料具有较好的水热稳定性。
     在室温、膜两端压差为0.1MPa的条件下,通过自制的气体分离装置对气体渗透性能进行测试。结果表明氢气在修饰后SiO2膜的输运既遵循发生在微孔孔道的表面扩散机理也遵循发生在较大孔道或者微缺陷的努森扩散机理,膜材料的H2渗透率达到1.49×10-6mol·m-2·Pa-1·s-1,H2/CO2和H2/SF6的理想分离系数分别达到4.64和365.59。
Silica membranes have many advantages over other materials when they used at high temperatures and corrosive environments as material for gas separation because of their high mechanical strength, high thermal stability, and high resistance to various acid-base medium corrosion. However, silica membranes can not be used at humid environments due to their poor hydrothermal stability. Therefore, it is of great significance to prepare hydrothermally stable microporous membranes via surface modification.
     The present thesis focuses on the preparation of hydrophobic silica membranes and the investigation on their gas transport behavior and hydrothermal stability. Phenyl groups modified silica sols were prepared by the acid-catalyzed hydrolysis and condensation of phenyltriethoxysilane(PTES) and tetraethylorthosilicate (TEOS) in an ethanol (EtOH) medium. The supported silica membranes were prepared on the top ofγ-Al2O3/α-Al2O3 ceramic by the dip-coating technology under clean room condition. The pore structure, morphology and hydrophobic property of silica membranes were studied by means of AFM, N2 adsorption, SEM, water contact angle measurement, FT-IR,TG and solid state 29Si MAS NMR. Gas permeation experiment of the supported membranes was performed with a home-made setup.
     The results show that the modified membranes display a typical type I isotherms, indicating a microporous structure. The modified silica membranes have a narrow pore size distribution centered at 0.4-0.5nm. Such a microporous structure can be stabilized after exposured to humid atmosphere for 30d, in contrast to the collapse of micropores in the unmodified silica membranes. The successful modification with phenyl groups can be confirmed by FT-IR spectra and solid state 29Si MAS NMR. The water contact angle measurement indicates that a hydrophobic membrane is obtained upon the phenyl group modification and the hydrophobic property is gradually enhanced with increasing PTES concentration. It is reasonable that the presence of hydrophobic phenyl group on the pore surface and the decrease of the amount of hydrophilic silanols are responsible for the enhancement of the hydrophobicity of the modified membranes.
     The modified silica membranes conform to a combination of a surface diffusion mechanism associated with micropores and a Knudsen diffusion mechanism related to the larger pores or microcracks, with a H2 permeance of 1.49×10-6mol·m-2·Pa-1·s-1 and a permselectivity of 4.64 for H2/CO2 and 365.69 for H2/SF6.
引文
1.陈霖新.中国氢能源利用现状及发展潜力.科技中国. 2004, 11:34~37
    2. G.Q.Lu, J.C.Diniz da Costa, M.Duke, et al. Inorganic Membranes for Hydrogen Production and Purification:A Critical Review and Perspective. J.Colloid Interface Sci.. 2007, 314:589~603
    3.齐铁建.挪威汽车“氢”装上阵.中国石油石化. 2008, 1:41~42
    4.苏鸿英.可生产氢气作燃料电池新技术.中国有色金属. 2007, 11:90~91
    5.臧明昌.第四代核能和氢气经济——21世纪能源领域的新进展.核科学与工程. 2004, 24(3):193~199
    6.严陆光,夏训诚,周凤起,等.我国大规模可再生能源基地与技术的发展研究.电工电能新技术. 2007, 26(1):13~27
    7. K.S.W.Sing. Reporting Physisorption Data for Gas/Solid Systems With Special Reference to the Determination of Surface Area and Porosity. Pure & Appl. Chem.. 1985, 57: 603~619
    8.林小芹,贺跃辉,江垚,等.氢气分离技术研究现状.材料导报. 2005, 19(8):34~38
    9.王艳辉,吴迪镛,迟建.氢能及制氢的应用技术现状及发展趋势.化工进展. 2001, 20 (1):
    6~8
    10.秦孝良,王保有,顾岩松.膜分离技术在炼油厂氢气膜回收装置中的应用.现代化工. 2006, 26(12):46~49
    11.张润虎,郑孝英,谢冲明.膜技术在氢气分离中的应用.过滤与分离. 2006, 16(4):33~37
    12. S.C.A.Kluiters. Status Review on Membrane Systems for Hydrogen Separation. Energy Center of The Netherlands, Petten, The Netherlands. 2004:125~150
    13. T.Norby, Y.Larring. Mixed Hhydrogen Ion-electronic Conductors for Hydrogen Permeable Membranes. Solid State Ionics. 2000, 136:139~148
