金属—介质—金属结构中表面等离子特性研究及器件设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1998年美国Ebbesen科研小组在实验上观测到光在金属亚波长周期性孔阵列上的异常透射现象以来,亚波长金属结构对光波异常透射的物理机理及其应用一直都是学术界研究的热点。在光与亚波长金属结构的相互作用而引起的各种新颖现象中,表面等离激元起到了至关重要的作用。因此,对表面等离激元的激发方式、传输规律及调控手段的认识和探索,将在理论上加深和丰富人们对光与亚波长金属材料相互作用的认识;同时对基于金属表面等离激元的微纳光电器件的探究及设计,将促进新一代微型光电子器件、光电集成及全光回路等的研究进展。针对亚波长金属结构中表面等离激元的物理特性、传播规律、调控手段及相关应用等问题,本论文采用时域有限差分方法(FDTD)进行了较为系统的研究。本文的具体工作和研究结果主要有:
     利用数值模拟的方法对亚波长金属光栅结构中表面等离激元传播规律、行为的人工调控问题以及相关光学性质进行了比较系统的研究;通过对单缝、单缝填充介质、双缝、多缝复合加槽、三元复合金属光栅、斜入射等结构进行模拟计算了其透射谱和光场强分布,分析了透射增强的内在机理。认为,表面等离子体激元(SPPs)和类Fabry-Perot(F-P)腔是EOT现象的主要作用机制,而在多缝结构中相位共振会对透射谱产生一定影响,如劈裂的产生。
     研究了可见光到近红外频段的电磁波与表面等离子体亚波长复合金属光栅的相互作用,主要研究了这种亚波长金属光栅结构的色散特性以及电磁波在这种结构中的传输特性、光强分布、相位分布等物理性质。根据电磁波在亚波长复合金属光栅中的各种特性,提出了每个狭缝都含有一个垂直切口的双狭缝复合周期性金属光栅结构,研究了电磁波与这种结构的相互作用及光透射等各种特性。结果发现,当垂直切口在两狭缝中分布不对称时,该结构对电磁波的传输模式(偶/奇数波导模式)将出现不同的性质;特别是该复合周期性结构的传输谱在一定条件下出现透射最小值(dip),该最小值的位置可以通过在狭缝中移动切口的位置进行改变。我们利用相位共振的原理合理解析了电磁波在这种含垂直切口的双狭缝亚波长周期性复合金属光栅中各种物理特性;研究还证明了垂直切口的几何尺寸对所研究的金属光栅中相位共振的影响,并结合模拟的场强和图像讨论了其物理特性。
     基于亚波长金属表面等离子体激元波的各种特性,研究了电磁波与金属-绝缘体-金属(MIM)光波导的相互作用及在这种波导中的传输特性。根据SPPs在MIM波导中特别是在缺陷型MIM波导结构中的物理特性,提出了一种新型的同侧双齿型MIM波导结构。深入系统地研究了SPPs在这种波导结构中的各种特性,发现此同侧双齿型MIM波导结构可以对电磁波实现滤波功能;通过调控双齿的几何结构参数,如齿的长度、宽度及两齿的中心间距等可以对滤波频率及带宽等进行有效调谐;在仅仅改变一个齿的宽度而另一个齿的宽度和其它参数保持不变的情况下,我们发现该结构对SPPs滤波的禁带宽度可以实现有效的调控;我们利用相位多重相消干涉原理合理解析了这些物理特性。由于该亚波长MIM光波导滤波器的带宽可调,该结构将对设计高集成的纳米光电器件提供一定参考价值。
     研究了介质圆盘金属-介质-金属光波导结构的电磁波传输、场强分布及多盘MIM结构的各种光学特性。发现多圆盘波导结构中多个圆盘的半径相同时,电磁波在其中的传输将会出现多个传播模式,且传播模式的多少与相同半径的圆盘的数量一致。同时我们发现在一个圆盘的臂膀位置对称放置两个半径、填充介质相同的圆盘时,此时的结构对电磁波的传输有漏模存在。这种多重复合圆盘结构对电磁波的传输具有调控特性。
Since the Ebbesen research group observed the extraordinary transmission (EOT)phenomenon of light on metallic subwavelength periodic hole arrays in U.S. at1998,the physical mechanism of extraordinary transmission phenomenon of light waves onsubwavelength metal structures and its applications have always been research hotspots. A variety of novel phenomena caused by the interaction of light withsubwavelength metal structure, the surface plasmon polaritons (SPPs) played a crucialrole. Therefore, to understanding and exploration the SPPs’ excitation, propagationlaw and the control means will to deepen and enrich to understanding of theinteraction of light with subwavelength metallic materials. Moreover, devise andresearch the micro-nano optoelectronic devices, which based on the SPPs, willpromote the research progress of the new generation of micro-optoelectronic devicesand optoelectronic integrated and all-optical circuit, etc. Aim at the physicalproperties, control means and related applications of the SPPs in subwavelength metalstructures, in this thesis, we using the finite-difference time-domain method (FDTD)carried out a systematic study. The main research works and conclusions are asfollowing:
     We systemically explore the propagation properties, artificial regulationbehaviors and the related optical properties of SPPs in subwavelength metal gratingstructures by using the FDTD method. By investigate the transmission spectra andfield distributions of the single slit, single slit filled with media, double slit, multiplecompound silt with groove, ternary conpound metal grating and oblique incidencestructures, find that the SPPs and Fabry-Perot (F-P) cavity like resonance are the mainmechanism of the EOT phenomenon. Besides, the phase resonance has a certainimpact of the transmission spectra in the multiple slits structures, for example it canlead to the split.
