低维自旋系统的量子纠缠与磁学性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低维量子自旋系统作为一个联系着量子信息学和凝聚态物理两个领域的多体系统,其量子纠缠性质和磁学性质多年来一直受到广泛而深入的研究。
     由爱因斯坦等提出的量子纠缠在量子计算与量子通讯的很多应用方面起着非常重要的作用,此外,凝聚态物理中的量子自旋链中的纠缠倍受关注。本文首先讨论了磁场方向和温度对两量子位Ising链纠缠与密集编码能力的影响,发现仅改变磁场方向时系统纠缠度与最优密集编码容量发生变化,且铁磁与反铁磁耦合呈现出不同的纠缠特性和密集编码能力。另外,还发现磁场方向只有在一定范围内变化时,才能进行有效的密集编码。同时我们进一步讨论了磁场方向对两量子位Ising链量子隐形传态的影响,发现通过调整磁场方向可使传输热纠缠和保真度达到最大。并且,为实现纠缠传输,信道纠缠不得小于某一临界值。对于铁磁Ising链,无论磁场取何方向,传输保真度总是小于2/3。有趣的是信道纠缠不能完全反映传输纠缠和保真度,较大的信道纠缠并不意味着能较好地传输纠缠。此外,在某一温度下,对磁场作用下的两量子位XX链,若磁场大小不变,则存在一个最优方向,使得系统的纠缠最大,我们称之为磁场方向诱导纠缠。
     其次,量子相变是指量子多体系统因量子涨落而在不同相之间的转变,在凝聚态物理中起着重要作用。近来,量子纠缠与量子相变之间的关系引起了人们的广泛关注,对某些自旋系统,量子相变可由量子纠缠的临界特性来表征。然而,量子相变的发生一般不能由形成纠缠的奇导性来判断,形成纠缠的奇异性与量子临界点之间并没有一一对应的关系。本文以具有阻挫作用的1/2自旋反铁磁梯子为例,讨论了磁场对形成纠缠的影响,发现在量子相变点形成纠缠是连续的,因而从另一角度说明了量子临界点的存在与形成纠缠的奇异性之间不存在一一对应关系。此外,磁化平台与纠缠平台一一对应。
     第三,具有多自旋相互作用的低维量子自旋链理论上引起了人们的兴趣,多自旋相互作用产生量子阻挫,从而引起量子相变。具有3-自旋相互作用的自旋-1/2XY链可严格地求解,本文我们进一步考虑4-自旋相互作用的影响,发现两格点纠缠熵可有效地探索量子相变。并且,系统除了出现自旋能隙和非对称亚铁磁序外,还出现了类“自旋波”相。在三相临界点,系统发生一级相变。
The low-dimensional quantum spin systems, which bridge the quantum information theory and condensed matter physics, have attracted considerable attention for its characteristics of quantum entanglement and magnetic properties.
     Quantum entanglement, firstly proposed by Einstein et.al., plays an important role in many aspects of applications of quantum computation and quantum information. Furthermore, the quantum entanglement in spin chains have been extensively investigated in condensed matter physics. First, we analyze and discuss the effects of the direction of an external magnetic field and the temperature on entanglement and the dense coding capacity in a two-qubit Ising spin chain. It is found that the entanglement behavior and the maximal dense coding capacity of the system can be varied by controlling the direction of magnetic field. Likewise, it is also different for antiferromagnetic(AF) and ferromagnetic(FM) couplings. Thus, only in a special region for the direction of magnetic field, the optimal dense coding is feasible through the quantum channel.
     Besides, the effects of direction of magnetic field on. quantum teleportation via a two-qubit Ising spin chain are also discussed. The teleported thermal concurrence and average fidelity can reach a maximum value by controlling the direction of magnetic field. A minimal entanglement of the thermal state is needed to carried out the entanglement teleportation. Nevertheless, the average fidelity is always less than classical limit 2/3, independent of the direction of magnetic field for two-qubit ferromagnetic Ising channel. It is interesting that the entanglement of the channel cannot completely reflect the teleported concurrence and average fidelity. Larger amount of entanglement does not mean better teleportation, for a fixed entanglement corresponding to infinite teleported concurrences or average fidelities.
     In addition, at a certain temperature, the entanglement in a two-qubit XX chain can reach maximum by adjusting the magnetic field with fixed magnitude to an optimal direction, which can be regarded as magnetic direction induced entanglement.
