连续酶解花生蛋白及其花生多肽抗氧化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花生蛋白是花生榨油后的副产物,一般作为食品或饲料的原料。本文以花生蛋白为原料,选用Alcalase碱性蛋白酶,连续酶解并得到酶解产物(即花生多肽)。同时对花生多肽的体外和体内的抗氧化性进行研究,并对其进行初步的分离纯化,进一步研究各个分离组分的氨基酸和分子量分布。此研究旨在为工业化连续酶解花生蛋白及花生多肽在功能性食品上的应用提供理论依据,并以此提高花生蛋白的附加值。主要研究内容和结果如下:
     1.连续酶解花生蛋白的工艺研究。以水解度(DH)为指标,选用Alcalase碱性蛋白酶,采用酶膜反应器连续酶解花生蛋白。通过单因素试验选取试验因素与水平,并确定了操作压力为0.02MPa。同时设计了四因素(pH值、温度、底物浓度和加酶量)三水平的中心组合响应面试验。得出最佳工艺条件为:pH9.6,温度54℃,底物浓度2%,加酶量7440U/g。通过在DH最佳水解条件下进行水解,实际得到DH为26.13%。
     2.花生多肽体外抗氧化活性的研究。考察了花生多肽的还原能力、DPPH·自由基清除能力、ABTS+·自由基清除能力和超氧阴离子(O2-·)自由基清除能力。结果显示,花生多肽具有良好的还原能力,且对这几种自由基均具有不同程度的清除能力。随着花生多肽浓度的增大,其还原能力和对这几种自由基清除能力都增强。同时还测定了花生多肽对DPPH·自由基和超氧阴离子(O2-·)自由基清除能力的半抑制浓度IC50值,花生多肽对DPPH·自由基清除能力的IC50值为0.65mg/ml,对O2-·自由基清除能力的IC50值为24.23mg/ml。
     3.花生多肽体内抗氧化活性的研究。采用D-半乳糖诱导衰老小鼠作为模型,分别以小鼠的血清、肝脏和心脏组织中的丙二醛(MDA)含量、超氧化物歧化酶(SOD),谷胱甘肽(GSH)和谷胱甘肽过氧化物酶(GSH-Px)活性作为评价指标,探讨花生多肽在生物体内的抗氧化作用。结果显示:与模型组比较,高剂量的花生多肽能极显著降低D-半乳糖致衰模型小鼠血清、肝脏和心脏中MDA含量(p<0.01),并极显著提高SOD和GSH-Px的活力(p<0.01),同时显著增加GSH的含量(p<0.05)。同时还发现,与模型组比较,各花生多肽给药组MDA含量均有不同程度的降低,GSH含量、SOD和GSH-Px活力均有一定程度的升高,且与花生多肽的给药量存在明显的量效关系。
     4.采用葡聚糖凝胶Sephadex G-15对花生多肽进行初步的分离纯化,对其各个组分进行氨基酸成分和分子量分布进行研究,探讨其与抗氧化活性的相关性。花生多肽分离纯化后得到组分Ⅰ和组分Ⅱ这两个组分,通过比较DPPH·和超氧阴离子(O2-·)自由基的清除能力,发现组分Ⅰ的抗氧化活性高于组分Ⅱ。同时对组分Ⅰ和组分Ⅱ进行氨基酸分析得出,组分Ⅰ和组分Ⅱ中不同种类氨基酸含量相差较大,且组分Ⅰ中疏水性氨基酸含量接近50%,远高于组分Ⅱ中的含量。在分子量分布研究中发现,组分Ⅰ和组分Ⅱ中94%的肽段主要集中在3000-5000Da之间,其中组分Ⅱ中分子量分布更为分散些。
Peanut proteins, which have wide source and low price, are generally used in the food processing. In this study, peanut proteins as the raw material, were continuously hydrolyzed by Alcalase protease in the enzyme membrane reactor. This paper main studied antioxidant activity in the vitro and vivo, preliminary purification of peanut peptides. And, amino acids and molecular weight distribution of the various purified fractions were further researched. This study can provide theoretical bases for the industrial continuous hydrolysis of peanut protein and functional foods application of peanut peptides. So this research also increased the added value of peanut protein. The main research content and results are following:
     1. Study on the technology of continuous hydrolysis peanut protein. Using hydrolysis degree (DH) as an indicator, peanut proteins were hydrolyzed by Alcalase protease in the enzyme membrane reactor. Through single-factor tests, they select test factors and the level of test factors, and determine the operating pressure of 0.02MPa. And the four factors (pH, temperature, substrate concentration and protease dosage) and three levels response surface methodology (RSM) test were designed. It was found that the optimum condition was pH 9.6, temperature 54℃, substrate concentration 2% and protease dosage 7440u/g. Under the optimum condition, practical DH is 26.13%.