     The interaction of electromagnetic waves and surface plasmon subwavelengthcomposite metal gratings are studied by using the numerical simulation method atvisible to near infrared band. Mainly include the dispersion characteristics of thesubwavelength metal grating structures and the transmission characteristics ofelectromagnetic waves, light intensity distributions, phase distributions and physicalproperties. According to various characteristics of the electromagnetic waves in subwavelength composite metal gratings, we propose a double-slit compound periodicmetal grating structure which include a vertical incision in each slit, the interaction ofelectromagnetic waves with this structure and light transmission variouscharacteristics are investigated. It is found that if the distribution of the verticalincision in the two slit asymmetries, the electromagnetic wave transmission modes(even/odd waveguide modes) in the structure will appear different properties.Especially, transmission spectra of the composite periodic structures appear atransmission minimum (dip) under certain conditions, the position of the dip can bechanged by tuning the cuts in the slits. We use the phase resonance principlereasonable to resolve the various physical properties of electromagnetic waves withvertical incision double slit subwavelength periodic composite metal grating. It is alsoproved that the geometry of the vertical incision can influence the phase resonance,combined with the field distribution to discuss these physical properties.
     Based on the properties of SPPs, investigated the interaction and transmissioncharacteristics of electromagnetic waves with the metal-insulator-metal (MIM)waveguide structures. According to the characteristics of SPPs in the MIM waveguidespecially in the MIM waveguide structure, we proposed a novel ipsilateraldouble-teeth shaped MIM waveguide structure. By depth study of the properties of theSPPs in this waveguide structure, it is find that this type MIM waveguide structurecan realize the typical filting function. The filtering frequency and bandwidth can betunned by adjusting the geometry of the two teeth, such as the length, width andcenter space between the two teeth. The case of simply changing the width of onetooth with the other one unchanged, we find that the band gaps of the structure of thefilter can effective regulation. We use the phase multiple destructive interferenceprinciple to reasonably resolve these physical properties. Because of thesubwavelength MIM waveguide filter bandwidth is adjustable, the structure willprovide a certain reference value to design highly integrated nanophotonic devices.
     Propose a multiple disk shaped coupled cavities metal-insulator-metal (MIM)waveguide sturcture and explore the transmission and the couple properties betweenoptical cavities with the same radius and different radius by2D FDTD method. Thetransmission surface plasmon waves will appear splitting modes in the coupled cavityMIM waveguide system when the radiuses of the disk cavities are the same. Thecoupled cavity systems produce the same number of spitting modes as the number ofdisk cavities. Among our findings, it is interesting to notice that there is a leak modein a coupled cavity system consisted of a cavity with two same cavities with different radius on the shoulder of it. The results are useful for the design of cavity-basedevices for integration in nanophotonics.
引文
[1] Ozbay E. Plasmonics: Merging Photonics and Electronics at NanoscaleDimensions. Science,2006,311(5758):189-193
    [2] Ohtsu M, Kobayashi K, Kawazoe T, et al. Nanophotonics: design, fabrication,and operation of nanometric devices using optical near fields. IEEE, SelectedTopics in Quantum Electronics,2002,8(4):839-862
    [3] Barnes W L, Dereux A and Ebbesen T W. Surface plasmon subwavelengthoptics. Nature,2003,424(6950):824-830
    [4] Johnson S G, Joannopoulos J D. Photonic Crystals: The Road from Theory toPractice. Boston: Kluwer Academic Publishers,2002
    [5] Knight J C, Birks T A, Russell P S, et al. All-silica single-mode optical fiberwith photonic crystal cladding. Opt. Lett.,1996,21(19):1547-1549
    [6] Russell P. Photonic Crystal Fibers. Science,2003,299(5605):358-362
    [7]付勇.纳米尺度周期性金属结构异常光传输现象的FDTD数值分析:[山东大学学位论文].济南:山东大学,2008
    [8] Agranovich V M. Surface Plasmons. Amsterdam: North-Holland,1982
    [9] Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings.Berlin: Springer,1988
    [10] Altewischer E, van Exter M P and Woerdman J P. Plasmon-assistedtransmission of entangled photons. Nature,2002,418(6895):304-306
    [11] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmissionthrough sub-wavelength hole arrays. Nature,1998,391(6668):667-669
    [12] Sambles R. Photonics: More than transparent. Nature,1998,391(6668):641-642
    [13]任希锋,郭国平,黄运锋, et al.表面等离子体辅助光传送的实验研究.中国科学G辑,2007,37(6):706-715
    [14]国家自然科学基金委员会数学物理科学部.物理学学科发展研究报告.北京:科学出版社,2008
    [15] Newton I. Opticks or, a Treatise of the Reflections, Refractions, Inflections,and Colours of Light. London: Smith and Walford,1704
    [16] Zenneck J. über die Fortpflanzung ebener elektromagnetischer Wellen l ngseiner ebenen Leiterfl che und ihre Beziehung zur drahtlosen Telegraphie.Annalen der Physik,1907,328(10):846-866
