黄喉拟水龟和四眼斑水龟线粒体全序列分析及龟鳖类系统发生关系的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脊椎动物线粒体DNA是共价闭合的双链分子,长度约为15~22kb。线粒体因其基因组结构简单,呈母系遗传等特点,已被广泛应用于分析动物个体和动物类群间的系统发生关系。
     龟鳖类是形态学上最特化的一支爬行动物,近年来,以线粒体基因组(mtDNA)为对象研究龟鳖类系统进化被研究者们广泛采用。目前,已测定20种龟鳖类动物的线粒体基因组全序列,这20种动物中,侧颈龟亚目仅1种,曲颈龟亚目19种,涉及到5个科:陆龟科10种,鳖科2种,淡水龟科4种,龟科、平胸龟科和海龟科各1种。除平胸龟和扁陆龟外,其余18种龟鳖类动物的mtDNA的基因排布方式都与典型的脊椎动物线粒体相同,非常保守。
     水龟组(Clemmys complex)由旧大陆潮龟科的拟水龟属、眼斑龟属和新大陆龟科的水龟属组成,这三个属以前一直被认为是同属的,但没有得到形态学和染色体等方面的认同。为了进一步研究,本文参照近源物种的线粒体基因组,设计了特异引物,采用PCR产物直接测序法测得了黄喉拟水龟(Mauremys mutica)和四眼斑水龟(Sacalia quadriocellata)线粒体基因组全序列。结果表明:黄喉拟水龟和四眼斑水龟线粒体基因组序列全长分别为16 609 bp和16 816 bp,均包括2个rRNA基因、22个tRNA基因、13个蛋白质编码基因和2个非编码区。
     为探讨水龟组三种属之间的关系,本文选用了进化较快的NADH4(NADH脱氢酶亚基)蛋白编码基因和相邻的tRNA基因(共985bp)构建系统进化树来探讨由淡水龟组成的水龟类的关系。结果显示,MP树支持黄喉拟水龟和四眼斑水龟构成姐妹群关系,同属于淡水龟科,并支持淡水龟科和陆龟科非姐妹群,都为单系起源。
     另外,基于12种龟类,2种鸟类,2种鳄类,2种有鳞类和一种哺乳动物的mtDNA的12个重链编码蛋白质的基因构建了MP树和ML树。比对的核苷酸有10 799个位点,包括6 237个简约信息位点,通过建立起来的系统进化树可以确认龟类与祖龙类(包括鸟类和鳄类)的亲缘关系比有鳞类近,推测龟类有可能起源于二叠纪和三叠纪时期具有双颞孔的古龙类祖先,随着进化,头盖骨逐渐消失。系统分析也表明,鳖科按照其传统学位置和其它隐颈龟组合形成曲颈龟亚目。
In vertebrate animals, mitochondrial DNA (mtDNA) is generally a 15~22 kb circular genome containing 37 genes: 13 protein-coding genes, two rRNA genes, and 22 tRNA genes, as well as a control region. In recent years, mtDNA has been widely used as a useful marker system in numerous phylogenetic analyses of vertebrate relationships because of its maternal mode of inheritance and relative lack of recombination.
     Turtles have highly specialized morphological characteristics. To date, complete mtDNA genomes have been determined for only 20 species, including 19 cryptodiran turtles and a side-necked turtle.
     The current taxonomic status of the Clemmys complex of freshwater turtles places the Old World genera Mauremys and Sacalia in the Geoemydidae and the New World genus Clemmys in the Emydinae. These three genera were previously considered to be congeneric, but it was not supported by morphology and chromosome. To address this issue, we sequenced the complete mitochondrial DNA (mtDNA) for the Asian yellow pond turtle (Mauremys mutica) and four eyed-spotted turtle (Sacalia quadriocellata). DNA sequencing was based on the PCR fragments from primer pairs that were designed on the basis of mtDNA sequences of the related turtle species. The genome is 16 609 bp and 16 816 bp, respectively, containing 37 genes (two ribosomal RNA, 22 transfer RNA and 13 protein-coding genes) and a putative control region, a situation that is similar to that found in other vertebrates. The gene organization of the mtDNA studied is typical for vertebrates such as placental mammals, other turtles and skinks, but distinct from that of alligators and snakes.