     Second, quantum phase transitions (QPTs) which are the evolvements between different ground states of quantum many-body systems, driven solely by quantum fluctuations, play an important role in modern condensed matter physics. Recently, a great deal of effort has been devoted to the understanding of the connection between quantum entanglement and QPTs. For a number of spin systems, it has been shown that QPTs are signaled by a critical behavior of concurrence. However, in general, QPTs can not be detected completely through the analysis of the singularities of concurrence, which are not one-to-one correspondence to the critical points. Herein, the effect of magnetic field on entanglement of a spin-1/2 antiferromagnetic spin ladder with frustration has been investigated. It is found that the concurrence is continuous at the critical point, where the QPT takes place, suggesting no one-to-one correspondence between QPT and the non-analyticity property of the concurrence from another aspect. Moreover, the concurrence shows plateaus in the same region where the magnetization plateaus occur.
     The third, the multi-spin interactions in low-dimensional quantum spin chains have emerged in the theory study. Such interactions may cause quantum frustration, which eventually leads to the quantum phase transition (QPT) in the system. The spin-1/2 XY chains with three-spin interactions have been studied rigorously. Further considering the influence of four-spin interactions, we show that the two-site entanglement entropy can be exploited as a useful tool to detect the QPTs. In addition to the spin-gapped behavior and incommensurate ferrimagnetic ordering, the "spin waves" modulated by the four-spin interactions is uncovered. The system undergoes the second order QPTs except for the first order QPT occurring at the tricritical point with four-spin couplings.
引文
[1]K. Okamoto, T. Tonegawa, Y. Takahashi, M. Kaburagi, The ground state of an S= 1/2 distorted diamond chain - a model of Cu3Cl6(H2O)2-2H8C4SO2. J. Phys.: Condens. Matter,1999,11:10485-10498
    [2]H. Kikuchil, Y. Fujii, M. Chiba, S. Mitsudo, T. Idehara, T. Tonegawa, K. Okamoto, T. Sakai, T. Kuwai, and H. Ohta, Experimental Observation of the 1/3 Magnetization Plateau in the Diamond-Chain Compound Cu3(CO3)2(OH)2. Phys. Rev. Lett.2005,94:227201-227204
    [3]H. H. Fu, K. L. Yao, Z. L. Liu, Thermodynamic properties of a spin-1/2 diamond chain as a model for a molecule-based ferrimagnet and the compound Cu3(CO3)2(OH)2. Phys. Rev. B,2006,73:104454-104462
    [4]H. J. Lipkin, N. Meshkov, N.Glick, Simplex model. Nucl. Phys. A,1965,62:188
    [5]B. Gu, G. Su, Thermodynamics of spin-1/2 antiferromagnet/antiferromagnet /ferromagnet and ferromagnet/ferromagnet/antiferromagnet trimerized quantum Heisenberg chains. Phys. Rev. B,2006,73:134427-134436
    [6]K. Okamoto, T. Tonegawa, M. Kaburagi, Magnetic properties of the S=1/2 distorted diamond chain at T=0. J. Phys.:Condens. Matter,2003,15:5979-5996
    [7]K. L. Yao, Q. M. Liu, Z. L. Liu, Transfer matrix renormalization group studies on spin chains for molecule-based ferrimagnets. Phys. Rev. B,2004,70:224430-224435
    [8]B. Gu, G. Su, Magnetism and thermodynamics of spin-1/2 Heisenberg diamond chains in a magnetic field. Phys. Rev. B 2007,75:174437-174452
    [9]M. Hase, M. Kohno, H. Kitazawa, N. Tsujii, O. Suzuki, K. Ozawa, G. Kido, M. Imai, X. Hu,1/3 magnetization plateau observed in the spin-1/2 trimer chain compound Cu3(P2O6OH)2. Phys. Rev. B,2006,73:104419-104423
    [10]Z. Y. Sun, K. L. Yao, W. Yao, D. H. Zhang, Z. L. Liu, Finite-temperature entanglement for low-dimensional quantum spin chains. Phys. Rev. B,2008,77: 014416-014423