     2. Research on the vitro antioxidant activity of peanut peptides. The reducing capacity, DPPH-scavenging capacity, ABTS+·scavenging capacity and O2-·scavenging capacity of peanut peptides were studied. The results showed that peanut peptides had certain reducing capacity and different scavenging effects on different free radicals. The reducing capacity and free radical-scavenging capacity were increased with the increase of peanut peptide concentrations.The scavenging capacity of half-inhibitory concentration (IC50) value was determined on the DPPH·free radical of peanut peptides and O2-·free radical of peanut peptides. Peanut peptides on the DPPH·free radical scavenging capacity of IC50 value was 0.65mg/ml, on the O2-·free radical of IC50 value was 24.23mg/ml.
     3. In order to study on the vivo antioxidant activity of peanut pep tides, using D-galactose induced aging mice as a model, the contents of malondialdehyde(MDA) and glutathione(GSH), the activities of superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px) in the serum, liver and heart of each groups mice were determined. The results showed:compared with the model group, the high doses of peanut peptides could significantly(p<0.01) reduce the MDA contents in the serum, live and heart of aged mice induced by D-galactose. It also could significantly(p< 0.01) increased the activities of serum, live and heart SOD and GSH-Px, which increase(p<0.05) the contents of GSH. So peanut peptides have well vivo antioxidant activity.
     4. Peanut peptides were separated and purified by sephadex G-15, which got two fractions (ⅠandⅡ). Then, the amino acids and molecular weight distribution of these fractions were further researched. Through testing the DPPH·and O2-·radical scavenging, the antioxidant activity of fractionⅠwas higher than fracitionⅡ. Then analysis of amino acids between two fractions, they were large difference among the contents of different kinds of amino acids. FractionⅠhad the hydrophobic amino acid nearly 50%, much higher than fractionⅡ. Found in the molecular weight distribution, the peptides of fractionⅠandⅡconcentrated in 3000-5000Da. The molecular weight distribution of fractionⅡwas more dispersed than fractionⅠ
引文
1. 崔旭,李文彬,张炳烈等.自由基损伤与D-半乳糖所致细胞老化关系.基础医学与临床,2000,20(1):24-26
    2. 丛艳君,程永强,薛文通.花生致敏蛋白的研究进展.食品科学,2005,26:176-178
    3. 陈静.利用酶膜反应器连续化水解婴儿配方乳中蛋白质的研究.[硕士学位论文].包头:内蒙古农业大学图书馆,2004
    4. 陈瑾,李荣亨.衰老的自由基机制.中国老年学杂志,2004,24(7):677-679
    5. 陈贵堂,赵立艳,丛涛,赵霖,鲍善芬.花生多肽的制备及其对氧化损伤模型小鼠抗氧化作用的研究.食品科学,2007(28):324-327
    6. 刁静静,孔保华,刁新平,陈洪生.骨蛋白水解物抗氧化活性及其作用模式.中国农业科学,2009(42):238-244
    7. 董贝森.花生蛋白粉的制取及在食品工业中的应用.中国油料作物学报,1998,20(3):85-89
