岩浆热液成矿系统的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数值模拟是研究成矿过程的重要手段及发展趋势,其以计算机程序模拟成矿过程,探讨各类地质因素在不同时间阶段对成矿过程的影响,论证已有的成矿理论与假设并为矿产勘查提供建议。数值模拟技术始于20世纪50年代,最初应用于油气藏渗流及水文地质方面的研究,随后进入构造学领域。数值模拟在这些领域的研究带动了固体矿产成矿系统数值模拟,地质学者逐渐将数值模拟作为一种手段用于成矿系统的研究,国内地质工作者对此还缺乏了解。
     目前,成矿数值模拟的主要对象为与盆地相关的SEDEX型与MVT型矿床,此类矿床赋存于一系列的碳酸盐岩和硅质碎屑岩中且无明显的火山作用,另外则是火山岩型矿床,主要的对象是火山块状硫化物矿床(VHMS)。虽然研究对象各有侧重,但一般都针对整个成矿热液系统进行模拟,并且采用的方法与技术的相同。本文详细总结了数值模拟在固体矿产热液成矿系统研究中的发展过程及研究趋势,介绍了热液成矿系统数值模拟的实施步骤,并阐述了建模过程中所考虑的主要地质因素及其实现方法,而后例举HYDROTHERM、ANSYS、FLAC等当前此领域内主要的应用软件,并对国内成矿数值模拟的研究状况进行了归纳。
     本文根据云南个旧锡多金属矿区的地质资料与数据,采用有限差分模拟软件HYDROTHERM建立了卡房岩体岩浆热液系统的数学模型,模拟结果较好地反映了岩浆期后热液系统的演化过程;而后又对模型进行了灵敏度分析,以确定各因素在热液系统演化过程中的作用与影响大小。此外,还通过有限元软件ANSYS建立了该地区岩浆系统的热应力模型,讨论了除构造应力以外的另一种地应力——热应力的取值范围与意义,并与HYDROTEHRM模型进行了对比讨论。研究结果表明:
     (1)老卡岩体侵入后其岩浆热液系统的演化可以持续十几万年,其中温度场与流体场的演化可以持续到热液系统的后期,而水压场的衰退相对较快,仅为5000年左右。
     (2)温度场的演化过程表明高温的硅酸盐成矿阶段作用时间不到2000年,其作用范围仅限于岩体与碳酸盐岩地层的接触带区域;中温的氧化物阶段与硫化物阶段的作用时间近20000年,作用范围可扩展至距岩体700~1000米的位置;低温的碳酸盐成矿阶段的是一个相对更长且作用范围最广的阶段,作用时间可持续到热液系统结束,且可到达距花岗岩基近3000米的位置。
     (3)对水压场演化过程的分析表明气水热液聚集形成的高压高渗透区域可以使热液系统在更大范围内达到成矿压力并使其持续更长的时间,这种区域较长时间的存在有利于成矿。
     (4)流体场的演化最为复杂,按主要驱动机制及流动形式的差别可以将热液系统的流体场演化过程划分为四个阶段:1、(不到100年)在热液系统演化的初始阶段,流体以纵向流动为主,此时水压为流体流动的主要驱动因素。地层中流体的质量流动速率约为0.1~0.5gs-1cm-2,断裂中流体的流动速率为地层中的数十倍。2、(100年~5000年)某些断裂中流体开始向下运移,地层中断裂附近的流体对流逐渐形成,流体流动开始受因温度变化引起的密度差异的控制,在第一阶段向此阶段的过渡过程中,流速明显下降。3、(5000年~50000年)断裂之间区域的对流开始发生,因为此时地层中的流体已基本恢复至静水压力,密度差异驱动成为主要因素。从第二阶段的中期到此阶段的结束,地层中的流体渗流速率为0.1~0.3 gs-1cm-2,而断层中的流体流速约为1.0~2.0 gs-1cm-2。4、(50000年~热液系统演化结束)热液系统中的流体场开始衰退,最先消失的是对流现象,而流体在断裂中的纵向流动及在断裂之间的横向流动将会持续热液系统演化结束,流速逐渐衰减。
     (5)相对于水压场,断裂对温度场与流体场的演化有较强的控制作用。一些断裂提供了大气降水向下运移的必要路径,其分布与组合控制着流体的流动速率、流动方向及流动形式(对流或平流),并间接影响着温度场的分布与演化状况。贯穿花岗岩的断裂周围易发生对流现象,较未贯穿的断裂更可能利于成矿作用的发生;断裂之间的区域也会出现对流,而且可以持续很长时间(数万年),这在一定程度上可以解释在矿产地为什么主要分布于断裂之间的区域;岩体附近的侧向断裂可以增加岩浆热液在岩体侧向的流动距离,使侧向断裂与岩体之间的区域成为不同类型流体混合的场所;此外,断裂的产状对流体场与温度场的演化也有影响,竖直断裂附近更宜发生流体对流。
     (6)地层渗透率大小制约着流体的活动范围与流速,高渗透率区域中的流体速率明显高于低渗透区域,而且上部高渗透地层与下部相对低渗透率地层的界面附近易发生对流现象与流体混合现象,是成矿的有利场所。
     (7)岩体侵入深度的简单变化对热液系统的演化趋势并无明显影响,而岩浆初始压力的提高可以使地层中的流体压力在热液系统的初始阶段明显升高。岩体凸起的两侧上部是对流的易发生区域,也是利于矿床产出的位置。
     (8)低渗透率区域边界附近的渗流速率较高,花岗岩期后热液对与玄武岩(低渗透率地质体)相关矿床的改造作用是值得关注的。
     (9)HYDROTHERM热液系统模型与ANSYS热应力模型的对比结果表明流体的流动直接控制着温度场的演化,因此单一地对温度场或流体场进行定量讨论都是不可取的。
     (10)该地区的岩浆作用引起的热应力可达数百兆帕,因此热应力对热液系统的影响值得考虑,今后的研究中要考虑地应力(包括构造应力与热应力)对热液系统的作用,实现形变-流体-热量的耦合。
     热液成矿系统的数值模拟具有广阔的发展前景且会全面应用于矿产勘查,国内从90年代开始将数值模拟应用于成矿过程的研究,但主要是对具体地质实例的简单应用,到目前还没有开展系统的研究及专业模拟软件的开发工作,因此亟待被关注与重视。
