硫化氢影响同型半胱氨酸诱导心肌细胞H9C2基质金属蛋白酶-2的酶原活化作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【背景及目的】
     至今心房颤动发生和维持的确切机制尚未完全研究清楚,心房组织重构是导致房颤持续发生的主要原因,其突出表现为组织纤维化。胶原代谢异常是组织纤维化病变的重要病理改变。基质金属蛋白酶(Matrix Metalloproteinases, MMPs)是体内调节胶原代谢的主要蛋白酶家族,是心房纤维化的主导因素之一。已有研究表明同型半胱氨酸(Homocysteine, Hcy)参与房颤的发生及发展并增加房颤合并血栓形成的风险,已证实Hcy能调节MMPs的活性,然而Hcy活化MMPs的机制尚未深入,其代谢产物硫化氢(Hydrogen Sulfide, H2S)的相关影响作用未见报道。由此我们通过体外培养大鼠心肌细胞,观察检测不同浓度Hcy(0~100μmol/L)以及H2S(0.1、1.0、10mmol/L)分别对心肌细胞MMP-2分泌或活化的影响,并首次探讨研究两者的联合作用,旨在通过深入研究Hcy-H2S的代谢调节对MMPs的活化作用,启发改善心肌组织纤维化的新思路。
     【方法】
     1.检测Hcy和H2S对心肌细胞H9C2的细胞活性影响,将不同浓度Hcy(0~1000μmol/L)和H2S(0.1、1.0、10mmol/L)分别作用体外培养的H9C2心肌细胞6h和24h,利用四甲基偶氮唑盐比色法(MTT法)检测H9C2细胞活性。
     2.检测Hcy(0~100μmol/L)影响H9C2细胞分泌的MMP-2总浓度和酶活性的调节作用,作用6h和24h,应用酶联免疫吸附法(ELISA)、明胶酶谱分析等技术检测MMP-2的表达和酶活性。
     3.以NaHS(0.1、1.0、10mmol/L)为H2S的外源性供体,作用H9C2细胞6h和24h,利用明胶酶谱分析技术检测其对MMP-2酶活性的调节作用。
     4. Hcy(0~100μmol/L)和H2S(0.1、1.0、10mmol/L)共同作用H9C2细胞6h和24h,应用MTT和明胶酶谱法检测细胞活性改变和MMP-2活化程度变化情况。
     【结果】
     1. Hcy在1000μmol/L超高浓度时对H9C2细胞表现显著的毒性作用(P<0.01),而在本试验应用浓度范围(0~100μmol/L)对细胞活性无明显影响;H2S(0.1、1.0、10mmol/L)以及H2S(0.1、1.0、10mmol/L)和Hcy(0~100μmol/L)共同作用均不影响细胞活性,表明本试验药品的应用浓度对H9C2细胞生长活性无明显影响作用。
     2. Hcy(0~100μmol/L)浓度依赖性促进H9C2分泌MMP-2,呈浓度依赖性且时间依赖性地上调H9C2细胞MMP-2的酶原活化。
     3. H2S(0.1、1.0、10mmol/L)浓度依赖性地促进MMP-2活化。
     4. Hcy和H2S共同作用组比较平行Hcy组上调H9C2的MMP-2酶活性,表明H2S增强Hcy的MMP-2酶原活化作用。
     【结论】
     在0~100μmol/L范围内同型半胱氨酸浓度依赖性上调H9C2细胞MMP-2的合成分泌,浓度依赖性且时间依赖性地促进MMP-2酶原活化。硫化氢(0.1、1.0、10mmol/L)浓度依赖性地上调MMP-2酶原活化,并且协同促进同型半胱氨酸活化MMP-2,提示同型半胱氨酸诱导心肌细胞的MMP-2活化作用可能与本身代谢或者硫化氢有关。
【Backgroud and Objectives】
     Precise mechanisms that lead to the onset and persistence of atrial fibrillation have not completely been elucidated. Atrial structural remodeling was identified as the main mechanism for AF persistence, confirming predominant role of atrial fibrosis. The interplay between cardiac matrix metalloproteinases (MMPs) and their endogenous inhibitors, tissue inhibitors of MMPs (TIMPs), is thought to be critical in atrial fibrosis. Elevated homocysteine has been suggested to play a role in the AF pathogenesis and to exhibit an association with the presence of LA thrombus in AF. In animal models and in vitro human experiments it has been shown that MMPs are activated by Hcy in endothelial cells, arterial media and left ventrical. However, Whether Hcy itself or Hcy-related substances such as hydrogen sulfide (H2S) is the culprit, and what the exact pathogenic mechanism of Hcy-induced MMPs activation could be, remain to be elucidated. Therefore we have analyzed the activation of Hcy and H2S on MMP-2 as well as the effects of H2S on the activity of Hcy-induced MMP-2 in cultured rat cardiomyocytes.