    14. Ockwig N.W., Nenoff T.M. Membranes for Hydrogen Separation. Chem. Rev.. 2007, 107: 4078~4110
    15. Junhang Dong, Y.S.Lin, Masakoto Kanezashi, et al. Microporous Inorganic Membranes for High Temperature Hydrogen Purification. J.Appl.Phys.. 2008, 104: 121~130
    16.赵基钢,刘纪昌,孙辉,等.无机膜的制备及应用.化工科技. 2005, 13:69~71
    17. G.R.Gavalas, C.E.Megris, S.W. Nam. Deposition of H2-Permselective SiO2 Films.Chem. Eng. Sci.. 1989, 44:1829~1835
    18. D.Lee, L.Zhang, S.T.Oyama, et al. Synthesis, Characterization, and Gas Permeation Properties of A Hydrogen Permeable Silica Membrane Supported on Porous Alumina. J. Membr. Sci.. 2004, 231:117~126
    19. S.T.Oyama, D.Lee, P.Hacarlioglu, et al. Theory of Hydrogen Permeability in NonporousSilica Membranes. J. Membr. Sci.. 2004, 244:45~53
    20. Suraj Gopalakrishnan, Yasushi Yoshino, Mikihiro Nomura, et al. A Hybrid Processing Method for High Performance Hydrogen-Selective Silica Membranes. J. Membr. Sci.. 2007, 297:5~9
    21. C.Barboiu, B.Sala, S.Bec, et al. Structural and Mechanical Characterizations of Microporous Silica–Boron Membranes for Gas Separation. J.Am.Chem.Soc.. 2009, 326: 514~525.
    22. Hessel L.Castricum, Ashima Sah, Robert Kreiter, et al. Structure of Hybrid Organic–Inorganic Sols for the Preparation of Hydrothermally Stable Membranes. J.Mater.Chem.. 2008, 48:11~17.
    23. Sun-Mi Hwanga, Oh Joong Kwonb, Sang Hyun Ahna, et al. Silicon-Based Micro-Reactor for Preferential CO Oxidation. J. Chem.Engc.. 2008, 91:2975~2981.
    24. M.C.Duke, J.C.D.da Costa, G.Q. Lua, et al. Carbonised Template Molecular Sieve Silica Membranes in Fuel Processing Systems: Permeation, Hydrostability and Regeneration. Adv.Funct.Mater.. 2006, 16:12~15.
    25. R.M.de Vos, H.verweij. High-Selectivity and High-Flux Silica Membranes for Gas Separation. Science. 1998(279):1710~1711
    26. Young-Seok Kim, Katsuki Kusakabe, Seung-Man Yang. Microporous Silica Membrane Synthesized on an Ordered Mesoporous Silica Sublayer. Chem. Mater.. 2003, 15:612~615
    27. Asaeda M.,Yamasaki S. Separation of Inorganic/organic Gas Mixtures by Porous Silica Membranes. Sep.Purif.Technol.. 2001, 25:151~159
    28. V.V.Turov, I. F.Mironyuk. Adsorption Layers of Water on the Surface of Hydrophilic, Hydrophobic and Mixed Silicas. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1998, 134:257~263.
    29. G.P.Fotou, Y.S.Lin, S.E.Pratsinis. Effect of Ferrocene Additive on the Flame Synthesis of Silica Particles. J . Mater. Sci.. 1995, 30:2803~2808
    30. B.N.Nair, K.Keri, W.J.. Elferink ,et al. Preparation and Structure of Microporous Silica Membranes. J .Membr. Sci.. 1996(116):161~169
    31. Yunfeng Gu, Pelin Hacarlioglu, S.Ted Oyama. Hydrothermally Stable Silica–Alumina Composite Membranes for Hydrogen Separation. J. Membr.Sci.. 2007, 25:10~19
    32. Masakoto Kanezashi, Masashi Asaeda. Hydrogen Permeation Characteristics and Stability of Ni-Doped Silica Membranes in Steam at High Temperature. J. Membr. Sci.. 2006, 271:86~93
    33. Vittorio Boffa, Johan E. ten Elshof, Andrei V. Petukhov, et al. Microporous Niobia–Silica Membrane with Very Low CO2 Permeability. Chem.Sus.Chem.. 2008, 1:437~443
    34. Vittorio Boffa, Hessel L.Castricum, Ruben Garcia, et al. Structure and Growth of Polymeric Niobia-Silica Mixed-Oxide Sols for Microporous Molecular Sieving Membranes: A SAXS Study. Chem.Mater.. 2009, 21:1822~1828
    35. V.Boffa, J.E.t. Elshof, R.Garcia, et al. Microporous Niobia–Silica Membranes: Influence of Sol Composition and Structure on Gas Transport Properties.Microp.Mesop.Mater.. 2009,118:202~209
    36. S.Battersby, Simon Smart, Bradley Ladewig, et al. Hydrothermal Stability of Cobalt Silica Membranes in A Water Gas Shift Membrane Reactor. J.Membr.Sci.. 2009, 66 :299~305
    37. S.Battersby, Simon Smart, Bradley Ladewig, et al. Performance of Cobalt Silica Membranes in Gas Mixture Separation. J.Membr.Sci.. 2009, 329: 91~98