As an important means and trend for ore-forming process study, numerical modeling simulates ore-forming process by computer program and discuss the effects of various geological factors in different time stages during mineralization process,and demonstrates theories and assumptions and provide recommendations for mineral exploration.Numerical simulation tecnique started from 50 years of 20th century and was initially used in reservoir flow and hydro-geological research ,then it entered structural geology.Simulation studeies in these fields led to numercial modeling of solid mineral ore-forming process and was gradually develped .
     At present, SEDEX-type deposit (Sedimentary Exhalative Deposit) and MVT-type deposit (Mississippi Valley-type) are the main objects which are associated with basin and occur in a series of carbonate rocks and siliciclastic rocks and have no significant volcanism.Another object is volcanic deposit in which VHMS-type(Volcanic Hosted Massive Sulfide) deposit is important. This paper summarizes development process and the trend of numerical modeling in solid mineral hydrothermal ore-forming system,in addition, implementation steps and main geologic factors that be always included in models are introdcued and major softwares such as HYDROTHERM、ANSYS、FLAC are presented,then,domestic researchs are generalized.
     In this paper ,a distinct element finite difference model by software HYDROTHERM of the tin polymetallic hydrothermal deposits in Laochang-Kafang ore field in Gejiu Mining district is constructed to simulate the geologic process of magmatic hydrothermal system.The simulation results well reflect the evolution of magmatic hydrothermal system, and a series of sensitivity analysis are conducted to determine the role and impact of various factors in the evolution of hydrothermal system.In additon,a finite element model by software ANSYS is established to demonstrate thermal stress of this magmatic system, which is a type of geo-stress but is different from tectonic stress,and two models are compared with each other. The followings are the results:
     (1)The evolution of magmatic hydrothermal system could last more than 10,000 years after the invasion of Lao-Ka granite ,in which the temperature field and flow field can be maintained until the late stage of the system,while the hydropressure filed is only kept for about 5,000years as it fades rapidly to hydrostatic pressure much more.
     (2)The evolution of temperature field indicate that the silicate phase of mineralization with a high temperature may be sustained for less than 2000 years and the contact area between granite and carbonate rocks is the zone of action;the oxide phase and sulfide phase with a medium temperature have a duration of nearly 20,000 years and could extend to 700~1000 meters from the location of granite;the carbonate mineralization stage could last until the end of hydrothermal system and could reach nearly 3,000 meters away from the granite.