    8. 冯彪,倪晋仁,毛学英.超滤技术处理酪蛋白酶解液的研究.中国乳品工业,2005,33(33):32-34
    9. 龚国清,徐黻本.小鼠衰老模型研究.中国药科大学学报,1991,12(2):101-103
    10.何东平,张世宏,肖吉娜,杨大芳.冷榨花生饼制备花生多肽的研究.中国油脂,2004,29(11):18-20
    11.何东平,刘丽娜,张声华.花生蛋白水解产物ACE抑制活性的研究.中国粮油学报,2007,22(3):94-96
    12.江连洲,黄莉,朱秀清,徐萍.大豆肽超滤分离过程膜清洗的研究.中国油脂,2004,29(8):45-46
    13.姜忠义,陈洪钫.酶膜反应器研究进展.高分子材料科学与工程,2004,20(1): 14-17
    14.李宏,张红誉.花生过敏原致敏组分分析.中华微生物学与免疫学杂志,2001,21(4):12-15
    15.李琳.鳙鱼蛋白控制酶解及酶解物抗氧化研究.[博士学位论文].广州:华 南理工大学图书馆,2006
    16.李琳,李八方.鱿鱼皮胶原蛋白水解肽抗氧化活性研究.中国海洋药物杂志,2006(25):48-51
    17.李磷,丁安伟.衰老机理研究进展.西北药学杂志,2000,15(4):177
    18.李艳红.鹰嘴豆蛋白酶解物的制备及其抗氧化肽的研究.[博士学位论文].无锡:江南大学图书馆,2008
    19.刘丽娜,吕静,何东平,张声华.花生多肽的体外抗氧化活性研究.中国粮油学报,2008,23:169-172
    20.马铁铮.花生浓缩蛋白的制备及其溶解性研究.[硕士学位论文].北京:中国农业科学院,2009
    21.黎观红,施用晖,乐国伟,刘焕.花生分离蛋白碱性蛋白酶Alcalase水解物具有血管紧张素转化酶抑制活性.食品科学,2005,26(6):55-60
    22.裴剑慧,王强,周素梅.我国花生蛋白资源的开发与利用.粮油加工与食品机械,2005,12:51-54
    23.潘秋琴,沈蓓英,程霜.花生蛋白质的磷酸化改性.中国油脂,1997,22(1):25-27
    24.彭益强,方柏山.酶膜反应器及其工业应用研究.化工时刊,2004,18(1):13-17
    25.齐崴,何志敏,何明霞.酶解反应与膜分离耦合连续制备酪蛋白磷酸肽.化学工程,2006,34(4):43-46
    26.史军,王金水,蔡凤英,刘进玺.花生蛋白酶解条件及活性肽抗氧化特性研究.河南工业大学学报(自然科学版),2006,27(6):29-33
    27.谭斌,曾凡坤,吴永娴.花生肽的酶法生产工艺研究.食品与机械,2000,3: 14-17
    28.檀志芬,生庆海,邱泉若,刘建光.蛋白质水解度的测定方法.分析检测,2005,26(7):174-176
    29.田亚平.生化分离技术.北京:科学出版社,1996,90-93
    30.万书波,封海胜,王秀贞.花生营养成分综合评价与产业化发展战略研究.花生学报,2004,32(2):1-6
    31.吴海文,王强,周素梅.花生蛋白及其功能性研究进展.中国油脂,2007,32(9):7-10
    32.吴玉凤,杨学友,何明霞,张旭,伞洪亮.酶膜反应器控制系统的研制.化学工业与工程,2006,23(5):393-395
    33.韦一能,陈元发,陈全斌,陈国汉.花生蛋白质的主要种类和等电点的研究.广西科学,1995,2(4):1-5
    34.王建化,熊柳,孙高飞,孙庆杰.花生抗氧化活性多肽制取工艺的研究.中国油脂,2008(33):15-18
    35.王文杰,王璋.酶膜反应器中水解大豆分离蛋白的研究.食品与机械,2008,24(1):16-19
    36.王瑛瑶,王璋.花生水解蛋白液的浓缩及体外活性研究.食品科学,2007,28(1):179-183
    37.汪涛,曾庆祝,谢智芬.超滤扇贝边酶解液滤膜的清洗与再生.大连水产学院学报,2002,17(4):307-312
    38.熊柳,孙高飞,孙庆杰.低变性脱脂花生蛋白在面条中应用研究.粮食与油脂,2009,2:24-25
    39.肖红.中华稻蝗蛋白的提取、酶解及抗氧化肽的研究.[硕士学位论文].西安:陕西师范大学图书馆,2006
    40.杨晓泉,陈中,赵谋民.花生蛋白的分离及部分性质研究.中国粮油学报,2001,16(5):25-28
    41.杨晓泉,张水华,黎茵,傅家瑞.花生2S蛋白的提取分离及部分性质研究.华南理工大学学报(自然科学版),1998,26(4):1-4
    42.张敏.花生制油工艺的现状与发展趋势.农机化研究,2002,4:19-21
    43.张君慧,张晖,王兴国,等.抗氧化活性肽的研究进展.中国粮油学报,2008,23(6):227-232
    44.张梦寒,徐幸莲,周光宏.肌肽对脂质体的抗氧化研究.食品科学,2002,23: 52-55
    45.张宇昊,王强.Alcalase酶水解花生蛋白制备花生短肽的研究.农业工程学报,2007,23(4):258-262
    46.张伟,孙智达,徐志宏,等.花生粕提取蛋白质工艺的优化研究.食品工业科技,2007,27(12):125-131
    47.张伟,徐志宏,孙智达,魏振承,池建伟,刘文豪,汤虎.酶解花生蛋白制备血管紧张素转化酶抑制肽.中国粮油学报,2008(23):146-150
    48.张伟.花生蛋白ACE抑制肽的制备和降血压效果的研究.[硕士学位论文].武汉:华中农业大学图书馆,2007
    49.张洪泉主编.抗衰老药理学新论.北京:人民卫生出版社,2004,4-9
    50.周瑞宝.花生加工技术.北京:北京大学医学出版社,2002
    51.周徐惠.汉麻籽蛋白抗氧化肽的制备及其活性研究.[硕士学位论文].无锡:江南大学图书馆,2008
    52.赵玉红.鲢鱼副产物蛋白酶解的研究.[硕士学位论文].哈尔滨:东北农业大学,2000
    53.朱艳华,谭军.玉米多肽抗氧化作用的研究.中国粮油学报,2008,23(1):36-38