    38. Iler, R.K. The Chemistry of Silica. New York. 1979, Chapter 6.
    39. R.M.de Vos, M.Maier, F.Wilhelm, et al. Hydrophobic Silica Membranes for Gas Separation. J. Membr. Sci.. 1999, 158 (1~2): 277~288
    40. R.M.de Vos, H.verweij. Improved Performance of Silica Membranes for Ggas Separation. J. Membr. Sci.. 1998, 143(1~2): 37~51
    41. Sabine Giessler, Luke Jordan, Joa?o C. Diniz da Costa , et al. Performance of Hydrophobic and Hydrophilic Silica Membranereactors for the Water Gas Shift Reaction. Sep.Purif. Technol.. 2003, 32:255~264
    42. Nagaraja D.Hegde, A.Venkateswara Rao. Organic Modification of TEOS Based Silica Aerogels Using Hexadecyltrimethoxysilane as a Hydrophobic Reagent. Appl. Sur. Sci.. 2006, 8(3):25~29
    43. H.J.Jeong, D.K.Kim, et al. Preparation of Water-Repellent Glass by Sol-Gel Process Using Perfluoroalkylsilane and Tetraethoxysilane. J.Colloid Interface Sci.. 2001, 235(1):130~134
    44. Y.Ohta, K.Akamatsu, T.Sugawara, et al. Development of Pore Size-Controlled Silica Membranes for Gas Separation by Chemical Vapor Deposition. J. Membr. Sci.. 2008,
    315:93~98
    45.于春晓,韦奇,王艳丽,等.疏水介孔二氧化硅膜的制备与表征.无机化学学报. 2007, 23(6):957~962
    46.王艳丽,韦奇,于春晓,等.乙烯基修饰的微孔二氧化硅膜孔结构与疏水性研究.无机材料学报. 2007, 22(5):949~953
    47.王飞,韦奇,王艳丽,等.碳氟基团修饰的疏水微孔二氧化硅膜的制备与表征.化学学报. 2008, 66(1):44~48
    48. Qi Wei, Fei Wang, Zuo-Ren Nie, et al. Highly Hydrothermally Stable Microporous Silica Membranes for Hydrogen Separation. J.Phys.Chem.B. 2008, 112: 9354~9359.
    49. Qi Wei, Yan-Li Wang, Zuo-Ren Nie, et al. Facile Synthesis of Hydrophobic Microporous Silica Membranes and Their Resistance to Humid Atmosphere. Microp.Mesop.Mater.. 2008, 111: 97~103.