     We chose rapidly evolving ND4, the protein-coding gene, which was valuable in lower level questions. We examined the phylogenetic relationships of the Clemmys complex of the freshwater turtles using 985bp of the DNA encoding ND4, a mitochondrial gene and its adjacent tRNA genes. Our results indicated that Mauremys and Sacalia appeared to be sister taxa in the Bataguridae, and suggested the monophyly for the Bataguridae and the Emydidae based on the maximum parsimony (MP) phylogenetic trees. Our studies also suggested that the Bataguridae is not the sister-group with the Emydidae.
     Furthermore, we conducted maximum parsimony analysis and maximum likelihood using nucleotide sequences of 12 Heavy-strand proteins from twelve turtles, two birds, two crocodilians, two lepidosaurias and one mammal. Analysis of 10 799 aligned nucleotide positions (6 327 informative) led us to hypothesize that turtles are closely related to archosaurs (birds and crocodilians), supporting Tree (((birds, crocodilians), turtles), squamates). This is a significant molecular phylogeny on the placement of turtles relative to the archosaus and lepidosaus. It is likely that turtles originated from a Permian-Triassic archosauromorph ancestor with two pairs of temporal fenestrae behind the skull orbit that were subsequently diminished. Phylogenetic analyses also indicated that group of Trionychoidae was in their more traditional location as the sister taxon to all other hidden-necked turtles, collectively forming the Cryptodira.
引文
Adalgisa C, Gabriele G, Catherine E B, Eriminia S, Windsong B, Morgan R, Kristin S, Jeffrey R P. Extreme difference in rate of mitochondrial and nuclear DNA evolution in a large ectotherm, Galapagos tortoises. Molecular Phylogenetics and Evolution., 2004, 31: 794-798.
    Anderson S, Bankier A T, Barrell B G, deBruigin M H, Coulson A R, Drouin J, Eperson I C, Nierlich D P, Roe B A, Sanger F A, Schreier P H, Smith A J H, Staden R, and Younger I G. Sequence and organization of the human mitochondrial genome. Nature., 1981, 290: 457-465.
    Avise J C, Bowen B W, Lamb T, Meylan A B, Bermingham E. Mitochondrial DNA evolution at a turtle’s pace: evidence for low genetic variability and reduced microevolutionary rate in the Testudines. Mol Biol Evol., 1992, 9(3): 457-473.
    Bickham J W, Carr J L. Taxonomy and phylogeny of the higher categories of Cryptodiran turtles based on a cladistic analysis of chromosomal data. Copeia., 1983, (4): 918-932.
    Bickham J W, Lamb T, Minx P, Patton J C. Molecular systematics of the genus Clemmys and the intregenic relationships of Emydid turtles. Herpetologica., 1996, 52(1): 89-97.
    Boven B W, Meylan A B, Avise J C. Evolutionary distinctiveness of the endangered Kemp’s ridley sea turtle. Nature., 1991, 352: 709-712.
    Boven B W, Nelson W S, Avise J C. A Molecular phylogeny for marine turtles: trait mapping, rate assessment, and conservation relevance. Proc. Natl. Acad. Sci. USA., 1993, 90: 5574-5577.
    Breton S, Burger G, Stewart D T, Blier P U. Comparative analysis of gender associated complete mitochondrial genomes in marine mussels (Mytilus spp). Genetics., 2006, 172(2): 1107-1119.
    Cao Y, Sorenson M D, Kumazawa Y, Mindell D P, Hasegawa M. Phylogenetic position of turtles among amniotes: evidence from mitochondrial and nuclear genes. Gene., 2000, 259 :139-148.
    DeBraga M, Rieppel O. Reptile phylogeny and the interrelationships of turtles. Zool. J. Linn. Soc., 1997, 120:281-354.
    Delport W, Ferguson J W, Bloomer P. Characterization and evolution of the mitochondrial DNA control region in Hornbills (Bucerotifoormes). Mol.Evol., 2002, 54: 794-806.
    Dutton P H, Davis S K, Guerra T, Owens D. Molecular phylogeny for Marine Turtles Based on Sequences of the ND4-Leucine tRNA and Control Regions of Mitochondrial DNA. Mol. Phylogenet. Evol.,1995, 5(3): 511-521.
    Gaffney E S, Meylan P A, Wyss A R. A computer assisted analysis of the relationships of the higher categories of turtles. Cladistics., 1991, 7:313-335.
    Gauthier J, Kluge A G, Rowe T. Amniote phylogeny and the importance of fossils. Cladistics., 1988, 4:105-209.