    [17] Sommerfeld A. über die Ausbreitung der Wellen in der drahtlosen Telegraphie.Annalen der Physik,1909,333(4):665-736
    [18] Bouwkamp C J. On Sommerfeld's Surface Wave. Phys. Rev.,1950,80(2):294-294
    [19] Mie G. Beitr ge zur Optik trüber Medien, speziell kolloidaler Metall sungen.Annalen der Physik,1908,330(3):377-445
    [20] Debye P. Der Lichtdruck auf Kugeln von beliebigem Material. Annalen derPhysik,1909,335(11):57-136
    [21] Fano U. Some Theoretical Considerations on Anomalous Diffraction Gratings.Phys. Rev.,1936,50(6):573-573
    [22] Fano U. On the Anomalous Diffraction Gratings. II. Phys. Rev.,1937,51(4):288-288
    [23] Bethe H A. Theory of Diffraction by Small Holes. Phys. Rev.,1944,66(7-8):163-182
    [24] Ritchie R H. Plasma Losses by Fast Electrons in Thin Films. Phys. Rev.,1957,106(5):874-881
    [25] Ferrell R A. Predicted Radiation of Plasma Oscillations in Metal Films. Phys.Rev.,1958,111(5):1214-1222
    [26] Otto A. Excitation of nonradiative surface plasma waves in silver by themethod of frustrated total reflection. Zeitschrift für Physik A Hadrons andNuclei,1968,216(4):398-410
    [27] Kreschmann E, Raether H. Radiative Decay of Non-Radiative SurfacePlasmons Excited by Light. Z. Naturforsch,1968,23:2135-2136
    [28] Binnig G, Rohrer H, Gerber C, et al. Surface Studies by Scanning TunnelingMicroscopy. Phys. Rev. Lett.,1982,49(1):57-61
    [29] Pohl D W, Denk W and Lanz M. Optical stethoscopy: Image recording withresolution λ/20. Appl. Phys. Lett.,1984,44(7):651-653
    [30] Reddick R C, Warmack R J and Ferrell T L. New form of scanning opticalmicroscopy. Phys. Rev. B,1989,39(1):767-770
    [31] Adam P M, Salomon L, de Fornel F, et al. Determination of the spatialextension of the surface-plasmon evanescent field of a silver film with aphoton scanning tunneling microscope. Phys. Rev. B,1993,48(4):2680-2683
    [32] Tsai D P, Kovacs J, Wang Z, et al. Photon scanning tunneling microscopyimages of optical excitations of fractal metal colloid clusters. Phys. Rev. Lett.,1994,72(26):4149-4152
    [33] Bozhevolnyi S I, Smolyaninov I I and Zayats A V. Near-field microscopy ofsurface-plasmon polaritons: Localization and internal interface imaging. Phys.Rev. B,1995,51(24):17916-17924
    [34] Bozhevolnyi S I, Vohnsen B and Zayats A V. Optics at the nanometer scale:imaging and storing with photonic near fields. Dordrecht: Kluwer Academic,1996
    [35] Krenn J R, Dereux A, Weeber J C, et al. Squeezing the Optical Near-Field Zoneby Plasmon Coupling of Metallic Nanoparticles. Phys. Rev. Lett.,1999,82(12):2590-2593
    [36] Bozhevolnyi S I, Pudonin F A. Two-Dimensional Micro-Optics of SurfacePlasmons. Phys. Rev. Lett.,1997,78(14):2823-2826
    [37] Barnes W L, Preist T W, Kitson S C, et al. Physical origin of photonic energygaps in the propagation of surface plasmons on gratings. Phys. Rev. B,1996,54(9):6227-6244
    [38] Bozhevolnyi S I, Erland J, Leosson K, et al. Waveguiding in Surface PlasmonPolariton Band Gap Structures. Phys. Rev. Lett.,2001,86(14):3008
    [39] Salomon L, Grillot F, Zayats A V, et al. Near-Field Distribution of OpticalTransmission of Periodic Subwavelength Holes in a Metal Film. Phys. Rev.Lett.,2001,86(6):1110-1113
    [40] Smolyaninov I I, Zayats A V, Stanishevsky A, et al. Optical control of photontunneling through an array of nanometer-scale cylindrical channels. Phys. Rev.B,2002,66(20):205414-205418
    [41] Ditlbacher H, Krenn J R, Schider G, et al. Two-dimensional optics with surfaceplasmon polaritons. Appl. Phys. Lett.,2002,81(10):1762-1764
    [42] Altewischer E, Ma X, van Exter M P, et al. Fano-type interference in thepoint-spread function of nanohole arrays. Opt. Lett.,2005,30(18):2436-2438
    [43] Drezet A, Stepanov A L, Hohenau A, et al. Surface plasmon interferencefringes in back-reflection. Eur. Phys. Lett.,2006,74(4):693-696
    [44] Gan C, Gbur G. Spatial Coherence Conversion with Surface Plasmons Using aThree-slit Interferometer. Plasmonics,2008,3(4):111-117
    [45] Huber A J, Ocelic N and Hillenbrand R. Local excitation and interference ofsurface phonon polaritons studied by near-field infrared microscopy. J Microsc,2008,229(3):389-395
    [46] Vernon K C, Gomez D E and Davis T J. A compact interferometric sensordesign using three waveguide coupling. J. Appl. Phys.,2009,106(10):104306-7
    [47] Dyachenko P N, Karpeev S V, Fesik E V, et al. Fabrication ofthree-dimensional metallodielectric photonic crystals by interferencelithography. H. R. Miguez, S. G. Romanov, L. C. Andreani and C. Seassal,Editors.2010, SPIE: Brussels, Belgium. p.77131J-6
    [48] Weeber J C, Krenn J R, Dereux A, et al. Near-field observation of surfaceplasmon polariton propagation on thin metal stripes. Phys. Rev. B,2001,64(4):045411-045419
    [49] Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon subwavelengthwaveguide components including interferometers and ring resonators. Nature,2006,440:508-511
    [50] Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel Plasmon-PolaritonGuiding by Subwavelength Metal Grooves. Phys. Rev. Lett.,2005,95(4):046802-4