    50. Hessel L.Castricum, Ashima Sah, Robert Kreiter, et al. Hydrothermally Stable Molecular Separation Membranes from Organically Linked Silica. J.Mater.Chem.. 2008, 18:2150~2158
    51. Hessel L.Castricum, Ashima Sah, Robert Kreiter, et al. Hybrid Ceramic Nanosieves: Stabilizing Nanopores with Organic Links. Chem.Commun.. 2008, 21:1103~1105
    52. Masakoto Kanezashi, Kazuya Yada, Tomohisa Yoshioka, et al. Design of Silica Networks for Development of Highly Permeable Hydrogen Separation Membranes with Hydrothermalstability. J.Am.Chem.Soc.. 2009, 131 (2):414~415
    53. Masakoto Kanezashi, Kazuya Yada, Tomohisa Yoshioka, et al. Organic–Inorganic Hybrid Silica Membranes with Controlled Silica Network Size: Preparation and Gas Permeation Characteristics. J.Membr.Sci.. 2010, 348: 310~318
    54. Lian-Xing WANG, Qing-Ju NING, Zhi-Cai YANG. Development of Porous Ceramics Material . Bulletin of the Chinese Ceramic Society. 1998, 17(1): 41~45
    55.左演生,陈文哲,梁伟.材料的现代分析方法,北京.北京工业大学出版社, 2000
    56. K.K.Unger, J. Rouquerol, K.S.W.Sing, et al. Characterization of Porous Solids I,Studies in Surface Science and Catalysis Vol.39, Proc.of the IUPAC symposium(COPS II), Bad Soden, Germany, April 1988
    57. F.R.Reinoso, J.Rouquerol, K.S.W.Sing, et al. Characterization of Porous Solids II, Studies in Surface Science and Catalysis Vol.62, Proc.of the IUPAC symposium(COPS II), Alicante,Spain,May 1990
    58. G.Horvath, K.Kawazoe. Method for the Calulation of Effective Pore-size Distribution in Molecular-sieve Carbon. J. Chem. Eng. Jpn.. 1983, 16: 470~475
    59. Saito, H.C.Foley. Curvature and Parametric Sensitivity in Models for Adsorption in Micropores. AIChE Journal. 1991, 373: 429~436
    60. J.S.Beck, J.C.Vartuli, W.J.Roth. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J.Am.Chem.Soc.. 1992, 114:108~112
    61. Q.Wei, H.Q.Chen, Z.R.Nie, et al. Preparation and Characterization of Vinyl Functionalized Mesoporous SBA-5 Silica by a Direct Synthesis Method. Mater. Lett.. 2007, 61:1469~1473
    62. L.Feng, Z.Y.Zhang, Z.H.Mai, et al. A Super-Hydrophobic and Super-Oleopilic Coating Mesh Film for the Separation of Oil and Water. Angew. Chem. Int. Ed.. 2004, 43: 20~23
    63.黄仲涛,曾少槐,钟邦客.无机膜技术及其应用.北京.中国石化出版社, 1999
    64.徐南平,邢卫红,赵宜江.无机膜分离技术及应用.北京.化学工业出版社, 2003
    65. R.J.R. Uhlhorn, K.Keizer, A.J.Burggraaf. Gas Transport and Separation with Ceramic Membranes. Part II. Synthesis and Separation Properties of Microporous Membranes. J.Membr.Sci.. 1992, 66(3):259~269
    66. K.Keizer, A.J.Burggraaf, Z.A.E.P.Vroon, et al. Two Component Permeation through Thin Zeolite MFI Membrane. J.Membr.Sci.. 1998, 147:159~163
    67. B.Shelekhin, A.G.Dixon, Y.H.Ma. Theory of Gas Diffusion and Permeation in Inorganic Molecular-sieve Membranes. AICHE J.. 1995, 41(1):58~63
    68. Moore T.T, Damle S, Williams P.J, et al. Characterization of Low Permeability Gas Separation Membranes and Barrier Materials:Design and Operation Considerations. J.Membr.Sci.. 2004, 245 (1~2):227~231.
    69. Pye D G, Hoehn H H, Panar M. Measurement of Gas Permeability of Polymers: Permeabilities in Constant Volume/Variable Pressure Apparatus.J.Appl.Polym.Sci.. 1976, 20(7):1921~1931.
    70. Brubaker D.W, Kammermeyer K. Apparatus for Measuring Gas Permeability of Sheet Materials.Anal.Chem.. 1953, 25(3):424~426.
    71. Mohammadi A.T, Matsuura T, Sourirajan S. Design and Construction of Gas Permeation System for the Measurement of Low Permeation Rates and Permeate Compositions. J.Membr.Sci.. 1995,98(3):281~286.
    72. Stern S.A, Gareis P.J, Sinclair T F, et al. Performance of Versatile Variable-Volume Permeability Cell.Comparison of Gas Permeability Measurements by the Variable-Volume and Variable-Pressure Methods. J.Appl.Polym.Sci.. 1963, 7(6):2035~2051.
    73. O’Brien K.C, Koros W.J, Barbari T.A, et al. A New Teehnique for the Measurement of Multicomponent Gas Transport through Polymerie Films.J.Membr.Sci.. 1986, 29(3): 229~ 238.
    74. Landroek A.H, Proetor B.E. The Simultaneous Measurement of Oxygen and Carbon Dioxide Permeabilities of Packaging Materials.Tappi Journal. 1952, 35:241~246.
    75. Vittorio Boffa. Niobia-Silica and Silica Membranes for Gas Separation. University of Twente, Ph.D Thesis. 2008.
    76.李传峰,钟顺和.无机膜的气体传递机理和模型.膜科学与技术. 2000, 20(3):33~37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700