    [11]张镇九.量子计算与通信加密[M].武汉:华中师范大学出版社,2002
    [12]S. C. Benjamin and S. Bose, Quantum Computing with an Always-On Heisenberg Interaction. Phys. Rev. Lett.2003,90:247901
    [13]S. Bose, Quantum Communication through an Unmodulated Spin Chain. Phys. Rev. Lett.2003,91:247901
    [14]K. Sanderson, Quantum dots go large. Nature,2009,459:760-761
    [15]R. de Picciotto, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, K. W. West, Four-terminal resistance of a ballistic quantum wire. Nature,2001,411:51-54
    [16]G. I. Japaridze, H. Johannesson, A. Ferraz, Metal-insulator transition in a quantum wire driven by a modulated Rashba spin-orbit coupling. Phys. Rev. B,2009,80: 041308(R)-041311(R)
    [17]V. Aimanianda, J. Bayry, S. Bozza, et al, Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature,2009,460:1117-1121
    [18]H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, N. Gisin, A solid-state light-matter interface at the single-photon level. Nature,2008,456:773-777
    [19]李承祖,黄明球,陈平形等.量子通信和量子计算.北京:国防大学出版社,2000
    [20]张永德,吴盛俊,侯广等.量子信息论— 物理原理与某些进展.武汉:华中师范大学出版社,2002
    [21]C. H. Bennett, P. D. David, A. S. John, and W. K. Wootters, Mixed-state entanglement and quantum error correction. Phys. Rev. A,1996,54:3824-3851
    [22]W. K. Wootters, Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett.1998,80:2245-2248
    [23]Jian-Hui Zhao, Huan-Qiang Zhou. Singularities in ground-state fidelity and quantum phase transitions for the Kitaev model. Phys. Rev. B,2009,80: 014403-014408
    [24]Jian Ma, Xiaoguang Wang. Fisher information and spin squeezing in the Lipkin-Meshkov-Glick model. Phys. Rev. A,2009,80:012318-012323
    [25]Helmut G. Katzgraber, H. Bombin, M. A. Martin-Delgado. Error Threshold for Color Codes and Random Three-Body Ising Models. Phys. Rev. Lett.2009,103: 090501-090504
    [26]Wing-Chi Yu, Ho-Man Kwok, Junpeng Cao, Shi-Jian Gu. Fidelity susceptibility in the two-dimensional transverse-field Ising and XXZ models. Phys. Rev. E,2009,80: 021108-021112
    [27]N. P. Butch, M. B. Maple. Evolution of Critical Scaling Behavior near a Ferromagnetic Quantum Phase Transition. Phys. Rev. Lett.2009,103: 076404-076407
    [28]M. S. Sarandy, Classical correlation and quantum discord in critical systems. Phys. Rev. A,2009,80:022108-022116
    [29]S. O. Skrφvseth, S. D. Bartlett, Phase transitions and localizable entanglement in cluster-state spin chains with Ising couplings and local fields. Phys. Rev. A,2009, 80:022316-022325
    [30]J. Cao, X. L Cui, Z. Qi, W. G. Lu, Q. Niu, Y. P. Wang, Partial entropy in finite-temperature phase transitions. Phys. Rev. B,2007,75:172401-172404
    [31]S. B. Li, Z. X. Xu, J. H. Dai, J. B. Xu, Entanglement and quantum phase transitions in quantum mixed spin chains. Phys. Rev. B,2006,73:184411-184415
    [32]D. Gunlycke, V. M. Kendon, V. Vedral, Thermal concurrence mixing in a one-dimensional Ising model. Phys. Rev. A,2001,64:042302-042308
    [33]G L. Kamta, A. F. Starace, Anisotropy and Magnetic Field Effects on the Entanglement of a Two Qubit Heisenberg XY Chain. Phys. Rev. Lett.2002,88: 107901-107904
    [34]I. Bose, E. Chattopadhyay, Macroscopic entanglement jumps in model spin systems. Phys. Rev. A,2002,66:062320-062325
    [35]J. Z. Zhao, I. Peschel, X.Q. Wang, Critical entanglement of XXZ Heisenberg chains with defects. Phys.Rev.B,2006,73:024417-024422
    [36]A. Osterloh, L. Amico, G. Falci, R. Fazio, Scaling of entanglement close to a quantum phase transition. Nature (London) 2002,416:608-610
    [37]P. Zanardi, Quantum entanglement in fermionic lattices. Phys. Rev. A,2002,65: 042101-042105