    54. Antonio Guadix, Fernando Camacho, Emilia M.Guadix. Production of whey protein hydrolysates with reduced allergenicity in a stable membrane reactor. Journal of Food Engineering,2006,72:398-405
    55. Aide Perea, Unai Ugalde. Continuous hydrolysis of whey proteins in a membrane recycle reactor. Enzyme and microbial Technology,1996,18:29-34
    56. Cao G H, Sofic E, Prior R L. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationship. Free Radical Bio & Medicine,1997,22 (5): 749-760
    57. Chen H M, Muramoto K, Yamauchi F. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soy-bean protein. J Agric Food Chem,1998,46:49-53
    58. Chen H M, Muramoto K, Yamauchi F. Structural analysis of antioxidative peptides from soybean β-conglycinin. J Agric Food Chem,1995,43:574-578
    59. Chi-Yue C, Kuei-Ching W, Shu-Hua C. Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates. Food Chemistry,2007,100: 1537-1543
    60. Duh PD, Yen GC. Antioxidant efficacy of Methanolic extracts from peanut hulls. Journal of the American oil chemists'society,1993,70(4):383-385
    61. D.Belhocine, H.Mokrane, H.Grib, H.Lounici, A.Pauss, N.Mameri. Optimization of enzymatic hydrolysis of haemoglobin in a continuous membrane bioreactor. Chemical Engineering Joural,2000,76:189-196
    62. D. Misun, L. Curda, P. Jelen. Batch and continuous hydrolysis of ovine whey protein. Small Ruminant Research,2008,79:51-56
    63. Eresha Mendis, Niranjan Rajapakse, Se-Kwon Kim. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. Agric and Food Chemis,2005(53):581-587
    64. G.M.Rios, M.P.Belleville, D.Paolucci, J.Sanchez. Progress in enzymatic membrane reactors-a review. Journal of Membrane Science,2004,242:189-196
    65. Ho W S, Sirkar K K. Membrane Handbook. New York:Van NostranReinhold, 1992,353-413
    66. Hee-Guk Byun, Se-Kwon Kim. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack(Theragra chalcogramma) skin. Process Biochemistry,2001,36:1155-1162
    67. Jeon Y J, Byun H G, Kim S K. Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membrane. Process Biochem, 1999,35(5):471-478
    68. Jae-Young Je, Pyo-Jam Park, Se-Kwon Kim.Antioxidant activity of a peptide isolated from Alaska Pollack (Theragra chalcogramma) frame protein hydrolysate.Food Research International,2005(38):45-50
    69. Kong B, Xiong Y L. Antioxidant activity of zein hydrolyates in a liposome system and the possible mode of action. J. Agric. Food Chem,2006, (54): 6059-6068
    70. M.Prata-Vidal, S.Bouhallab, G.Henry, P.Aimar. An experimental study of caseinomacropeptide hydrolysis by trypsin in a continuous membrane reactor. Biochemical Engineering Journal,2001,8:195-202
    71. Mimouni B, Azanza J L, Raymond J. Influence of double enzymic hydrolyses on gluten functionality. Journal of the Science of Food and Agriculture,1999,79: 1048-105