    Gorman G C. The Chromosome of the Retilia, a cytotaxonomic interpretation. Academic Press, New York.1973, 2: 349-424.
    Hedges S B, Poling L L. A molecular phylogeny of reptiles. Science., 1999, 283: 998-1001.
    Hu M, Chilton N B, Gasser R B. The mitochondrial genome of Strongyloides stercoralis (Nematoda)- idiosyncratic gene order and evolutionary implications. International Journal for parasitology., 2003, 33:1393-1408.
    Kumazawa Y, Nishida M. Complete mitochondrial DNA sequences of the green turtle and blue-tailed mole skink: statistical evidence for archosaurian affinity of turtles. Mol.Biol.Evol., 1999, 16(6): 784-792.
    Krenz J G, Naylor G J P, Shaffer H B, Janzen F J. Molecular phylogenetics and evolution of turtles. Mol. Phylogenet. Evol., 2005, 37:178-191.
    Lamb T, Avise J C, Gibbons J W. Phylo-geographical patterns in mitochondrial DNA of the desert tortoise (Xerobates agassizi), and evolution ralationships among the North American gother tortoise. Evolution., 1989, 43: 76-87.
    Lamb T, Lydeard C, Walker R B, Gibbons J W. Molecular systematics of the map turtles (Graptemys): A comparison of mitochondrial restriction site versus sequence data. Syst. Biol., 1994, 43: 543-559.
    Lahanas P L, Miyamoto M M, Bjorndal A B, Bolten A B. Molecular evolution and population genetics of Greater Caribbean green turtles (Chelonia mydas) as inferred from mitochondrial DNA control region sequences. Genetics, 1994, 94: 57-67.
    Mindell D P, Sorenson M D, Dimcheff D E. Multiple independent origins of mitochondrial gene order in birds. Proc. Natl. Acad. Sci.USA., 1998, 95 (18): 10693-10697.
    Mindell D P, Sorenson M D, Dimcheff D E, Hasegawa M, Ast J C, Yuri T. Interordinal relationships of birds and other reptiles based on whole mitochondrial genomes. Syst. Biol., 1999, 48 (1): 138-152.
    Moritz C, Dowling T E, Brown W M. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Ann Rev Ecol Syst., 1987, 18: 269-292.
    Parham J F, Macey J R, Papenfuss T J, Feldman C R, Türkzan O, Polymeni R, Boore J. The phylogeny of Mediterranean tortoises and their close relatives based on complete mitochondrial genome sequences from museum specimens. Molecular Phylogenetics and Evolution., 2006, 38: 50-64.
    Peng Q L, Nie L W, Pu Y G.Complete mitochondrial genome of Chinese big-headed turtle, Platysternon megacephalum, with a novel gene organization in vertebrate mtDNA. Gene., 2006, 380 (1): 14-20.
    Rieppel A G, DeBraga M. Turtles as diapsid reptiles. Nature., 1996, 384: 453-455.
    Russo C A, Takezaki N, Nei M. Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny. Mol.Biol.Evol., 1996, 13: 525-536.
    Spinks P Q, Shaffer H B, Iverson J B, McCord W P. Phylogenetic hypotheses for the turtle family Geoemydidae. Mol.Phylogenet.Evol., 2004, 32: 164-182.
    Stuart B L, Parham J F. Molecular phylogeny of the critically endangered Indochinese box turtle (Cuora galbinifrons). Mol. Phylogenet. Evol., 2003, 31: 164-177.
    Zardoya R, Meyer A. Cloning and characterization of a microsatellite in the mitochondrial control region of the African side-necked turtle, Pelomedusa subrufa. Gene., 1998, 216 (1): 149-153.
    Zardoya R, Meyer A. Complete mitochondrial genome suggests diapsid affinities of turtles. Proc. Natl. Acad. Sci. USA., 1998, 95: 14226-14231.
    刘泽,邹本玲,李庆伟.线粒体假基因—核基因组中的分子化石. 辽宁师范大学学报., 2005, 28 (2): 232-235.
    刘忠权, 王义权, 周开亚. 用线粒体 tRNA 基因探讨两栖动物三个目间系统发生关系. 动物学研究., 2004, 25(3): 185-190.
    潘宝平, 卜文俊. 线粒体基因组的遗传与进化研究进展. 生物学通报., 2005, 40 (8): 1-3.
    彭巧玲, 蒲友光, 王志方, 聂刘旺. 中华鳖线粒体基因组序列分析., 中国生物化学与分子生物学报., 2005, 21 (5): 591-596.