     (3)The evolution of hydro-pressure field shows that the existence of zones with high permeability and high pressure by water and steam gathering is favour of mineralization,for it is favorable for metallogenic pressure to be formed in a wider area and to be sustained for a longer period.
     (4)The evolution of the flow field is most complex and can be divided into four stages in accordance with driving mechanisms and flow patterns:1、(less than 100 years)During the initial stage of hydrothermal system,vertical flow is the main flow pattern and hydro-pressure is the main driver for fulid flow.The fluid mass flow rate is about 0.1~0.5gs-1cm-2 in strata and ten times the number of it in faluts.2、(100~5,000 years)Fluid begin to flow downward in some faults and the convection forms nearby faults gradually,during this stage, fluid flow is to some extent controlled through density difference casued by temperature change and flow rate decreased significantly during the transition process from the first stage to this stage.3、(5,000~50,000 years) The convection in the area between two faults appears and the density difference become the main driver for fluid flow as the hydro-pressure has been recovered to hydrostatic pressure at this time.From the medium term of the second stage to this one, fluid mass flow rate is 0.1~0.3 gs-1cm-2 in the strata and about 1~2 gs-1cm-2 in the faults. 4、(50,000 years~the end)The flow field declines gradually during which the convection disappear first and following which vertical flow in faults and lateral flow between two fauts fade both.
     (5)Faults play an important role on the evolution of the temperature field and fluid field.Some faults provide the necessary paths for the downward movement of precipitation water ,in addition, the distribution and composition of faults control the fluid flow rate,flow direction and flow pattern(convection or advection) and affect the temperature distribution indirectly.Convection is likely to occur around the faults which break through granite rock ,and also appear in the zone between two faults which may be sustained for about several ten thousand years and probably is the reason why mineral deposits distribute in the zone between two faults as well.The lateral flow distance can be increased by the fracture on the granite’s side and fluid mixing seems more likely to occur in the zone between the fracture and granite rock.The attitude of fault also affect the flow field and temperature for that convection is more appropriate to appear nearby vertical faults.
     (6)Permeability restricts the range and velocity of fluid flow ,as the flow rate in high permeability zone is significantly higher than that in relatively low permeability area and con- vection and fluid mixing can easily occur in the interface of upper high permeability stratum and lower relatively low permeability stratum that may be a favorable zone for mineralization.
     (7)A simple change of granite invasion depth has no significant effect on the trend of hydrothermal system evolution, while the increase of granite initial pressure would like to enhance the hydro-pressure in stratum during the early stage of hydrothermal system.Both sides of the upper area of granite salient are favorable for convection and mineralization.
     (8)The boundary of low permeability zone has a higher seepage rate that indicate the transformation effect on basalt-related deposit by granite-related hydrothermal fluid should be considered.
     (9)The comparative results of HYDROTHERM hydrothermal model and ANSYS thermal stress model show that fluid flow directly control the evolution of temperature field ,therefore sole quantitative discussion on temerpature field or flow field is not reasonable.
     (10)Thermal stress can be achieved to hundreds of MPa due to magmatism in this area and therefore the geo-stress effect on hydrothermal system including both tectonic stress and thermal stress should be considered in the future work to implement a coupling modeling of deformation and fluid and heat.
     Numerical simulation of hydrothermal ore-forming system has a bright prospect and will be fully applied to mineral exploration in the future, domestic geologists brought numerical simulation into the research of ore-forming process as early as 90’s of 20th century ,but most are simple applications on specific instances and no comprehensive research and professional simulation software are developed and therefore urgent attension is needed.
引文
[1] Bruce G H, Peaceman D W, Richford A A. Calculations of Unsteady-state Gas Flow Through Porous Media[J]. AIME. 1953, 198: 79-92.
    [2] West W J, Garvin W W, Sheldon J W. Solution of the Equations and Unsteady-State Two-Phase Flow in Oil Reservoirs[J]. AIME. 1954, 201: 217.
    [3] Stallman R W. Use of numerical methods for analyzing data on ground water levels[J]. Internat. Assoc. Sci. Hydrology Pub. 1956, 41: 227-231.
    [4] Durlofsky L J. Modeling fluid flow through complex reservoir beddings[Z]. Anaheim, CA, United States : Society of Petroleum Engineers of the American Institute of Mining, Metallurgical and Petroleum Engineers (AIME), Dallas, TX, 1991.