    [38]X.G. Wang, B. C. Sanders, Spin squeezing and pairwise entanglement for symmetric multiqubit states. Phys. Rev. A,2003,68:012101-012106
    [39]P. Lou, J. Y. Lee, Block-block entanglement and quantum phase transition in the spin-1/2 XX chain. Phys. Rev. B,2006,74:134402-134409
    [40]O. Legeza, J. Slyom, Two-Site Entropy and Quantum Phase Transitions in Low-Dimensional Models. Phys. Rev. Lett.2006,96:116401-116404
    [41]G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Entanglement in Quantum Critical Phenomena. Phys. Rev. Lett.2003,90:227902-227905
    [42]S.J. Gu, S.S. Deng, Y.Q. Li, H.Q. Lin, Entanglement and Quantum Phase Transition in the Extended Hubbard Model. Phys. Rev. Lett.2004,93: 086402-086405
    [43]L.A. Wu, M. S. Sarandy, D. A. Lidar. S.J. Gu, S.S. Deng, Y.Q. Li, and H.Q. Lin, Quantum Phase Transitions and Bipartite Entanglement. Phys. Rev. Lett.2004,93: 250404-250407
    [44]J. K. Stockton, J. M. Geremia, A. C. Doherty, H. Mabuchi, Characterizing the entanglement of symmetric many-particle spin-1/2 systems. Phys. Rev. A,2003,67: 022112-022128
    [45]M. F. Yang, Reexamination of entanglement and the quantum phase transition. Phys. Rev. A,2005,71:030302-030305
    [46]J.Vidal, G. Palacios, and R. Mosseri, Entanglement in a second-order quantum phase transition. Phys. Rev. A,2004,69:022107-022110
    [47]O. F. Syljuasen, Entanglement and spontaneous symmetry breaking in quantum spin models. Phys. Rev. A,2003,68:060301-060304
    [48]X. G. Wang, Thermal and ground-state entanglement in Heisenberg XX qubit rings. Phys. Rev. A,2002,66:034302-034305
    [49]N. Lambert, C. Emary, Tobias Brandes. Entanglement and the Phase Transition in Single-Mode Superradiance. Phys. Rev. Lett.2004,92:073602-073605
    [50]S.J. Gu, H.Q. Lin, Y.Q. Li, Entanglement, quantum phase transition, and scaling in the XXZ chain. Phys. Rev. A,2003,68:042330-042333
    [51]E. Fradkin, J. E. Moore, Entanglement Entropy of 2D Conformal Quantum Critical Points:Hearing the Shape of a Quantum Drum. Phys. Rev. Lett.2006,97: 050404-050407
    [52]N. Laflorencie, E. S. Srensen, Ming-Shyang Chang, Ian Affleck. Boundary Effects in the Critical Scaling of Entanglement Entropy in 1D Systems. Phys. Rev. Lett. 2006,96:100603-100606
    [53]L. Zhou, H. S. Song, Y. Q. Guo, C. Li, Enhanced thermal entanglement in an anisotropic Heisenberg XYZ chain. Phys. Rev. A,2003,68:024301-024304
    [54]E. Jung, D.K. Park, J.W. Son, Three-tangle does not properly quantify tripartite entanglement for Greenberger-Horne-Zeilinger-type states. Phys. Rev. A,2009,80: 010301(R)-010304(R)
    [55]M. Kargarian, Finite-temperature topological order in two-dimensional topological color codes. Phys. Rev. A,2009,80:012321-012337
    [56]X. Hao, Thermal decoherence of long-distance entanglement in spin-1 chains. Phys. Rev. A,2009,80:024303-024306
    [57]T. Bastin, S. Krins, P. Mathonet, M. Godefroid, L. Lamata, E. Solano, Operational Families of Entanglement Classes for Symmetric N-Qubit States. Phys. Rev. Lett. 2009,103:070503-070506
    [58]K. Audenaert, J. Eisert, M. B. Plenio, R. F. Werner, Entanglement properties of the harmonic chain. Phys. Rev. A,2002,66:042327-042340
    [59]G. Vidal, R. F. Werner, Computable measure of entanglement. Phys. Rev. A,2002, 65:032314-032324
    [60]X. G. Wang, Threshold temperature for pairwise and many-particle thermal entanglement in the isotropic Heisenberg model. Phys. Rev. A,2002,66, 044305-044308
    [61]B. Schumacher. Sending entanglement through noisy quantum channels. Phys. Rev.A,1996,54:2614-2628
    [62]Ayan Khan, Pierbiagio Pieri. Ground-state fidelity in the BCS-BEC crossover. Phys. Rev. A,2009,80:012303-012308