    蒲友光, 彭巧玲, 王志方, 聂刘旺. 乌龟线粒体全基因组序列和结构分析., 动物学报., 2005, 51 (4): 691-696.
    史海涛. 中国的龟类. 生物学通报.,2004, 39 (5): 13-17.
    王继文. 动物线粒体假基因的识别及其在进化生物学中的应用., 动物学杂志., 2004, 39 (3): 103-108.
    吴平,周开亚,杨群.亚洲淡水和陆生龟鳖类 12SrRNA 基因片段的序列分析和系统发生研究. 动物学报., 1999, 45 (3): 260-267.
    吴孝兵,王义权,周开亚,朱伟铨,聂继山,王朝林. 扬子鳄的线粒体全基因组与鳄类系统发生. 科学通报., 2003, 48 (18): 1954-1958.
    张方,米志勇. 动物线粒体 DNA 的分子生物学研究进展. 生物工程进展.,1998, 18 (3): 25-31.
    张海军,李 健,施燕蜂, 张晓梅,徐春宏,单祥年. 黑麂线粒体基因组序列分. 中国生物化学与分子生物学报., 2004, 20(4): 513–518.
    张颖, 宋娇莲, 聂刘旺. 缅甸陆龟线粒体全基因组的序列及分析. 动物学报., 2007, 53 (1): 151–158.
    Adalgisa C, Gabriele G, Catherine E B, Eriminia S, Windsong B, Morgan R, Kristin S, Jeffrey R P. Extreme difference in rate of mitochondrial and nuclear DNA evolution in a large ectotherm. Galapagos tortoises. Molecular Phylogenetics and Evolution ., 2004, 31:794–798.
    Cao Y, Sorenson M D, Kumazawa Y, Mindell D P, Hasegawa M. Phylogenetic position of turtles among amniotes: evidence from mitochondrial and nuclear genes. Gene., 2000, 259 :139-148.
    Frazer-Abel A A, and Hagerman P J. Determination of the angle between the acceptor and anticodon stems of a truncated mitochondrial tRNA. Mol.Biol., 1999, 285(2): 581-593.
    Harlid A, Janke A, Arnason U. The mtDNA sequence of the ostrich and the divergence between paleognathous and neognathous birds. Mol. Biol. Evol., 1997, 7: 607-633.
    Harlid A, Janke A, Arnason U. The complete mitochondrial genome of Rhea americana and early avian divergences. Mol. Biol. Evol., 1998, 46: 669-679.
    Han D M, Zhou K Y. Complete sequence and gene organization of the mitochondrial genome of Tokay (Gekko gecko). Zoological research., 2005, 26(2):123-128.
    Janke A, Arnason U. The complete mitochondrial genome of Alligator mississiooiensis and the separation between recent Archosauria (birds and crocodiles). Mol.Biol.Evol., 1997, 14: 1266-1272.
    Joahua S R, Jennifer C A, Christopher C A, Peter J W, Elizabeth A T, Jennifer M, David P M. Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. Mol. Phylogenet. Evol., 2003, 29(2): 289–297.
    Kumazawa Y, Nishida M. Complete mitochondrial DNA sequences of the green turtle and blue-tailed mole skink: statistical evidence for archosaurian affinity of turtles. Mol. Phylogenet. Evol., 1999,16(6): 784 – 792.
    Kumazawa Y, Nishida M. The complete nucleotide sequence of a snake (Dinodon semicarinatus) mitochondrial genome with two identical control regions. Genetics ., 1998, 150: 313-329.
    Kumazawa Y, Ota H, Nishida M, Ozawa T. The complete nucleotide sequence of a snake (Dinodon semicarinatus) mitochondrial genome with two identical control regions. Genetics., 1999, 150 (1): 313-329.
    Mindell D P, Sorenson M D, Dimcheff D E, Hasegawa M, Ast J, Yuri C. Interordinal relationships of birds and other reptiles based on whole mitochondrial genomes. Syst. Biol., 1999, 48: 138-152.
    Mindell D P, Sorenson M D, Dimcheff D E. An extra nucleotide is not translated in mitochondrial ND3 of some birds and turtles. Molecular Biology and Evolution., 1998, 15(11): 1568-1571.
    Mindell D P, Sorenson M D, Dimcheff D E, Hasegawa M, Ast J C,Yuri T. Interordinal relationships of birds and other reptiles based on whole mitochondrial genomes. Syst. Biol., 1999, 48 (1): 138-152.