     【Methods】
     H9C2 cells (rat cardiomyoblast cells) incubated with Hcy and NaHS (H2S donor) were analyzed for cell viability. Furthermore, the effects of different homocysteine levels (0~100μmol/L) on MMP-2 production in cultured rat cardiomyocytes were examined using gelatin zymography and ELISA. Then the effects of different H2S concentrations (0.1、1.0、10mmol/L) on MMP-2 activity and the activation of hyperhomocysteinemia (homocysteine concentrations of 10μmol/L~100μmol/L)-induced MMP-2 in cultured rat cardiomyocytes were evaluated by gelatin zymography. All treatments sustained in the serum-free medium for 6h and 24h.
     【Results】
     1. Exposing H9C2 cardiomyocytes to Hcy (0~1000μmol/L) for up to 24h, at the concentration of 1000μmol/L, Hcy reduced cell viability, assessed by MTT. Incubation with 0~100μmol/L Hcy had no effects on cardiomyocytes viability.
     2. Hcy (10μmol/L~100μmol/L) significantly increased the production of MMP-2 as determined by ELISA in concentration-dependent manner. Hcy (2.5μmol/L~100μmol/L) significantly upregulated the activity of MMP-2 in H9C2 for 6h and 24h, in concentration-and time-dependent fashion.
     3. H2S (0.1、1.0、10mmol/L) significantly increased the activity of MMP-2 in H9C2 as assessed by zymography in concentration-dependent fashion.
     4. The activation of hyperhomocysteinemia (homocysteine concentrations of 10μmol/L~100μmol/L)-induced MMP-2 in cultured rat cardiomyocytes was significantly stronger in the presence of H2S (1.0mmol/L).
     【Conclusions】
     Homocysteine upregulates the MMP-2 activity in concentration- and time-dependent manner, the effect being stronger in the presence of H2S (1.0mmol/L), suggesting that Hcy may modulate the extracellular matrix remodeling, in part, by generating H2S.
引文
1. Lin CS, P CH. Regulatory mechanisms of atrial fibrotic remodeling in atrialfibrillation. Cell Mol Life Sci. 2008;65(10):1489-1508.
    2. KT W. Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol. 1989;13:1637-1652.
    3. Fedak PW, Verma S, Weisel RD, et al. Cardiac remodeling and failure From molecules to man (Part II). Cardiovasc Pathol. 2005;14(2):49-60.
    4. Furberg CD, Psaty BM, Manolio TA, et al. Prevalence of atrial fibrillation in elderly subjects (the Cardiovascular Health Study). Am J Cardiol. 1994;74(3):236-241.
    5. Allessie MA, Boyden PA, Camm AJ, et al. Pathophysiology and prevention of atrial fibrillation. Circulation. 2001;103(3):769-777.
    6. Boldt A, Wetzel U, Lauschke J, et al. Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease. Heart. 2004;90(4):400-405.
    7. Luo MH, Li YS, Y KP. Fibrosis of Collagen I and Remodeling of Connexin 43 in Atrial Myocardium of Patients with Atrial Fibrillation. Cardiology. 2007;107(4):248-253.
    8. Kostin S, Klein G, Szalay Z, et al. Structural correlate of atrial fibrillation in human patients. Cardiovasc Res. 2002;52(2):361-379.
    9. Li D FS, Leung TK,et al. Promotion of atrial fibrillation by heart failure in dogs:atrial remodeling of a different sort. Circulation. 1999;100(1):87-95.
    10. Verheule S, Sato T, Everett T, et al. Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGFbeta1. Circ Res. 2004;94(11):1458-1465.
    11. Spach MS, J ME. Initiating reentry: the role of nonuniform anisotropy in small circuits. J Cardiovasc Electrophysiol. 1994;5(2):182-209.
    12. Tanaka K, Zlochiver S, Vikstrom KL, et al. The spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure. Circ Res. 2007;101(8):839-847.
    13. Spach MS, B JP. Microfibrosis produces electrical load variations due to loss of side-to-side cell connections: a major mechanism of structural heart disease arrhythmias. Pacing Clin Electrophysiol. 1997;20(2):397-413.
    14. E. H. Matrix metalloproteinases: Their biological functions and clinical implications. Bratisl Lek Listy. 2005;106(3):127 - 132.
    15. Chow AK, Cena J, S R. Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. Br J Pharmacol. 2007;152(2):189-205.
    16. Creemers EE, Cleutjens JP, Smits JF, et al. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ Res. 2001;89(3):201-210.