    [63]周正威,郭光灿.量子信息讲座续讲:第三讲量子纠缠态.物理[J],2000,29(11):695-699
    [64]S.Hil and W.K. Wootters, Entanglement of a pair of quantum bits. Phys. Rev. Lett. 1997,78:5022
    [65]C. H. Bennett,S. J. Wiesner, Communication via one-and two-particles operators on Einstein-Podolsky-Rosen states,Phys. Rev. Lett.1992,69:2881
    [66]X.S L iu,G.L.Long,D.M.Tong and Feng L i,General scheme for superdense coding between multiparties. Phys. Rev. A,2002,65:022304
    [67]J.C.Hao,C.F.Li,G.C.Guo,Controlled dense coding using the Greenberger-Horne-Zeiilnger state, Phys. Rev.A,2001,63:054301
    [68]S. L. Braustein, H. J. Kimble, Dense coding for continuous variables. Phys. Rev. A, 2000,61:042302
    [69]Eleanor Rieffel and Wolfgang Polak, An Introduction to Quantum Computing for Non-Physicists, Arxiv:quant-ph/9809016V2,2000
    [70]C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Perea, and W. K. Wootter, Teleporting an Nuknown Quantum State via Dual Classic and Einstein-Podolsky—Rosen Channels. Phys. Rev. Lett.1993,70:1895
    [71]D. Bounwmeester, J. W. Pan, K. Mattle, H. Weinfurther,and A. Zeilinger, Experimemal Quantum Teleportation. Nature,1997,390:575
    [72]D. Boschi, S.Branca, F. D. Martini, L. Hardy, and S.Popcscu, Ladder Proof of Nonlocality without Inequalities:Theoretical and Experimemal Results. Phys. Rev. Lett.1998,80:1121
    [73]A. Furusawa, J. L. Corensen, S. L.Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, Unconditional Quantum Teleportation. Science,1998,282:706-709
    [74]E. Lombardi, F. Sciarrino, S. Popescu, and F. D. Martini, Teleportation of a Vacuum-one-Phone Qubit, Phys. Rev. Lett.2002,88:070402
    [75]Z. Zhi, el al, Experimemal Demonstration of Five-phone Entanglement and Open destination Teleportation, Nature,2004,430:54-58
    [76]P. Z. Cheng, T.Yang, B. H. Xiao, et at,Experimental Free-space Distribution of Entangled Photon Pairs over 13 km:towards Satellite-based Global Quantum Communication, Phys, Rev, Lett,2005,94:150501
    [77]S. Sachdev. Quantum Phase Transition [M], (Cambridge Uni-Press, Cambridge, 1999)
    [78]X. Wang, Entanglement in the Quantum Heisenberg XY model, Phys. Rev. A,2001, 64:012313
    [79]M. C. Amesen, S. Bose and V. Vedral, Natural Thermal and MagneticEntanglement in the 1DHeisenberg Model, Phys. Rev. Lett.2001,87:017901
    [80]T. J. Osbome and M. A. Nielsen, Entanglement in a simple quantum phasetransition, Phys. Rev. A,2002,66:032110
    [81]V. Vedral and M. B. Plenio, Enatanglement measures and purificationprocedure, Phys. Rev. A,1998,57:1619-1633
    [82]Lurigi Amico and Dario Patane, Entanglement crossover close to a quantum critical point, Euro. Phys. Lett.2007,77:17001
    [83]T. Holstein and H. Primakoff, Field Dependence of the Intrinsic Domain Magnetization of a Ferromagnet, Phys. Rev.1940,58:1098-1113
    [84]J. Shwinger, On angular momentumUS AtomicEnergy Commission, NYO-3071, 1952, unpublished report.
    [85]P.Jordan and E.Wigner,1928, Z. Phys.47:631
    [86]M.Fabrizio, A.O.Gogolin, A.A.Nersesyan, Nucl. Phys. B,2000,580:647
    [87]J. S. Schwinger and P.C.Martin. Theory of Many-Particle Systems[J]. Phys. Rev. 1959,115:1342-1373
    [88]L.P. Kadanoff and G.Baym, Quantum Statistical Mechanics[M].(W A.Benjamin, Inc.,NewYork,1962)
    [89]D. N. Zubarev, Nonequilibrium Statistical Thermodynamics[M]. (Consultant Bureau,NewYork,1974)
    [90]G. Rickayzen, Green's functions and condensed matter[M]. (Academic Press, London,1980)
    [91]O. K. Kalashnikov and E. S. Fradkin, The spectral density method applied to systems showing phase transitions, Phys. Stat. Sol. B,1973,59:9-46