    [51] Oulton R F, Sorger V J, Genov D A, et al. A hybrid plasmonic waveguide forsubwavelength confinement and long-range propagation. Nat. Photon.,2008,2(8):496-500
    [52] Fernández-Domínguez A I, Moreno E, Martín-Moreno L, et al. Guidingterahertz waves along subwavelength channels. Phys. Rev. B,2009,79(23):233104-233107
    [53] Lin C-I, Gaylord T K. Loss measurement of plasmonic modes in planarmetal-insulator-metal waveguides by an attenuated total reflection method. Opt.Lett.,2010,35(22):3814-3816
    [54] Pannipitiya A, Rukhlenko I D, Premaratne M, et al. Improved transmissionmodel for metal-dielectric-metal plasmonic waveguides with stub structure.Opt. Express,2010,18(6):6191-6204
    [55] Fang Y-J, Chen Z, Chen L, et al. Ultra-short plasmonic splitters and waveguidecross-over based on coupled surface plasmon slot waveguides. Opt. Express,2011,19(3):2562-2572
    [56] Février M, Gogol P, Aassime A, et al. Giant Coupling Effect between MetalNanoparticle Chain and Optical Waveguide. Nano Lett.,2012,12(2):1032-1037
    [57] Zhang Z, Wang H, Zhao Y, et al. Transmission properties of the one-end-sealedmetal–insulator–metal waveguide. Optik,2013,124:177-179
    [58] Lin C-I, Gaylord T K. Multimode metal-insulator-metal waveguides: Analysisand experimental characterization. Phys. Rev. B,2012,85(8):085405-085413
    [59] Sanchez-Gil J A, Maradudin A A. Surface-plasmon polariton scattering from afinite array of nanogrooves/ridges: Efficient mirrors. Appl. Phys. Lett.,2005,86(25):251106-3
    [60] Gómez Rivas J, Sánchez-Gil J A, Kuttge M, et al. Optically switchable mirrorsfor surface plasmon polaritons propagating on semiconductor surfaces. Phys.Rev. B,2006,74(24):245324-245329
    [61] González M U, Weeber J C, Baudrion A L, et al. Design, near-fieldcharacterization, and modeling of45°surface-plasmon Bragg mirrors. Phys.Rev. B,2006,73(15):155416-155428
    [62] Sun Z, Kim H K. Refractive transmission of light and beam shaping withmetallic nano-optic lenses. Appl. Phys. Lett.,2004,85(4):642-644
    [63] Shi H, Wang C, Du C, et al. Beam manipulating by metallic nano-slits withvariant widths. Opt. Express,2005,13(18):6815-6820
    [64] Fan X, Wang G P. Nanoscale metal waveguide arrays as plasmon lenses. Opt.Lett.,2006,31(9):1322-1324
    [65] Sun Z. Beam splitting with a modified metallic nano-optic lens. Appl. Phys.Lett.,2006,89(26):261119-3
    [66] Yuan H X, Xu B X, Lukiyanchuk B, et al. Principle and design approach of flatnano-metallic surface plasmonic lens. Appl. Phys. A-Mater.,2007,89(2):397-401
    [67] Xu T, Du C, Wang C, et al. Subwavelength imaging by metallic slab lens withnanoslits. Appl. Phys. Lett.,2007,91(20):201501-3
    [68] Jung Y J, Park D, Koo S, et al. Metal slit array Fresnel lens forwavelength-scale optical coupling to nanophotonic waveguides. Opt. Express,2009,17(21):18852-18857
    [69] Wang J, Zhou W and Asundi A K. Effect of polarization on symmetry of focalspot of a plasmonic lens. Opt. Express,2009,17(10):8137-8143
    [70] Wang J, Zhou W. An Annular Plasmonic Lens Under Illumination of CircularlyPolarized Light. Plasmonics,2009,4(3):231-235
    [71] Verslegers L, Catrysse P B, Yu Z, et al. Planar metallic nanoscale slit lenses forangle compensation. Appl. Phys. Lett.,2009,95(7):071112-3
    [72] Catrysse P B, Verslegers L, Yu Z, et al. Nanoscale slit arrays as planar far-fieldlenses. M. I. Stockman, Editor.2009, SPIE: San Diego, CA, USA. p.73940B-10
    [73] Chen Q, Cumming D R S. Visible light focusing demonstrated by plasmoniclenses based on nano-slits in an aluminum film. Opt. Express,2010,18(14):14788-14793
    [74] Fu Y, Liu Y, Zhou X, et al. Experimental investigation of superfocusing ofplasmonic lens with chirped circular nanoslits. Opt. Express,2010,18(4):3438-3443
    [75] Wang J, Zhou W. Experimental Investigation of Focusing of Gold PlanarPlasmonic Lenses. Plasmonics,2010,5(4):325-329
    [76] etin A E, Güven K and Müstecaplioglu E. Active control of focal lengthand beam deflection in a metallic nanoslit array lens with multiple sources. Opt.Lett.,2010,35(12):1980-1982
    [77] Hao F, Wang R and Wang J. A Design Method for a Micron-FocusingPlasmonic Lens Based on Phase Modulation. Plasmonics,2010,5(4):405-409
    [78] Ma C, Liu Z. A super resolution metalens with phase compensation mechanism.Appl. Phys. Lett.,2010,96(18):183103-3
    [79] Ishii S, Drachev V P and Kildishev A V. Diffractive nanoslit lenses forsubwavelength focusing. Opt. Commun.,2012,285(16):3368-3372
    [80] Marier S A. Plasmonics: Fundamentals and Applications. Berlin: Springer,2007
    [81] Zayats A V, Smolyaninov I I. Near-field photonics: surface plasmon polaritonsand localized surface plasmons. J. Opt. A: Pure Appl. Opt.,2003,5(4):S16-S19
    [82] Ghaemi H F, Thio T, Grupp D E, et al. Surface plasmons enhance opticaltransmission through subwavelength holes. Phys. Rev. B,1998,58(11):6779-6782
    [83] Martin-Moreno L, Garcia-Vidal F J, Lezec H J, et al. Theory of ExtraordinaryOptical Transmission through Subwavelength Hole Arrays. Phys. Rev. Lett.,2001,86(6):1114
    [84] Barnes W L, Murray W A, Dintinger J, et al. Surface Plasmon Polaritons andTheir Role in the Enhanced Transmission of Light through Periodic Arrays ofSubwavelength Holes in a Metal Film. Phys. Rev. Lett.,2004,92(10):107401