    17. Nakano Y, Niida S, Dote K, et al. Matrix metalloproteinase-9 contributes to human atrial remodeling during atrial fibrillation. J Am Coll Cardiol. 2004;43(5):818-825.
    18. Xu J, Cui G, Esmailian F, et al. Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation. Circulation. 2004;109(3):363-368.
    19. Gramley F, Lorenzen J, Plisiene J, et al. Decreased plasminogen activator inhibitor and tissue metalloproteinase inhibitor expression may promote increased metalloproteinase activity with increasing duration of human atrial fibrillation. J Cardiovasc Electrophysiol. 2007;18(10):1076-1082.
    20. Kato K, Oguri M, Hibino T, et al. Genetic factors for lone atrial fibrillation. Int J Mol Med. 2007;19(6):933-939.
    21. AnnéW, Willems R, Holemans P, et al. Selfterminating AF depends on electrical remodeling while persistent AF depends on additional structural changes in a rapid atrially paced sheep model. J Mol Cell Cardiol. 2007;43(2):148-158.
    22. Visse R, N H. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases: Structure, Function, and Biochemistry. Circ Res. 2003;92(8):827-839.
    23. Van Wart HE, B-H H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A. 1990;87(14):5578-5582.
    24. Bescond A, Augier T, Chareyre C, et al. Influence of Homocysteine on Matrix Metalloproteinase-2: Activation and Activity. Biochem Biophys Res Commun. 1999;263(2):498-503.
    25. Wang. R. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? FASEB. 2002;16(13):1792-1798.
    26. Chang-qing CHEN, Hong XIN, Y-z ZHU. Hydrogen sulfide: third gaseous transmitter, but with great pharmacological potential. Acta Pharmacol Sin. 2007;28(11):1709-1716.
    27. Fiorucci S, Distrutti E, Cirino G, et al. The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology. 2006;131(1):259-271.
    28. Lin Chang, Bin Geng, Fang Yu, et al. Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids. 2008;34(4):573-585.
    29. Ay H, Arsava EM, Tokg?zoglu SL, et al. Hyperhomocysteinemia is associated with the presence of left atrial thrombus in stroke patients with nonvalvular atrial fibrillation. Stroke. 2003;34(4):909-912.
    30. Marcucci R, Betti I, Cecchi E, et al. Hyperhomocysteinemia and vitamin B6 deficiency: new risk markers for nonvalvular atrial fibrillation? . Am Heart J. 2004;148(3):456-461.
    31. Loffredo L, Violi F, Fimognari FL, et al. The association between hyperhomocysteinemia and ischemic stroke in patients with non-valvular atrial fibrillation. Haematologica. 2005;90(9):1205-1211.
    32. Poli D, Antonucci E, Cecchi E, et al. Culprit factors for the failure of well-conducted warfarin therapy to prevent ischemic events in patients with atrial fibrillation: the role of homocysteine. . Stroke. 2005;36(10):2159-2163.
    33. Shimano M, Inden Y, Tsuji Y, et al. Circulating homocysteine levels in patients with radiofrequency catheter ablation for atrial fibrillation. Euro pace. 2008;10(8):961-966.
    34. Cai BZ, Gong DM, ea Liu Y. Homocysteine inhibits potassium channels in human atrial myocytes. . Clin Exp Pharmacol Physiol. 2007;34(9):851-855.
    35. Sood HS, Cox MJ, T SC. Generation of Nitrotyrosine Precedes Activation of Metalloproteinase in Myocardium of Hyperhomocysteinemic Rats. Antioxid Redox Signal. 2002;4(5):799-804.
    36. Tyagi N, Moshal KS, Lominadze D, et al. Homocysteine-dependent cardiac remodeling and endothelial-myocyte coupling in a 2 kidney, 1 clip Goldblatt hypertension mouse model. Can J Physiol Pharmacol. 2005;83(7):583-594.
    37. Coker ML, Doscher MA, Thomas CV, et al. Matrix metalloproteinase synthesis and expression in isolated LV myocyte preparations. Am J Physiol. 1999;277:H777-H787.
    38. Morgunova E, Tuuttila A, Bergmann U, et al. Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science. 1999;284(5420):1667-1670.
    39. Sheu BC, Hsu SM, Ho HN, et al. A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Res. 2001;16(1):237-242.
    40. Coker ML, Jolly JR, Joffs C, et al. matrix metalloproteinase expression and activity in isolated myocytes after neurohormonal stimulation. Am J Physiol Heart Circ Physiol. 2001;281:H543-551.