    [5] Lin G, Nunn J A, Deming D. Thermal buffering of sedimentary basins by basement rocks: implications arising from numercial simulations[J]. Petroleum Geoscience. 2000, 6: 299-307.
    [6] Matthai S K, Nick H M. Upscaling two-phase flow in naturally fractured reservoirs[J]. American Association of Petroleum Geologist Bulletin. 2009, 93(11): 1621-1632.
    [7] Matthai S K, Geiger S, Robert S G, et al. Numerical simulation of multi-phase fluid flow in structurally complex reservoirs (in Structurally complex reservoirs)[J]. Geological Society Special Publications. 2007, 292: 405-429.
    [8] Prevost M, Lepage F, Durlofsky L J, et al. Unstructured 3D gridding and upscaling for coarse modelling of geometrically complex reservoirs[J]. Petroleum Geoscience. 2005, 11: 339-345.
    [9] Tuncay K, Park A J, Payne D F, et al. Three-dimensional forward modeling of naturally fractured reservoir formation[Z]. American Association of Petroleum Geologists , 1999.
    [10] Roth W H, Kalsi G, Papastamatiou O, et al. Numerical modelling of fault propagation in soils[Z]. A. A. Balkema, Rotterdam, 1982.
    [11] Cundall P A. Distinct element models of rock and soil structure[Z]. Allen & Unwin, London: 1987.
    [12] Hobbs B E. A mechanical interpretation of rate and state dependent constitutive laws for rock friction[Z]. Hobart, Tasmania, Australia: 1990.
    [13] Zhao C, Hobbs B E, Ord A, et al. Phenomenological modelling of crack generation in brittle crustal rocks using the particle simulation method[J]. Journal of Structural Geology. 2007, 29(6): 1034-1048.
    [14] Ralser S, Hobbs B, Ord A. Computer modelling of microfabric development in polycrystalline aggregates[Z]. Mt. Buffalo, Australia : Geological Society of Australia, Sydney, N.S.W., 1987.
    [15] Zhang Y, Hobbs B E, Ord A, et al. Computer simulation of single-layer buckling[Z]. Pergamon,Oxford-New York, 1996.
    [16] Jensen L A, Paterson S R, Hobbs B E, et al. Numerical modeling of temperature effects on elasto-viscous folding[Z]. Geological Society of America, 2003.
    [17] Hobbs B E, Regenauer-Lieb K, Ord A. The thermodynamics of folding[Z]. Townsville, Queensl., Australia: James Cook University of North Queensland, Geology Department, 2005.
    [18] Jensen L A, Paterson S R, Hobbs B E, et al. Temperature as a first-order control of elasto-viscous folding; implications for modeling and field studies[Z]. International Geological Congress, 2004.
    [19] Biot M A. Foldding of A Layered Viscoelastic Medium Derived From An Exact Stability Theory of A Continuum Under Initial Stress[J]. Quarterly Of Applied Mathematics. 1959, 17(2): 185-204.
    [20] Hobbs B, Regenauer-Lieb K, Ord A. Thermodynamics of folding in the middle to lower crust[J]. Geological Society Of America. 2007, 35(2): 175-178.
    [21] Hobbs B, Regenauer-Lieb K, Ord A. Folding with thermal-mechanical feedback[J]. Journal of Structural Geology. 2008, 30(12): 1572-1592.
    [22] Hobbs B E, Ord A. Numerical simulation of shear band formation in a frictional-dilational material[Z]. Springer-Verlag, Berlin - Heidelberg - New York, 1989.
    [23] Ord A, Hobbs B, Regenauer-Lieb K. Shear band emergence in granular materials; a numerical study[J]. International Journal for Numerical and Analytical Methods in Geomechanic. 2007, 31(3): 373-393.
    [24] Harrison T M, Lovera O M, Grove M. New insights into the origin of two contrasting Himalayan granite belts[J]. Geology. 1997, 25(10): 899-902.
    [25] Matthai S K, Fischer G. Quantitative modeling of fault-fluid-discharge and fault-dilation-induced fluid-pressure variations in the seismogenic zone[J]. Geology. 1996, 24(2): 183-186.
    [26] Boone T J, Ingraffea A R. A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media[J]. International Journal for Numerical and Analytical Methods in Geomechanics. 1990, 14(1): 27-47.
    [27] Mcpherson B J, Boutt D F. Analysis of the role of fluids in causing fractures in the Spraberry Trend,Midland Basin[J]. Geofluids. 2007, 7: 415-426.