    Parham J F, Macey J R, Papenfuss T J, Feldman C R, Turkozan O, PolymenI R, Boore J. The phylogeny of Mediterranean tortoises and their close relatives based on complete mitochondrial genome sequences from museum specimens. Mol. Phylogenet. Evol., 2006, 38: 56–64.
    Peng Q L, PU Y G, Wang Z F, Nie L W. Complete mitochondrial DNA sequence of Chinese softshell turtle (Pelodiscus sinensis). Chin.J. Biochem.Mol. Biol., 2005,21(5): 591-596(In Chinese).
    Pierre 2A C ,Eric D. Slow rate of evolution in the mitochondrial control region of gulls (Aves :Laridae) .Mol Evol., 2000, 17 : 1797-1806.
    Rieppel O, deBraga M. Turtles as diapsid reptiles.Nature, 1996, 384: 453-455.
    Wu X B, Wang Y Q, Zhou K Y, Zhu W Q, Nie J S, Wang C L. Complete mitochondrial genome of Alligator sinensis and phylogenetic relations of crocodiles. Chinese Science Bulletin., 2003, 48(18): 1 954–1 958(In Chinese).
    Yoshinori K, Mutsumi N. Complete mitochondrial DNA sequences of the green turtle and blue-tailed mole skink: statistical evidence for archosaurian affinity of turtles. Molecular Biology and Evolution., 1999, 16(6): 784-792.
    Zardoya R, Meyer A. Cloning and characterization of a microsatellite in the mitochondrial control region of the African side-necked turtle. Pelomedusa subrufa. Gene., 1998, 216 (1):149-153.
    Rafael Z, Edward M T, Michael V, Meyer A. Complete nucleotide sequence of the mitochondrial genome of a salamander, Mertensiella luschani.Gene., 2003, 317: 17-27.
    Schlotterer C. Evolutionary dynamies of microsatellite DNA. Chromosoma., 2000, 109(6): 365-371.
    Kruglyak S, Durrett R T, Schug M D. Equilibrium distributions of microsatellite repeat leagth resulting from a balance between slippage events and point mutations. Proe Natl Acad Sci USA., 1998, 95(18): 10774-10778.
    IUCN, 2004. (2004) IUCN Red List of Threatened Species. Available from http://www.redlist.org
    张海军, 李 健, 施燕蜂, 张晓梅,徐春宏, 单祥年. 黑麂线粒体基因组序列分. 中国生物化学与分子生物学报., 2004, 20(4): 513-518.
    张颖, 宋娇莲, 聂刘旺. 缅甸陆龟线粒体全基因组的序列及分析. 动物学报., 2007, 53 (1): 151-158.
    吴平, 周开亚. 龟鳖类系统学研究概况. 动物学研究., 1998, 33 (6): 38-45.
    张晓梅, 单祥年, 施燕峰, 张海军, 李 健, 郑爱玲. 小麂线粒体基因组全序列的测定和分析. 遗传., 2004, 26(6): 849-853.
    孙毅, 马飞, 肖冰, 郑俊杰, 袁晓东, 汤敏谦, 王黎, 于业飞, 李庆伟. 鸮形目两种鸟类线粒体基因组全序列测定与比较研究. 中国科学C辑 生命科学., 2004, 34 (6): 527-536.
    吴平, 周开亚, 杨群. 亚洲淡水和陆生龟鳖类 12S rRNA 基因片段的序列分析和系统发生研究. 动物学报., 1999, 45(3): 260-267.
    蒲有光, 彭巧玲, 王志方, 聂刘旺. 乌龟线粒体全基因组序列及结构分析. 动物学报., 2005, 21 (5):591-596.
    周婷, 赵尔宓. 龟鳖分类图签. 北京:中国农业出版社, 2004.
    Bickham J W. A cytosystematic study of turtles in the Genera Clemmy, Mauremys and Sacalia. Herpetologica., 1975, 31: 198-204.
    Bickham J W, Baker R J .Chromosome homology and evolution of Emydid turtles. Chromosoma., 1976, 54: 201-219.
    Bickham J W, Carr J L. Taxonomy and phylogeny of the higher categories of Cryptodiran turtles based on a cladistic analysis of chromosomal data. Copeia., 1983, (4): 918-932.
    Carr J L, Bickham J W. Phylogenetic implications of karyotypic variation in the Batagurinae (Testudines: Emydidae). Genetica., 1986, 70: 89-106.