    41. Go AS, Hylek EM, Phillips KA, et al. Prevalence of diagnosed atrial fibrillation in adults: National implications for rhythm management and stroke prevention: The anticoagulation and risk factors in atrial fibrillation(ATRIA)study. JAMA. 2001;285(18):2370-2375.
    42. Fuster V, Rydén LE, Cannom DS, et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation-executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients with Atrial Fibrillation). Eur Heart J. 2006;27(16):1979-2030.
    43. R D, V Wagoner. Is homocysteine a mediator of atrial dysfunction or just another marker of endothelial dysfunction? Europace. 2008;10:899-900.
    44. Mazzini MJ, M KM. Pharmacotherapy for atrial arrhythmias: present and future. Heart Rhythm. 2008;5(6):S26-31.
    45. FarréJ, W HJ. Philippe Coumel: a founding father of modern arrhythmology. Europace. 2004;6(5):464-465.
    46. Aldhoon B, Melenovsky V, Peichl P, et al. New insights into mechanisms of atrial fibrillation. Physiol Res. 2009;Epub ahead of print.
    47. WijffelsMC, Kirchhof CJ, Dorland R, et al. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995;92(7):1954-1968.
    48. Aimé-SempéC, Folliguet T, Rücker-Martin C, et al. Myocardial cell death in fibrillating and dilated human right atria. J Am Coll Cardiol. . 1999;34(5):1577-1586.
    49. Yu WC, Lee SH, Tai CT, et al. Reversal of atrial electrical remodeling following cardioversion of long-standing atrial fibrillation in man. Cardiovasc Res. 1999;42(2):470-476.
    50. Mitchell GF, Vasan RS, Keyes MJ, et al. Pulse pressure and risk of new-onset atrial fibrillation. JAMA. 2007;297(7):709-715.
    51. Courtemanche M, Ramirez RJ, N S. Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: insights from a mathematical model. Cardiovasc Res. 1999;42(2):477-489.
    52. Blaauw Y, G?gelein H, Tieleman RG, et al. "Early" class III drugs for the treatment of atrial fibrillation: efficacy and atrial selectivity of AVE0118 in remodeled atria of the goat. Circulation. 2004;110(13):1717-1724.
    53. Tieleman RG, Van Gelder IC, Bosker HA, et al. Does flecainide regain its antiarrhythmic activity after electrical cardioversion of persistent atrial fibrillation? Heart Rhythm. 2005;2(3):223-230.
    54. Chiku T, Padovani D, Zhu W, et al. H2S Biogenesis by Human Cystathionine -γ-Lyase Leads to the Novel Sulfur Metabolites Lanthionine and Homolanthionine and Is Responsive to the Grade of Hyperhomocysteinemia. J Biol Chem. 2009;284(1):11601-11612.
    55. Sipkens JA, Krijnen PA, Meischl C, et al. Homocysteine affects cardiomyocyte viability: concentration-dependent effects on reversible flip-flop, apoptosis and necrosis. Apoptosis. 2007;12(8):1407-1418.
    56. Levrand S, Pacher P, Pesse B, et al. Homocysteine induces cell death in H9C2 cardiomyocytes through the generation of peroxynitrite. Biochem Biophys Res Commun. 2007;359(3):445-450.
    57. Nagai Y, Tsugane M, Oka J, et al. Hydrogen sulfide induces calcium waves in astrocytes Faseb J. 2004;18(3):557-559.
    58. Marín F, Roldán V, Climent V, et al. Is thrombogenesis in atrial fibrillation related to matrix metalloproteinase-1 and its inhibitor, TIMP-1? Stroke. 2003;34(5):1181-1186.
    59. Boixel C, Fontaine V, Rücker-Martin C, et al. Fibrosis of the left atria during progression of heart failure is associated with increased matrix metalloproteinases in the rat. J Am Coll Cardiol. 2003;42(2):336-344.
    60. Li YY, Feng YQ, Kadokami T, et al. Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy. Proc Natl Acad Sci U S A. 2000;97(23):12746-12751.
    61. Zhao X, Zhang LK, Zhang CY, et al. Regulatory Effect of Hydrogen Sulfide on Vascular Collagen Content in Spontaneously Hypertensive Rats. Hypertens Res. 2008;31(8):1619-1630.
    62. Li X, Du J, Jin H, et al. Sodium hydrosulfide alleviates pulmonary artery collagen remodeling in rats with high pulmonary blood flow. Heart Vessels. 2008;23(6):409-419.
    63. Hongfang J, Cong Bailin, Zhao Bin. Effects of hydrogen sulfide on hypoxic pulmonary vascular structural remodeling. Life Sci. 2006;78(12):1299-1309.