    [28] Fehn U, Cathles L M. Hydrothermal convection at slow-spreading mid-ocean ridges[Z]. Durham, United Kingdom: Elsevier, Amsterdam, 1979.
    [29] Molson J W, Yang J. Finite element modeling of mineral diagenesis induced by hydrothermal circulation in oceanic crust (in Water-rock interaction)[Z]. International Symposium on Water-Rock Interaction, 2007.
    [30] Davis E E, Chapman D S, Forster C B. Observations concerning the vigor of hydrothermal circulation in young oceanic crust[J]. Journal of Geophysical Research. 1996, 101: 2927-2942.
    [31] Williams C F, Narasimhan T N, Anderson R N, et al. Convection in the oceanic crust; simulation of observations from Deep Sea Drilling Project Hole 504B, Costa Rica Rift[J]. Journal of Geophysical Research. 1986, 91: 4877-4889.
    [32] Junwen C, Jinsong S, Pengwu L, et al. Numerical Modeling of Basin-Range Tectonics Related to Continent-Continent Collision[J]. Acta Geologica Sinica(English Edition). 2005, 79(1): 24-35.
    [33] Hooks B P, Enkelmann E, Koons P O, et al. 3D thermomechanical modeling of the St Elias tectonic aneurysm[Z]. Geological Society of America , 2009.
    [34] Hooks B P, Koons P O, Upton P. Modern tectonics of Southern Alaska and implications to the Acadian Orogeny[Z]. 2008: 41.
    [35] Zhang Y, Sorjonen-Ward P, Ord A. Fluid Flow during Deformation Associated with Structural Closure of the Isa Superbasin at 1575 Ma in the Central and Northern Lawn Hill Platform,Northern Australia[J]. Economic Geology And The Bulletin Of The Society Of Economic Geologists. 2006, 101: 1293-1312.
    [36] Poppelreiter M, Balzarini M A, De Sousa P, et al. Structural control on sweet-spot distribution in a carbonate reservoir:Concepts and 3-D models(Cogollo Group,Lower Cretaceous ,Venezuela)[J]. AAPG Bulletin. 2005, 89(12): 1651-1676.
    [37] Jr. Sharp J M, Fenstemaker T R, Simmons C T, et al. Potential Salinity-Driven Free Convection in a Shale-Rich Sedimentary Basin[J]. AAPG Bulletin. 2001, 85(12): 2089-2110.
    [38] Applod M S, Garven G. The hydrology of ore formation in the Southeast Missouri District; numerical models of topography-driven fluid flow during the Ouachita Orogeny[J]. Economic Geology And The Bulletin Of The Society Of Economic Geologists. 1999, 94: 913-936.
    [39] Person M, Garven G. A sensivity study of the driving forces on fluid flow during continental-rift basin evolution[J]. Geological Society Of America Bulletin. 1994, 106: 461-475.
    [40] Fisher A T, Becker K. Heat flow, hydrothermal circulation and basalt intrusions in the Guaymas Basin, Gulf of California[Z]. Elsevier, Amsterdam, 1991.
    [41] White W S. A paleohydrologic model for mineralization of the White Pine copper deposit, northern Michigan[J]. Economic geology And The Bulletin Of The Society Of Economic Geologists. 1971, 66: 1-13.
    [42] Nicholas H S O, Mclellan J G, Hobbs B E, et al. Numerical Models of Extensional Deformation, Heat Transfer, and Fluid Flow across Basement-Cover Interfaces during Basin-Related Mineraliztion[J]. Economic Geology And The Bulletin Of The Society Of Economic Geologists. 2006, 101(1): 1-31.
    [43] Chongbin Z, Hobbs B E, Hornby P, et al. Theoretical and numerical analyses of chemical-dissolution front instability in fluid-saturated porous rocks[J]. International Journal for Numerical and Analytical Methods in Geomechanics. 2008, 32(9): 1107-1130.
    [44] Raffensperger J P, Garven G. Quantitative evaluation of coupled hydrologic and geochemical processes and the formation of unconformity-type uranium deposits in Precambrian basins[Z]. Baltimore, MD, United States: 1991.
    [45] Murphy F C, Ord A, Hobbs B E, et al. Targeting Stratiform Zn-Pb-Ag Massive Sulfide Deposits in Ireland through Numerical Modeling of Coupled Deformation, Thermal Transport, and Fluid Flow[J]. Economic Geology And The Bulletin Of The Society Of Economic Geologists. 2008, 103: 1437-1458.