    [92]M. Norberto, The Quantum Theory of Magnetism[M]. World scientific Publishing Co. Pte. Ltd.2003
    [93]T. Matsubara, A New Approach to Quantum-Statistical Mechanics, Progr. theor. Phys.1955,14:351-360-378
    [94]蔡建华,龚昌德等.量子统计的格林函数理论.北京:科学出版社,1982
    [95]Yao, K.L., Li,Y.C., Sun,X.Z., et al., Studies on entanglement entropy for Hubbard model withhole-doping and external magnetic field, Phys. Lett. A,2005,346: 209-216
    [96]Yao, K.L, Sun, X.Z, Liu, Z.L,et al., Block Entanglement in the Single-Hole Hubbard Model, Chin. Phys. Lett.2006,23:2352-2355
    [97]Canosa, N., Rossignoli, R.:Separability conditions and limit temperatures for entanglement detection in two-qubit Heisenberg XYZ models, Phys. Rev. A,2004, 69:052306-052312
    [98]Zhang G. F.,Liang J. Q., and Yan Q. W., Thermal Entanglement in Spin-Dimer V4+ with a Strong Magnetic Field, Chin. Phys. Lett.2003,20:452-455; Thermal Entanglement in Spin-Dimer V4+ with a Magnetic Field, Int. J. Mod. Phys. B,2003, 17:2129-2136
    [99]Y. Sun, Y.G. Chen, and H. Chen, Thermal entanglement in the two-qubit Heisenberg XY model under a nonuniform external magnetic field, Phys. Rev. A, 2003,68:044301(4)
    [100]Guo-Feng Zhang, Shu-Shen Li, Thermal entanglement in a two-qubit Heisenberg XXZ spin chain under an inhomogeneous magnetic field, Phys. Rev. A,2005,72: 034302-034305
    [101]T. Hiroshima, Optimal dense coding with mixed state entanglement, J. Phys. A, 2001,34:6907-6912
    [102]G. F. Zhang, Effects of anisotropy on optimal dense coding, Phys. Scri.2009,79: 015001-015005
    [103]L. Qiu, A. M. Wang, X. S. Ma, Optimal dense coding with thermal entangled states, Phys. A,2007,383:325-330
    [104]A. K. Ekert, Quantum cryptography based on Bell's theorem, Phys. Rev. Lett. 1991,67:661-663
    [105]Nielsen, M. A. and Chuang, I. L.:Quantum Computation and Quantum Information (Cambridge University Press Cambridge 2000)
    [106]Audretsch, J.:Entangled Systems (Wiley-VCH Weinheim 2007)
    [107]M. Horodecki, P. Horodecki, and R.Horodecki, General Teleportation Channel, Singlet Fraction, and Quasidistillation, Phys. Rev. A,1999,60:1888
    [108]G. Bowen and S. Bose, Teleportation as a Depolarizing Quantum Channel, Relative Entropy, and Classical Capacity, Phys. Rev. Lett.2001,87:267901
    [109]S. Ghosh, T. E. Rosenbaum, G. Aeppli, and S.N.Coppersmith, Entangled quantum state of magnetic dipoles, Nature(London),2003,425:48
    [110]Ren,J., Zhu, S. Q., Entanglement Entropy in an Opened Antiferromagnetic Heisenberg Chain with Alternating Interaction, Int. J. Theor. Phys.2010,49:239
    [111]Sergio,A., Fei,S. M., Yang,W. L., Optimal teleportation based on bell measurements, Phys. Rev. A,2002,66:012301-012304
    [112]Yan, L.H., Guo,Y.F., Zhao, J.G, A Proposal of Telecloning for a Three-Particle Entangled W State, Int. J. Theor. Phys.2009,48:2445
    [113]Frank, V., Henri,V.:Optimal Teleportation with a Mixed State of Two Qubits, Phys. Rev. Lett.2003,90:097901-097904
    [114]Chen,T., Shan,C. J., Li,J. X., Liu, T.K., et al,:Finite-Temperature Entanglement Dynamics in an Anisotropic Two-Qubit Heisenberg Spin Chain, Int. J. Theor. Phys.2010, Online first
    [115]Xia,Y, Song,J., Song,H. S., Classical Communication Help and Probabilistic Teleportation with One-Dimensional Non-maximally Entangled Cluster States, Int. J. Theor. Phys.2008,47:1552
    [116]Ye Yeo, Entanglement Teleportation via Thermally Entangled States of Two-qubit Heisenberg XX chain, Phys. Lett. A,2003,309:215
    [117]Ye Yeo, Teleportation via Thermally Entangled States of a Two-qubit Heisenberg XX Chain, Phys. Rev. A,2002,66:062132
    [118]Ye Yeo, Studying the Thermally Entangled State of a Three-qubit Heisenberg XX Ring via Quantum Teleportation, Phys. Rev. A,2003,68:022316