    64. Sen U, Vacek TP, Hughes WM, et al. Cardioprotective Role of Sodium Thiosulfate on Chronic Heart Failure by Modulating Endogenous H2S Generation. Pharmacology. 2008;82(3):201-213.
    1. Fiorucci S, Distrutti E, Cirino G, et al. The emerging roles of hydrogen sulfide in the gastrointestinal tract and live.Gastroenterology,2006,131(1):259-271.
    2. Wang R. Two’s company, three's a crowd:can H2S be the third endogenous gaseous transmitter?.FASEB,2002;16(13):1792-1798.
    3. Chen P, Poddar R, Tipa EV, et al. Homocysteine metabolism in cardiovascular cells and tissues: implications for hyperhomocysteinemia and cardiovascular disease.Adv Enzyme Regul,1999,39:93-109.
    4. Geng B, Yang J, Qi Y, et al. H2S generated by heart in rat and its effects on cardiac function.Biophys Res Commun,2004,313(2):362-368.
    5. Zhu YZ, Wang ZJ, Ho P, et al. Hydrogen sulfide and its possible roles in myocardial ischemia in experimental rats.J Appl Physiol,2007,102(1):261-268.
    6. Johansen D, Ytrehus K, Baxter GF. Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury—evidence for a role of KATP channels.Basic Res Cardiol,2006,101:53-60.
    7. Hu X, Li T, Bi S, et al.Possible role of hydrogen sulfide on the preservation of donor rat hearts.Transplant Proc,2007,39(10):3024-3029.
    8. Zhang Z, Huang H, Liu P, et al.Hydrogen sulfide contributes to cardioprotection during ischemia|reperfusion injury by opening KATP channels.Can J Physiol Pharmacol,2007,85(12):1248-1253.
    9. Bian JS, Yong QC, Pan TT, et al. Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes.J Pharmacol Exp Ther,2006,316(2):670-678.
    10. Sivarajah A, McDonald MC, Thiemermann C. The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin,but not ischemia in the rat.Shock,2006,26(2):154-161.
    11. Pan TT, Feng ZN, Lee SW, et al. Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes.Journal of Molecular and Cellular Cardiology,2006,40:119-130.
    12. Hu Y, Chen X, Pan TT, et al. Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and PI3K/Akt pathways.Physiological Change of Voice Eur J Physi,2008,455:607-616.
    13. Pan TT, Neo KL, Hu LF, et al. H2S preconditioning|induced PKC activation regulates intracellular calcium handling in rat cardiomyocytes.Am J Physiol Cell Physiol,2008,294(1):C169-177.
    14. Rossoni G, Sparatore A, Tazzari V, et al.The hydrogen sulphide|releasing derivative of diclofenac protects against ischemia reperfusion injury in the isolated rabbit heart.Br J Pharmacol,2008,153(1):100-109.
    15. Hu LF, Pan TT, Neo KL, et al. Cyclooxygenase-2 mediates the delayed cardioprotection induced by hydrogen sulfide preconditioning in isolated rat cardiomyocytes.P Flugers Arch,2008,455(2):971-978.
    16. Elrod JW, Calvert JW, Morrison J, et al. Hydrogen sulfide attenuates myocardial ischemia reperfusion injury by preservation of mitochondrial function.Proc Natl Acad Sci Proc Natl Acad Sci USA ,2007,104(39):15560-15565.
    17. Sodha NR, Clements RT, Feng J, et al. The effects of therapeutic sulfide on myocardial apoptosis in response to ischemia|reperfusion injury.Eur J Cardiothorac Surg,2008,33(5):906-913.
    18. Haouzi P, Notet V, Chenuel B, et al. H2S induced hypometabolism in mice is missing in sedated sheep.Respir Physiol Neurobiol,2008,160(1):109-115.
    19. Eric B, Mike M, Mark BR. H2S induces a suspended animation|like state in mice.Science,2005,308:518.
    20. Gian PV, Robert S, Binglan Y, et al. Inhaled hydrogen sulfide:A rapidly reversible inhibitor of cardiac and metabolic function in the mouse.Anesthesiology,2008,108:659-668.
    21. Yong QC, Pan TT, Hu LF, et al. Negative regulation of beta|adrenergic function by hydrogen sulphide in the rat hearts.J Mol Cell Cardiol,2008;44(4):701-710.
    22. Geng B, Chang L, Pan C, et al. Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol.Biochem Biophys Res Commun,2004;318(3):756-763.
    23. Lin Chang, Bin Geng, Fang Yu, et al.Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats.Amino Acids,2008,34(4):573-585.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700