    [46] Garven G. The role of regional groundwater flow in the formation of sediment-hosted ore deposits[Z]. Geological Society of America, 2007.
    [47] Garven G, Freeze R A. Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits; 2, Quantitative results[J]. American Journal of Science. 1984, 284(10): 1125-1174.
    [48] Garven G, Freeze R A. Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits;1,Mathematical and numerical model[J]. American Journal of Science. 1984, 284(10): 1085-1124.
    [49] Cathles L M, Smith A T. The effects of compaction-driven fluid flow on the thermal history of basins[Z]. Geological Society of America (GSA), Boulder, CO, 1981.
    [50] Garven G. The role of regional fluid flow in the genesis of the Pine Point Deposit, Western Canada sedimentary basin-A Reply[J]. Economic Geology And The Bulletin Of The Society Of Economic Geologists. 1986, 81(4): 1015-1020.
    [51] Yang J, Large R R, Bull S, et al. Basin-Scale Numerical Modeling to Test the Role of Buoyancy-Driven Fluid Flow and Heat Transfer in the Formation of Stratiform Zn-Pb-Ag Deposits in the Northern Mount Isa Basin[J]. Economic Geology And The Bulletin Of The Society Of Economic Geologists. 2006, 101: 1275-1292.
    [52] Ranganathan V, Hanor J S. Thermal and salinity-driven convection around salt domes[Z]. Phoenix, AZ, United States: Geological Society of America (GSA), Boulder, CO, 1987.
    [53] Holzbecher E, Kohfahl C, Mazurowski M, et al. The sensitivity of thermohaline groundwater circulation to flow and transport parameters; a numerical study based on double-diffusive convection above a salt dome[J]. Transport in Porous Media. 2010, 83(3): 771-791.
    [54] Nunn J A, Cathles L M. Global basins research network; advancing the science of fluid flow prediction in sedimentary basins[J]. AAPG Bulletin. 1998, 82(10): 1947-1948.
    [55] Cathles L M. A simple analytical method for calculating temperature perturbations in a basin caused by the flow of water through thin, shallow-dipping aquifers[Z]. Oxnard, CA, United States: Pergamon, Oxford-New York-Beijing, 1987.
    [56] Goncalves J, Violette S, Robin C, et al. 3-D modelling of salt and heat transport during the 248 m.y. evolution of the Paris basin:diagenetic implications[J]. Bulletin de la Societe Geologique de France. 2003, 174(5): 429-439.
    [57] Cornelius R R, Erendi A, Cathles L M. Automated 3D inference of salt movements in the Gulf of Mexico[Z]. American Association of Petroleum Geologists , 2000.
    [58] Schardt C, Yang J, Large R R. Formation of massive sulfide ore deposits on the seafloor; constraints from numerical heat and fluid flow modeling[J]. Journal of Geochemical Exploration. 2003, 78-79: 257-259.
    [59] Yang J. Full 3-D numerical simulation of hydrothermal fluid flow in faulted sedimentary basins; example of the McArthur Basin, northern Australia[Z]. Journal of Geochemical Exploration, 2006.
    [60] Anderson G M, Garven G. Sulfate-sulfide-carbonate associations in mississippi valley-type lead-zinc deposits[J]. Economic Geology And The Bulletin Of The Society Of Economic Geologists. 1987, 82: 482-488.
    [61] Garven G, Appold M S, Topygina V I, et al. Hydrogeologic modeling of the genesis ofcarbonate-hosted lead-zinc ores[J]. Hydrogeology Journal. 1999(7): 108-126.
    [62] Garven G, Schardt C, Kelley K D, et al. Reactive flow modeling of fluid mixing & ore genesis at Red Dog, Alaska[Z]. Geological Society of America, 2007.
    [63] Appold M S, Garven G. Reactive Flow Models of Ore Formation in the Southeast Missouri District[J]. Economic Geology And The Bulletin Of The Society Of Economic Geologists. 2000, 95: 1605-1626.
    [64] Wilson A M, Boles J R, Garven G. Calcium mass transport and sandstone diagenesis during compaction-driven flow:Stevens Sandstone,San Joaquin basin,California[J]. GSA Bulletin. 2000, 112(6): 845-856.
    [65] Nicholas H S O, Cleverley J S, Mark G, et al. Modeling the Role of Sodic Alteration in the Genesis of Iron Oxide-Copper-Gold Deposits, Eastern Mount Isa Block, Australia[J]. Economic Geology And The Bulletin Of The Society Of Economic Geologists. 2004, 99: 1145-1176.