    [119]Yeo, Y., Liu, T. Lu,Y, Yang,Q., Quantum teleportation via a two-qubit Heisenberg XY chain—effects of anisotropy and magnetic field, J. Phys. A:Math. Gen.2005, 38:3235
    [120]Zhou,Y., Zhang,G. F., Quantum teleportation via a two-qubit Heisenberg XXZ chain -effects of anisotropy and magnetic field, Eur. Phys. J. D,2008,47:227-231
    [121]He,Z. H., Xiong,Z. H., Zhang,Y. L., Influence of intrinsic decoherence on quantum teleportation via two-qubit Heisenberg XYZ chain, Phys. Lett. A,2006,354:79
    [122]F.Kheirandish, S. J.Akhtarshenas, H.Mohammadi, Effect of spin-orbit interaction on entanglement of two-qubit Heisenberg XYZ systems in an inhomogeneous magnetic field, Phys. Rev. A,2008,77:042309(8)
    [123]Hao,X., Zhu,S. Q., Entanglement teleportation through 1D Heisenberg chain, Phys. Lett. A,2005,338:175
    [124]Jozsa,R.:J.Mod.Opt.1994,41:2315
    [125]Guo, J. L., Nie, J., Song,H. S., Quantum Teleportation Through a Two-Qubit Heisenberg XXZ Chain, Commun. Theor. Phys.2008,49:1435
    [126]C. X. Li, C. Z. Wang, G. C. Guo, Entanglement and teleportation through thermal equilibrium state of spins in the XXZ model, Opt. Comm.2006,260:741-748
    [127]G. F. Zhang, J. Liu, Entanglement in a generalized Jaynes-Cummings model, Chin. Phys.2007,16:3595
    [128]S. W. Hu, J. L. Chen, Thermal Entanglement for Interacting Spin-1/2 Systems and its Quantum Criticality, Int. J. Theor. Phys.2007,46:1360
    [129]J. L. Guo, X. L. Huang, H. S. Song, Effects of Inhomogeneous Spin Coupling and Anisotropy on Thermal Entanglement, Chin. Phys. Lett.2007,24:1448-1451
    [130]S. E. Shawish, A.Ramsak, J.Bona, Thermal entanglement of qubit pairs on the Shastry-Sutherland lattice, Phys. Rev. B,2007,75:205442-205451
    [131]G. F. Zhang, J. Q. Lian2, G. E. Zhang, and Q. W. Yan, Thermal entanglement in two qutrits system, Eur. Phys. J. D,2005,32:409-412
    [132]G. F. Zhang, S. S. Li, Entanglement in a spin-one spin chain, Sol. Stat. Commu. 2006,138:17-21
    [133]G. F. Zhang, S. S. Li, Thermal entanglement in a two-spin-qutrit systemunder a nonuniform external magnetic field, Eur. Phys. J. D,2006,37:123-127
    [134]T. Sakai, K. Okamoto, Field-induced incommensurate order in frustrated spin ladder, J Phys.:Condens Matter,2007,19:145231 (1-5)
    [135]C. Ruegg, K. Kiefer, B. Thielemann, et al, Thermodynamics of the Spin Luttinger Liquid in a Model Ladder Material, Phys. Rev. Lett.2008,101:247202(1-4)
    [136]E. Chattopadhyay, I. Bose, Magnetization plateaux in a generalizedladder model, Phys. A,2003,318:14-22
    [137]C. D. Batista, G Ortiz, Generalized Jordan-Wigner Transformations, Phys. Rev. Lett,2001,86:1082-1085
    [138]B. Bock, M. Azzouz, Generalization of the Jordan-Wigner transformation in three dimensions and its application to the Heisenberg bilayer antiferromagnet, Phys. Rev. B,2001,64:054410(1-8)
    [139]K. M. O'Connor, W. K. Wootters, Entangled rings, Phys. Rev. A,2001,63: 052302(1-9)
    [140]M. Oshikawa, M. Yamanaka, I. AReck, Magnetization Plateaus in Spin Chains: "Haldane Gap" for Half-Integer Spins, Phys. Rev. Lett.1997,78:1984-1987
    [141]M. Roger, J. H. Hetherington, and J. M. Delrieu, Magnetism in solid 3He, Rev. Mod. Phys:1983,55:1-64
    [142]Y. Honda, Y. Kuramoto, and T. Watanabe, Effects of cyclic four-spin exchange on the magnetic properties of the CuO2 plane, Phys. Rev. B,1993,47:11329
    [143]H. J. Schmidt and Y. Kuramoto, Four-spin interaction as an effective interaction in high-Tc copper oxides, Phys. C,1990,167:263-266
    [144]S. Brehmer, H.J. Mikeska, M. Miiller, N. Nagaosa, and S.Uchida, Effects of biquadratic exchange on the spectrum of elementary excitations in spin ladders, Phys. Rev. B,1999,60:329-334