    [85] Fang X, Li Z, Long Y, et al. Surface-Plasmon-Polariton Assisted Diffraction inPeriodic Subwavelength Holes of Metal Films with Reduced InterplaneCoupling. Phys. Rev. Lett.,2007,99(6):066805
    [86] Degiron A, Lezec H J, Yamamoto N, et al. Optical transmission properties of asingle subwavelength aperture in a real metal. Opt. Commun.,2004,239(1-3):61-66
    [87] García-Vidal F J, Moreno E, Porto J A, et al. Transmission of Light through aSingle Rectangular Hole. Phys. Rev. Lett.,2005,95(10):103901-4
    [88] Ruan Z, Qiu M. Enhanced Transmission through Periodic Arrays ofSubwavelength Holes: The Role of Localized Waveguide Resonances. Phys.Rev. Lett.,2006,96(23):233901-233904
    [89] Bravo-Abad J, Martín-Moreno L and García-Vidal F J. Transmission propertiesof a single metallic slit: From the subwavelength regime to thegeometrical-optics limit. Phys. Rev. E,2004,69(2):026601-026606
    [90] Li D, Gordon R. Electromagnetic transmission resonances for a single annularaperture in a metal plate. Phys. Rev. A,2010,82(4):041801-4
    [91] Weeber J-C, Dereux A, Girard C, et al. Plasmon polaritons of metallicnanowires for controlling submicron propagation of light. Phys. Rev. B,1999,60(12):9061-9068
    [92] Stockman M I. Nanofocusing of Optical Energy in Tapered PlasmonicWaveguides. Phys. Rev. Lett.,2004,93(13):137404-4
    [93] Wang B, Wang G P. Metal heterowaveguides for nanometric focusing of light.Appl. Phys. Lett.,2004,85(16):3599-3601
    [94] Moreno E, Rodrigo S G, Bozhevolnyi S I, et al. Guiding and Focusing ofElectromagnetic Fields with Wedge Plasmon Polaritons. Phys. Rev. Lett.,2008,100(2):023901-4
    [95] Liu J Q, Wang L-L, He M-D, et al. A wide bandgap plasmonic Bragg reflector.Opt. Express,2008,16(7):4888-4894
    [96] Wang B, Wang G P. Plasmon Bragg reflectors and nanocavities on flat metallicsurfaces. Appl. Phys. Lett.,2005,87(1):013107-3
    [97] Baudrion A-L, de Leon-Perez F, Mahboub O, et al. Coupling efficiency of lightto surface plasmon polariton for single subwavelength holes in a gold film. Opt.Express,2008,16(5):3420-3429
    [98] Nikolajsen T, Leosson K and Bozhevolnyi S I. Surface plasmon polariton basedmodulators and switches operating at telecom wavelengths. Appl. Phys. Lett.,2004,85(24):5833-5835
    [99] Wang B, Wang G P. Surface plasmon polariton propagation in nanoscalemetalgap waveguides. Opt. Lett.,2004,29(17):1992-1994
    [100] Veronis G, Fan S. Bends and splitters in metal-dielectric-metal subwavelengthplasmonic waveguides. Appl. Phys. Lett.,2005,87(13):131102-3
    [101] Lee T-W, Gray S. Subwavelength light bending by metal slit structures. Opt.Express,2005,13(24):9652-9659
    [102] Weeber J C, Gonzalez M U, Baudrion A L, et al. Surface plasmon routing alongright angle bent metal strips. Appl. Phys. Lett.,2005,87(22):221101-3
    [103] Gao H, Shi H, Wang C, et al. Surface plasmon polariton propagation andcombination in Y-shaped metallic channels. Opt. Express,2005,13(26):10795-10800
    [104] Berini P, Lu J. Curved long-range surface plasmon-polariton waveguides. Opt.Express,2006,14(6):2365-2371
    [105] Steinberger B, Hohenau A, Ditlbacher H, et al. Dielectric stripes on gold assurface plasmon waveguides. Appl. Phys. Lett.,2006,88(9):094104-3
    [106] Reinhardt C, Passinger S, Chichkov B N, et al. Laser-fabricated dielectricoptical components for surface plasmon polaritons. Opt. Lett.,2006,31(9):1307-1309
    [107] Boltasseva A, Bozhevolnyi S I, Nikolajsen T, et al. Compact Bragg gratings forlong-range surface plasmon polaritons. J. Lightwave Techn.,2006,24(2):912-918
    [108] Han Z, Liu L and Forsberg E. Ultra-compact directional couplers andMach–Zehnder interferometers employing surface plasmon polaritons. Opt.Commun.,2006,259(2):690-695
    [109] Hosseini A, Massoud Y. A low-loss metal-insulator-metal plasmonic braggreflector. Opt. Express,2006,14(23):11318-11323
    [110] Holmgaard T, Bozhevolnyi S I. Theoretical analysis of dielectric-loadedsurface plasmon-polariton waveguides. Phys. Rev. B,2007,75(24):245405-12
    [111] Krasavin A V, Zayats A V. Passive photonic elements based ondielectric-loaded surface plasmon polariton waveguides. Appl. Phys. Lett.,2007,90(21):211101-3
    [112] Han Z, He S. Multimode interference effect in plasmonic subwavelengthwaveguides and an ultra-compact power splitter. Opt. Commun.,2007,278(1):199-203
    [113] Han Z, He S. Two-dimensional model for three-dimensional index-guidedmultimode plasmonic waveguides and the design of ultrasmall multimodeinterference splitters. Appl. Opt.,2007,46(25):6223-6227
    [114] Han Z, Forsberg E and He S. Surface Plasmon Bragg Gratings Formed inMetal-Insulator-Metal Waveguides. IEEE Photon. Techn. Lett.,2007,19(2):91-93
    [115] Lin W, Wang G P. Metal heterowaveguide superlattices for a plasmonic analogto electronic Bloch oscillations. Appl. Phys. Lett.,2007,91(14):143121-3
    [116] Hosseini A, Massoud Y. Nanoscale surface plasmon based resonator usingrectangular geometry. Appl. Phys. Lett.,2007,90(18):181102-3
    [117] Lin X-S, Huang X-G. Tooth-shaped plasmonic waveguide filters withnanometeric sizes. Opt. Lett.,2008,33(23):2874-2876