    [66] Cathles L M. Fluid flow modeling of Kuroko deposits[Z]. Cambridge, MA, United States: Pa. State Univ., University Park, PA, 1980.
    [67] Barrie C T, Cathles L M, Erendi A. A deep ultramafic sill heat and fluid flow model for the Kidd Creek volcanic-associated massive sulfide deposit[Z]. Ottawa, ON, Canada: Geological Association of Canada, Waterloo, ON, 1997.
    [68] Geiger S, Driesner T, Matthaei S K, et al. Combining control volume finite element methods with realistic fluid properties for high-resolution simulations of multiphase flow in magmatic-hydrothermal systems[Z]. Davos, Switzerland: Pergamon, Oxford, 2002.
    [69] Heinrich C A, Driesner T, Geiger S, et al. Modelling magmatic-hydrothermal ore systems; fluid data and process simulation[Z]. Perth, West. Aust., Australia: University of Western Australia, Geology Department and Extension Service, Perth, West. Aust., 2004.
    [70] Miller J M, Wilson C J L. Stress Controls on Intrusion-Related Gold Lodes[J]. Economic Geology And The Bulletin Of The Society Of Economic Geologists. 2004, 99(941-963).
    [71] Schardt C, Large R R. New insights into the genesis of volcanic-hosted massive sulfide deposits on the sea-floor from numerical modeling studies[J]. Ore Geology Review. 2009, 35: 333-351.
    [72] Zhang Y, Lin G, Paul R, et al. Numerical modelling of deformation and fluid flow in the Shuikoushan district, Hunan Province, South China[J]. Ore Geology Review. 2007, 31: 261-278.
    [73] Oliver N H S, Mclellan J G. Numerical Models of Extensional Deformation, Heat Transfer, and[J]. Economic Geology. 2006, v.101: 1-31.
    [74] Driesner T, Geiger S. Numerical Simulation of Multiphase Fluid Flow in[J]. Reviews in Mineralogy & Geochemistry. 2007, v.65: 187-212.
    [75]於崇文.成矿作用动力学—理论体系和方法论[J].地学前缘(中国地质大学,北京). 1994, 1(3~4): 54-73.
    [76]方金云,姚书振,胡光道等.成矿过程三维并行模拟技术探讨[J].地球科学——中国地质大学学报. 2001, 26(2): 185-189.
    [77] Guozhang G, Qijiang R, Changquan F. Computer Simulation for Hydrothermal Fluid Imgration During Mineralization of Dexing Pophyry Copper Deposit,Jiangxi Province[J]. Geochimica. 1994, 23(4): 402-410.
    [78] Qijiang R, Gouzhang G, Wenyi X. Computer Simulation of Heat and Fluid Transport in Ore-Forming Process in Shaxi Porphyry Copper(Gold) Deposits,Anhui Province[J]. Journal Of Nanjing University(Natural Sciences). 1994, 30(2): 295-303.
    [79] Wenyi X, Qijiang R, Zhaowen X, et al. Numercial Modeling of Evolution of Ore Forming Fluid in the Zijinshan Copper Gold Deposit,Fujian Province[J]. Mineral Deposits. 1997, 16(2): 163-168.
    [80] Lin X, Bin S, Tao G, et al. Numerical Modeling On Water-Rock Interaction of Ore Fluid of Tongshankou Cu(Mo) Deposit[J]. Geology-geochemistry. 2003, 31(3): 6-12.
    [81] Rui Yan Y, Dongsheng M, Zhengyu B. Thermal Field and Fluid Transport Simulation Of Animony Deposits[J]. Science in China(Series D:Earth Sciences). 2006, 36(8): 698-705.
    [82] Wenyi X, Zengqian H, Zhusen Y, et al. Numerical Simulation of Fluid Migration during Ore Formation of Carboniferous Exhalation-Sedimentary Massive Sulfide Deposits in the Tongling District, Anhui Province[J]. Acta Geologica Sinica(English Edition). 2005, 79(1): 98-105.
    [83] Liangming L, Shenglin P, Yanhua Z. Numerical Geodynamic Modelling of Coupled Mechano-Thermo-Hydrological Processes and Its Application in Predictive Exploration In The Fenghuangshan Ore Field ,Tongling[J]. Geotectonica et Metallogenia. 2005, 29(2): 164-173.