    72. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallal and a convenient assay for superoxide dismutase. European Journal of Biochemistry.1974,47(3):467-474
    73. N.Prevot-D'Alvise, C. Lesueur-Lambert, A. Fertin-Bazus. Continuous enzymatic solubilization of alfalfa protein in an ultrafiltration reactor. Enzyme and Microbial Technology,2004,34:380-391
    74. N.D'Alvise, C.Lesueur-Lambert, B.Fertin, P.Dhulster, D.Guillochon. Hydrolysis and large scale ultrafiltration study of alfalfa protein concentrate enzymatic hydrolysate. Enzyme and Microbial Technology,2000,27:286-294
    75. Oyaizu M. Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi,1988,35:771-775
    76. R.Amarowicz, F.Shahidi. Antioxidant activity of peptide fractions of capelin protein hydrolysates. Food Chemistry,1997,58(4):355-359
    77. Seronei Chelulei Cheison, Zhang Wang, Shi-Ying Xu. Use of response surface methodology to optimize the hydrolysis of whey protein isolate in a tangential flow filter membrane reactor. Journal of Food Engineering,2007,80:1134-1145
    78. Seronei Chelulei Cheison, Zhang Wang, Shi-Ying Xu. Use of response surface methodology to optimize the hydrolysis of whey protein isolate in a tangential flow filter membrane reactor. Journal of Food Engineering,2007,80:1134-1145
    79. Koichiro Saito, Dong-Hao Jin, Tomohisa Ogawa, Koji Muramoto, Eiko Hatakeyama, Tadashi Yasuhara, Kiyoshi Nokihara. Antioxdative properties of tripeptide libraries prepared by the combinatorial chemistry. J Agric Food Chem, 2003,51:3668-3674
    80. Saiga A, Tanabe S, Nishimura T. Antioxdiant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J Agric Food Chem,2003, 51(12):3661-3667
    81. Wen-Dee Chiang, Chieh-Jen Shih, Yan-Hwa Chu. Functional properties of soy protein hydrolysate produced from a continuous membrane reactor system.Food Chemistry,1999,65:189-194
    82. Wen-Dee Chiang, May-June Tsou, Zong-Yao Tsai, Tsun-Chung Tsai. Angiotensin I-converting enzyme inhibitor derived from soy protein hydrolysate and produced by using membrane reactor. Food Chemistry,2006,98:725-732
    83. Hui-Chun Wu, Hua-Ming Chen, Chyuan-yuan Shiau. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International,2003,36:949-957
    84. Xinyan Peng, Youling L.Xiong, Baohua Kong. Antioxdant activity of peptide fractions from whey protein hydrolysates as measured by electro spin resonance. Food Chemistry,2009,113:196-201
    85. Zhengjun Xie, Junrong Huang, Xueming Xu, Zhengyu Jin. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chemistyr,2008, 111:370-376

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700