    [118] Holmgaard T, Bozhevolnyi S I, Markey L, et al. Dielectric-loaded surfaceplasmon-polariton waveguides at telecommunication wavelengths: Excitationand characterization. Appl. Phys. Lett.,2008,92(1):011124-3
    [119] Holmgaard T, Chen Z, Bozhevolnyi S I, et al. Bend-and splitting loss ofdielectric-loaded surface plasmon-polariton waveguides. Opt. Express,2008,16(18):13585-13592
    [120] Zhao H, Guang X G and Huang J. Novel optical directional coupler based onsurface plasmon polaritons. Physica E,2008,40(10):3025-3029
    [121] Hosseini A, Nejati H and Massoud Y. Modeling and design methodology formetal-insulator-metal plasmonic Bragg reflectors. Opt. Express,2008,16(3):1475-1480
    [122] Park J, Kim H and Lee B. High order plasmonic Bragg reflection in themetal-insulator-metal waveguide Bragg grating. Opt. Express,2008,16(1):413-425
    [123] Chu Y, Schonbrun E, Yang T, et al. Experimental observation of narrow surfaceplasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett.,2008,93(18):181108-3
    [124] Verhagen E, Polman A and Kuipers L. Nanofocusing in laterally taperedplasmonic waveguides. Opt. Express,2008,16(1):45-57
    [125] Zhang Q, Huang X-G, Lin X-S, et al. A subwavelength coupler-type MIMoptical filter. Opt. Express,2009,17(9):7549-7555
    [126] Wang T-B, Wen X-W, Yin C-P, et al. The transmission characteristics of surfaceplasmon polaritons in ring resonator. Opt. Express,2009,17(26):24096-24101
    [127] Tao J, Huang X G, Lin X, et al. A narrow-band subwavelength plasmonicwaveguide filter with asymmetrical multiple-teeth-shaped structure. Opt.Express,2009,17(16):13989-13994
    [128] Krasavin A V, Zayats A V. All-optical active components for dielectric-loadedplasmonic waveguides. Opt. Commun.,2010,283(8):1581-1584
    [129] Tao J, Huang X G, Chen J H, et al. All-optical broadband variable opticalattenuators and switches in plasmonic teeth waveguides. Opt. Commun.,2010,283(18):3536-3539
    [130] Wang L, Wang L L, Zeng Y, et al. Trapping of surface plasmon polaritons in amultiple-teeth-shaped waveguide at visible wavelengths. Appl. Phys. B,2011,103(4):883-887
    [131] Jia Hu Z, Qi Jie W, Ping S, et al. A Nanoplasmonic High-Pass WavelengthFilter Based on a Metal-Insulator-Metal Circuitous Waveguide.Nanotechnology, IEEE Transactions on,2011,10(6):1357-1361
    [132] Neutens P, Lagae L, Borghs G, et al. Plasmon filters and resonators inmetal-insulator-metal waveguides. Opt. Express,2012,20(4):3408-3423
    [133] Boyang Z, Junpeng G, Lindquist R, et al. Wideband Optical Filters With SmallGap Coupled Subwavelength Metal Structures. IEEE Photon. Techn. Lett.,2012,24(5):419-421
    [134] Wang B, Teng J and Yuan X. Inelastic scattering of surface plasmons inoscillating metallic waveguides. Appl. Phys. Lett.,2011,98(26):263111-3
    [135] Bezus E, Doskolovich L and Kazanskiy N. Insulator—insulator—metalplasmonic waveguide for parasitic scattering suppression in plasmonic optics.Bull. Russ. Acad. Sci-Physics,2011,75(12):1573-1575
    [136] Zhu J, Huang X and Mei X. A Laser Structure Based on Metal-Dielectric-MetalPlasmonic Nanocavity. Plasmonics,2012,7(1):93-98
    [137] Oulton R F, Sorger V J, Zentgraf T, et al. Plasmon lasers at deep subwavelengthscale. Nature,2009,461(7264):629-632
    [138] Yu K, Lakhani A and Wu M C. Subwavelength metal-optic semiconductornanopatch lasers. Opt. Express,2010,18(9):8790-8799
    [139] Kawata S, Ono A and Verma P. Subwavelength colour imaging with a metallicnanolens. Nat. Photon.,2008,2(7):438-442
    [140] Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nat.Mater.,2010,9(3):205-213
    [141] Moharam M G, Gaylord T K. Three-dimensional vector coupled-wave analysisof planar-grating diffraction. J. Opt. Soc. Am.,1983,73(9):1105-1112
    [142] Davies A J. The Finite Element Method. Oxford, UK: Clarendon Press,1980
    [143] Zienkiewicz O C, Taylor R L. The Finite element method: Solid mechanics.Butterworth: Heinemann,2000
    [144] Berenger J P. Perfectly matched layer for the FDTD solution of wave-structureinteraction problems. Antennas and Propagation, IEEE Transactions on,1996,44(1):110-117
    [145] Taflove A, Hagness S C. Computational Electrodynamics: The Finite-Difference Time-Domain Method. Norwood, MA: Artech House,2000
    [146] Gray S K, Kupka T. Propagation of light in metallic nanowirearrays:Finite-difference time-domain studies of silver cylinders. Phys. Rev. B,2003,68(4):045415-11
    [147]葛德彪,闫玉波.电磁波时域有限差分方法(第二版).西安:西安电子科技大学出版社,2005
    [148] Kane Y. Numerical solution of initial boundary value problems involvingmaxwell's equations in isotropic media. Antennas and Propagation, IEEETransactions on,1966,14(3):302-307
    [149] Mur G. Absorbing Boundary Conditions for the Finite-DifferenceApproximation of the Time-Domain Electromagnetic-Field Equations.Electromagnetic Compatibility, IEEE Transactions on,1981,EMC-23(4):377-382
    [150] Travassos X L, Avila S L, Prescott D, et al. Optimal configurations forperfectly matched layers in FDTD simulations. Magnetics, IEEE Transactionson,2006,42(4):563-566
    [151] Drude P. Zur Elektronentheorie der Metalle. Annalen der Physik,1900,306(3):566-613
    [152] Debye P. Zur Theorie der spezifischen W rmen. Annalen der Physik,1912,344(14):789-839