    [84] Rao C. Numerical Simulation of Heat and Liquid Transfer in the Hydrothermal Ore-forming Progresses[D]. Cheng Du: Chengdu University of Technology, 2007.
    [85]贝尔J.多孔介质流体动力学[M].北京:中国建筑工业出版社, 1983: 20-144.
    [86]王经.传热学与流体力学基础[M].上海:上海交通大学出版社, 2007: 3-15.
    [87]张天孙,卢改林.传热学[M].北京:中国电力出版社, 2006: 2-3.
    [88]李长青,李采,郑跃军. HYDROTHERM软件简介译文[Z].
    [89]王洪纲.热弹性力学概论[M].北京:清华大学出版社, 1989.
    [90] Lapidus L, Pinder G F. Numerical Solution of Partial Differential Equations in Sciences and Engineering[M]. New York: Wiley and Sons, 1982.
    [91] Kipp K L, Hsieh P A, Hayba D O, et al. A simulator of two-phase ground-water flow and heat transport[J]. International Ground Water Modeling Center Newsletter. 2005, 23(3): 3.
    [92]王富耻,张朝晖. ANSYS 10.0有限元分析理论与工程应用[M].北京:电子工业出版社, 2006.
    [93] Zhu Y, Ai Y, Zhao Y. Some Problems Concerning The Formation of Magmatic Hydrothermal Deposits[J]. Mineral Deposits. 1995, 14(4): 380-384.
    [94] Tiejun W, Fang Y. Ore Fluid Evolution and Ore Prediction of Magmatic Hydrothermal Gold Deposits in Jiaodong Area[J]. Conributions To Geology and Mineral Resources Research. 2002, 17(3): 169-174.
    [95] Hayba D, Ingebrisen S. Multiphase groundwater fl ow near cooling plutons[J]. J Geophys Res. 1997, 102: 12235-12252.
    [96] Geiger S, Driesner T, Heinrich C A, et al. Coupled heat and salt transport around cooling magmatic intrusions[J]. Geochimica et Cosmochimica Acta Supplement. 2005, 69(10): A739.
    [97]杨宗喜.云南个旧卡房铜矿地质地球化学与矿床成因探讨[D].中国地质大学(北京), 2009.
    [98]秦德先,黎应书.个旧锡铜多金属矿床地质研究[M].北京:科学出版社, 2008.
    [99]薛传东.个旧超大型锡铜多金属矿床时空结构模型[D].昆明:昆明理工大学, 2002.
    [100]陈守余,赵鹏大,张寿庭等.个旧超大型锡铜多金属矿床成矿多样性与深部找矿[J].地球科学—中国地质大学学报. 2009, 34(2): 319-324.
    [101]治金工业部西南治金地质勘探公司.个旧锡矿地质[M].治金工业出版社, 1984.
    [102]於崇文,唐元骏,石平方等.云南个旧锡-多金属成矿区内生成矿作用的动力学体系[M].中国地质大学出版社, 1988.
    [103]张燡敏.个旧东区玄武岩型锡铜多金属矿床成矿特征与成矿预测[D].中国地质大学(北京), 2007.
    [104]罗君烈.滇东南锡、钨、铅锌、银矿床的成矿模式[J].云南地质. 1995, 14(4): 319-332.
    [105] Abramov O, Kring D A. Numerical modeling of an impact-induced hydrothermal system at the Sudbury crater[J]. Journal of Geopysical Research. 2004, 109: 1-16.
    [106] Schardt C, Yang J, Large R. Numerical Heat and Fluid-Flow Modeling of the Panorama Volcanic-Hosted Massive Sulfide District ,Western Australia[J]. Economic Geology And The Bulletin Of The Society Of Economic Geologists. 2005, 100: 547-566.
    [107] Jiang Z, Oliver N H S, Barr T D, et al. Numerical modeling of fault-controlled fluid flow in the genesis of tin deposits of the Malage ore field, Gejiu mining district, China[J]. Economic Geology And The Bulletin Of The Society Of Economic Geologists. 1997, 92: 228-247.
    [108]张朝晖. ANSYS热分析教程与实例解析[M].中国铁道出版社, 2007.
    [109]水利水电科学研究院等.岩石力学参数手册[M].水利水电出版社, 1991.
    [110]汤大明,曾纪全,胡应德等.关于泊松比的试验和取值讨论[J].岩石力学和工程学报. 2001, 20(10).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700