    [145]M. Matsuda, K. Katsumara,R. S. Eccleston, S. Brehmer, and H.J.Mikeska, Magnetic excitations from the S=1/2 two-leg ladders in La6CagCu24O41, J. Appl.Phys.2000,87:6271
    [146]T. Imai, K. R. Thurber, K. M. Shen, A. W. Hunt, and F. C. Chou,17O and 63Cu NMR in Undoped and Hole Doped CU2O3 Two-Leg Spin Ladder A14Cu24O41 (A14= La6Cag,Sr14,Sr11Ca3), Phys. Rev. Lett.1998,81:220
    [147]R. S. Eccleston, M.Uehara, J.Akimitsu, H. Eisaki, N. Motoyama, and S. I. Uchida, Spin Dynamics of the Spin-Ladder Dimer-Chain Material Sr14Cu24O41, Phys. Rev. Lett.1998,81:1702-1705
    [148]M. Windt, M. Gruninger, T. Nunner, C. Knetter, K.P. Schmidt, G. S. Uhrig, T. Kopp, A. Freimuth, U. Ammerahl, B. Buchner, and A. Revcolevschi, Observation of Two-Magnon Bound States in the Two-Leg Ladders of (Ca,La)14Cu24O41, Phys. Rev. Lett.2001,87:127002
    [149]K.Magishi, S. Matsumoto, Y. Kitaoka, K.Ishida, K. Asayama, M.Uehara, T. Nagata, and J. Akimitsu, Spin gap and dynamics in Sr14-xCaxCu24O41 comprising hole-doped two-leg spin ladders:Cu NMR study on single crystals, Phys. Rev. B, 1998,57:11533-11544
    [150]S. Sachdev, Quantum Criticality:Competing Ground States in Low Dimensions, Science,2000,288:475
    [151]B. Lake, D. A. Tennant, C. D. Frost, S. E. Nagler, Quantum criticality and universal scaling of a quantum antiferromagnet, Nature materials,2005,4:329-334
    [152]I. A. Zaliznyak, Quantum criticality:A glimpse of a Luttinger liquid, Nature materials,2005,4:273-275
    [153]J. Sirker, A. Herzog, A. M. Oles, P. Horsch, Thermally Activated Peierls Dimerization in Ferromagnetic Spin Chains, Phys. Rev. Lett.2008,101:157204
    [154]M. Azzouz, K. Shahin, G. Y. Chitov, Spin-Peierls instability in the spin-1/2 Heisenberg three-leg ladder, Phys. Rev. B,2007,76:132410
    [155]M. Azzouz, Field-induced multiple-point quantum criticality in the three-leg Heisenberg ladder, Phys. Rev. B,2008,78:014421
    [156]E. Plekhanov, A. Avella, F. Mancini, Ergodicity of the extended anisotropic 1D Heisenberg model:Response at low temperatures, J. Magn. Magn. Mater.2007, 310:e480-e482
    [157]K. Hida, Ferrimagnetic states in S= 1/2 frustrated Heisenberg chains with period 3 exchange modulation, J. Phys.:Condens. Matter.2007,19:145225
    [158]M. Suzuki, The dimer problem and the generalized X-model, Phys. Lett. A,1971, 34:338
    [159]A. M. Tsvelik, Incommensurate phases of quantum one-dimensional magnetics, Phys. Rev. B,1990,42:779-785
    [160]P. Lou, W. C. Wu, M. C. Chang, Quantum phase transition in spin-1/2 XX Heisenberg chain with three-spin interaction, Phys. Rev. B,2004,70:064405
    [161]A. A. Zvyagin, G. A. Skorobagat'ko, Exactly solvable quantum spin model with alternating and multiple spin exchange interactions, Phys. Rev. B,2006,73: 024427
    [162]T. Krokhmalskii, O. Derzhko, J. Stolze, T. Verkholyak, Dynamic properties of the spin-1/2 XY chain with three-site interactions, Phys. Rev. B,2008,77:174404
    [163]L. Amico, R. Fazio, A. Osterloh, V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys.2008,80:517-576
    [164]G. Refael, J. E. Moore, Entanglement Entropy of Random Quantum Critical Points in One Dimension, Phys. Rev. Lett.2004,93:260602
    [165]P. Frobrich, P. J. Kuntz, Many-body Green's function theory of Heisenberg films, Phys. Report,2006,432:223
    [166]H. H. Fu, K. L. Yao, Z. L. Liu, Magnetic properties and quantum phase transitions of purely organic molecule-based ferrimagnets based on Green's function theory, J. Chem. Phys.2008,128:114705

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700