    [153] Rakic A D, Djurisic A B, Elazar J M, et al. Optical Properties of Metallic Filmsfor Vertical-Cavity Optoelectronic Devices. Appl. Opt.,1998,37(22):5271-5283
    [154] Xu T, Zhao Y, Gan D, et al. Directional excitation of surface plasmons withsubwavelength slits. Appl. Phys. Lett.,2008,92(10):101501-3
    [155] Takakura Y. Optical Resonance in a Narrow Slit in a Thick Metallic Screen.Phys. Rev. Lett.,2001,86(24):5601-5603
    [156] Cao Q, Lalanne P. Negative Role of Surface Plasmons in the Transmission ofMetallic Gratings with Very Narrow Slits. Phys. Rev. Lett.,2002,88(5):057403-4
    [157] Lezec H, Thio T. Diffracted evanescent wave model for enhanced andsuppressed optical transmission through subwavelength hole arrays. Opt.Express,2004,12(16):3629-3651
    [158] Abajo F J G d. Colloquium: Light scattering by particle and hole arrays. Rev.Mod. Phys.,2007,79(4):1267-1290
    [159] García-Vidal F J, Martín-Moreno L. Transmission and focusing of light inone-dimensional periodically nanostructured metals. Phys. Rev. B,2002,66(15):155412-10
    [160] Skigin D C, Depine R A. Transmission Resonances of Metallic CompoundGratings with Subwavelength Slits. Phys. Rev. Lett.,2005,95(21):217402-4
    [161] Hibbins A P, Hooper I R, Lockyear M J, et al. Microwave Transmission of aCompound Metal Grating. Phys. Rev. Lett.,2006,96(25):257402-4
    [162] Wang Y, Wang Y, Zhang Y, et al. Transmission through metallic array slits withperpendicular cuts. Opt. Express,2009,17(7):5014-5022
    [163] Porto J A, García-Vidal F J and Pendry J B. Transmission Resonances onMetallic Gratings with Very Narrow Slits. Phys. Rev. Lett.,1999,83(14):2845-2848
    [164] Ye Y Q, Jin Y. Enhanced transmission of transverse electric waves throughsubwavelength slits in a thin metallic film. Phys. Rev. E,2009,80(3):036606-3
    [165] Sturman B, Podivilov E and Gorkunov M. Theory of extraordinary lighttransmission through arrays of subwavelength slits. Phys. Rev. B,2008,77(7):075106-12
    [166] Skigin D C, Depine R A. Narrow gaps for transmission through metallicstructured gratings with subwavelength slits. Phys. Rev. E,2006,74(4):046606-6
    [167] Rance H J, Hamilton O K, Sambles J R, et al. Phase resonances on metalgratings of identical, equally spaced alternately tapered slits. Appl. Phys. Lett.,2009,95(4):041905-3
    [168] Navarro-Cia M, Skigin D C, Beruete M, et al. Experimental demonstration ofphase resonances in metallic compound gratings with subwavelength slits inthe millimeter wave regime. Appl. Phys. Lett.,2009,94(9):091107-3
    [169] Liu Z, Jin G. Phase effects in the enhanced transmission through compoundsubwavelength rectangular hole arrays. J. Appl. Phys.,2009,106(6):063122-6
    [170] Ortiz G P, Martinez-Zerega B E, Mendoza B S, et al. Effective optical responseof metamaterials. Phys. Rev. B,2009,79(24):245132
    [171] Liu Z, Li H, Xie S, et al. Tunable phase resonances in a compound metallicgrating with perpendicular bumps and cuts. Opt. Express,2011,19(5):4217-4222
    [172] Xiang D, Wang L-L, Li X-F, et al. Transmission resonances of compoundmetallic gratings with two subwavelength slits in each period. Opt. Express,2011,19(3):2187-2192
    [173] Liu J-Q, Wang G-D, Wang Q-J, et al. Transmission resonances in rectangularhole trimer arrays: the role of unit configuration. J. Phys. D: Appl. Phys.,2012,45(3):035101-035106
    [174] Liu J-Q, He M-D, Zhai X, et al. Tailoring optical transmission via thearrangement of compound subwavelength hole arrays. Opt. Express,2009,17(3):1859-1864
    [175] Liu J-Q, Chao X-B, Wei J-N, et al. Multiple enhanced transmission bandsthrough compound periodic array of rectangular holes. J. Appl. Phys.,2009,106(9):093108-5
    [176] Chen Y-B, Chen J-S and Hsu P-f. Impacts of geometric modifications oninfrared optical responses of metallic slit arrays. Opt. Express,2009,17(12):9789-9803
    [177] Sun Z, Zuo X. Tuning resonant optical transmission of metallic nanoslit arrayswith embedded microcavities. Opt. Lett.,2009,34(9):1411-1413
    [178] He M-D, Wang L-L, Liu J-Q, et al. Controllable light transmission throughcascaded metal films perforated with periodic hole arrays. Appl. Phys. Lett.,2008,93(22):221909-3
    [179] Palik E D. Handbook of Optical Constants and Solids. San Diego: Academic,1998
    [180] Genet C, Ebbesen T W. Light in tiny holes. Nature,2007,445(7123):39-46
    [181] Xie Y, Zakharian A, Moloney J, et al. Transmission of light through a periodicarray of slits in a thick metallic film. Opt. Express,2005,13(12):4485-4491
    [182] Koerkamp K J K, Enoch S, Segerink F B, et al. Strong Influence of Hole Shapeon Extraordinary Transmission through Periodic Arrays of SubwavelengthHoles. Phys. Rev. Lett.,2004,92(18):183901-4
    [183] Moreno L, García-Vidal F. Optical transmission through circular hole arrays inoptically thick metal films. Opt. Express,2004,12(16):3619-3628
    [184] Wang Y, Wang L L, Liu J Q, et al. Plasmonic surface-wave bidirectional splitterin different angles of incident light. Opt. Commun.,2010,283(9):1777-1779
    [185] Ye Y, Zhang H, Zhou Y, et al. Color filter based on a submicrometer cascadedgrating. Opt. Commun.,2010,283(4):613-616
    [186] Hosseini A, Nejati H and Massoud Y. Design of a maximally flat optical lowpass filter using plasmonic nanostrip waveguides. Opt. Express,2007,15(23):15280-15286
    [187] Hosseini A, Nejati H and Massoud Y. Triangular lattice plasmonic photonicband gaps in subwavelength metal-insulator-metal waveguide structures. Appl.Phys. Lett.,2008,92(1):013116-3
    [188] Degiron A, Lezec H J, Barnes W L, et al. Effects of hole depth on enhancedlight transmission through subwavelength hole arrays. Appl. Phys. Lett.,2002,81(23):4327-4329
    [189] Li K, Stockman M I and Bergman D J. Self-Similar Chain of MetalNanospheres as an Efficient Nanolens. Phys. Rev. Lett.,2003,91(22):227402-4
    [190] Weeber J C, Baudrion A L, Bouhelier A, et al. Efficient surface plasmon fieldconfinement in one-dimensional crystal line-defect waveguides. Appl. Phys.Lett.,2006,89(21):211109-3
    [191] Kitson S C, Barnes W L and Sambles J R. Full Photonic Band Gap for SurfaceModes in the Visible. Phys. Rev. Lett.,1996,77(13):2670
    [192] Wang L, Wang L-L, Zeng Y, et al. Trapping of surface-plasmon polaritons in asubwavelength cut. Opt. Commun.,2011,284(1):153-155
    [193] Wurtz G A, Pollard R and Zayats A V. Optical Bistability in NonlinearSurface-Plasmon Polaritonic Crystals. Phys. Rev. Lett.,2006,97(5):057402-4
    [194] Min C, Wang P, Jiao X, et al. Beam focusing by metallic nano-slit arraycontaining nonlinear material. Appl. Phys. B,2008,90(1):97-99
    [195] Gan Q, Ding Y J and Bartoli F J."Rainbow" Trapping and Releasing atTelecommunication Wavelengths. Phys. Rev. Lett.,2009,102(5):056801-4
    [196] Van Oosten D, Spasenovi M and Kuipers L. Nanohole Chains for Directionaland Localized Surface Plasmon Excitation. Nano Lett.,2009,10(1):286-290
    [197] Krasavin A V, Zayats A V. Silicon-based plasmonic waveguides. Opt. Express,2010,18(11):11791-11799
    [198] Neutens P, Van Dorpe P, De Vlaminck I, et al. Electrical detection of confinedgap plasmons in metal-insulator-metal waveguides. Nat. Photon.,2009,3(5):283-286
    [199] Chen L, Wang G P, Gan Q, et al. Trapping of surface-plasmon polaritons in agraded Bragg structure: Frequency-dependent spatially separated localizationof the visible spectrum modes. Phys. Rev. B,2009,80(16):161106-4
    [200] Christensen J, Garcia de Abajo F J. Slow plasmonic slab waveguide as asuperlens for visible light. Phys. Rev. B,2010,82(16):161103-4
    [201] Lan T-H, Chung Y-K, Li J-E, et al. Plasmonic rainbow rings induced by whiteradial polarization. Opt. Lett.,2012,37(7):1205-1207
    [202] Wang Y, Chen Y, Zhang Y, et al. Influence of grooves in the electromagnetictransmission of a periodic metallic grating filter. Opt. Commun.,2007,271(1):132-136
    [203] Gong Y, Liu X and Wang L. High-channel-count plasmonic filter with themetal-insulator-metal Fibonacci-sequence gratings. Opt. Lett.,2010,35(3):285-287
    [204] Setayesh A, Mirnaziry S R and Abrishamian M S. Numerical investigation of atunable band-pass plasmonic filter with a hollow-core ring resonator. J. Opt.,2011,13(3):035004-035007
    [205] Lu H, Liu X, Mao D, et al. Tunable band-pass plasmonic waveguide filterswith nanodisk resonators. Opt. Express,2010,18(17):17922-17927
    [206] Lu H, Liu X, Gong Y, et al. Multi-channel plasmonic waveguide filters withdisk-shaped nanocavities. Opt. Commun.,2011,284(10–11):2613-2616
    [207] Xiao S, Liu L and Qiu M. Resonator channel drop filters in aplasmon-polaritons metal. Opt. Express,2006,14(7):2932-2937
    [208] Tian M, Lu P, Chen L, et al. A subwavelength MIM waveguide resonator withan outer portion smooth bend structure. Opt. Commun.,2011,284(16-17):4078-4081
    [209] Yun B, Hu G and Cui Y. Theoretical analysis of a nanoscale plasmonic filterbased on a rectangular metal-insulator-metal waveguide. J. Phys. D: Appl.Phys.,2010,43(38):385102-8
    [210] Matsuzaki Y, Okamoto T, Haraguchi M, et al. Characteristics of gap plasmonwaveguide with stub structures. Opt. Express,2008,16(21):16314-16325
    [211] Han J, Gu J, Lu X, et al. Broadband resonant terahertz transmission in acomposite metal-dielectric structure. Opt. Express,2009,17(19):16527-16534
    [212] Lin X, Huang X. Numerical modeling of a teeth-shaped nanoplasmonicwaveguide filter. J. Opt. Soc. Am. A,2009,26(7):1263-1268
    [213] Tao J, Huang X G, Lin X, et al. Systematical research on characteristics ofdouble-sided teeth-shaped nanoplasmonic waveguide filters. J. Opt. Soc. Am.A,2010,27(2):323-327
    [214] Economou E N. Surface Plasmons in Thin Films. Phys. Rev.,1969,182:539-554
    [215] Haus H A. Waves and fields in optoelectronics. Prentice-Hall (EnglewoodCliffs, NJ),1984
    [216] Qiu S-L, Li Y-P. Q-factor instability and its explanation in the staircased FDTDsimulation of high-Q circular cavity. J. Opt. Soc. Am. A,2009,26(9):1664-1674
    [217] Chremmos I. Magnetic field integral equation analysis of interaction between asurface plasmon polariton and a circular dielectric cavity embedded in themetal. J. Opt. Soc. Am. A,2009,26(12):2623-2633
    [218] Li Q, Wang T, Su Y, et al. Coupled mode theory analysis of mode-splitting incoupled cavity system. Opt. Express,2010,18(8):8367-8382

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700