    Eric P, Palkovacs Justin G, Adalgisa C. The evolutionary origin of Indian Ocean tortoises (Dipsochelys). Mol.Evol., 2002, 24: 216-227.
    Feldman C R, Parham J F. Molecular Phylogenetics of Emydine Turtles: Taxonomic Revision and the Evolution of Shell Kinesis. Mol. Phylogenet. Evol., 2002, 22: 388-398.
    Gaffney E S, Meylan P A. A phylogeny of turtles. In: M.J. Benton eds. The phylogeny and classification of tetrapods. Mol.Evol., 1998, 28: 497-516.
    Gaffney E S, Meylan P A. A phylogeny of turtles. In:M.J.Benton eds. The phylogeny and classification of Tetrapods. Oxford: Claredon Press., 1988, 157-219.
    Gauthier J, Kluge A G, Rowe T. Amniote phylogeny and the importance of fossils. Cladistics., 1988, 4: 105-209.
    Hasegawa M, Kishino H, Yano T. Dating of the human-apesplitting by a molecular clock of mitochondrial DNA . Mol.Evol., 1985, 22: 160-174.
    Hedge S B. Molecular evidence for the origin of birds. Proceedings of the National Academy of Sciences., 1994, 91: 2621-2624.
    Hirayama R. Cladistic analysis of batagurine turtles (Batagurinae: Emydidae: Testudinoidea): preliminary result. Studias Geoloagicas Salamanticensia., 1985, 1: 141-158.
    Honda M, Yasukawa Y, Hirayama R, Ota H. Phylogenetic Relationships of the Asian Box Turtles of the Genus Cuora sensu lato (Reptilia: Bataguridae) Inferred from Mitochondrial DNA Sequences. Zool.Sci., 2002, 19: 1305-1312.
    Joshua S R, Jennifer C A, Christopher C A. Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. Mol. Phylogenet. Evol., 2003, 29: 289-297.
    Kumazawa Y, Nishida M. Complete mitochondrial DNA sequences of the green turtle and blue-tailed mole skink: statistical evidence for archosaurian affinity of turtles. Mol.Biol.Evol., 1999, 16(6): 784-792.
    Krenz J G, Naylor G J, Shaffer H B, Janzen F J. Molecular phylogenetics and evolution of turtles. Mol. Phylogenet. Evol., 2005, 37: 178-191.
    Laurin M, Reisz R. A reevaluation of early amniote phylogeny. Zool.J.L inn. Soc., 1995, 113: 165-223.
    McDowell S B. Partition of the genus Clemmys and related problems in the taxonomy of the aquatic Testudinidae. Proc.Zool.Soc., London. 1964, 143: 239-279.
    Mannen H, Li S S. Molecular Etvidence for a Clade of Turtles. Molecular phylogenetics and Evolution., 1999, 13(1): 144-148.
    Rieppel O, Reisz R .The origin and early evolution of turtles. Annual review of ecology and systematic., 1999, 30: 1-22.
    Rieppel O, deBraga M. Turtles as diapsid reptiles. Nature., 1996, 384: 453-455.
    Seutin G, Lang B F, Mindell D P, Morais R. Evolution of the WANCY region in amniote mitochondrial DNA..Molecular phylogenetics and Evolution., 1994, 11: 329-340.
    Shaffer H B, Meylan P, Mcknight M L. Tests of turtle phylogeny: molecular, morphologial, and paleontological approaches. Syst. Biol., 1997, 46: 235-268.
    Simon C, Frati F, Beckenbach A. Evolution, Weighting, and Phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann.Entomol.Soc.Am., 1994, 87 (6): 651-701.
    Spinks P Q, Shaffer H B, Iverson J B, McCord W P. Phylogenetic hypotheses for the turtle family Geoemydidae. Mol. Phylogenet. Evol., 2004, 32, 164-182.
    Stuart B L, Parham J F. Molecular phylogeny of the critically endangered Indochinese box turtle (Cuora galbinifrons). Mol. Phylogenet. Evol., 2004, 31: 164-177.
    Swofford DL, 2002. PAUP*. Sinauer, Sunderland, MA.
    Zardoya R, Meyer A. Complete mitochondrial genome suggests diapsid affinities of turtles. Proceedings of the National Academy of Sciences USA., 1998, 95: 14226-14231.
    Zardoya R, Meyer A. Cloning and characterization of a microsatellite in the mitochondrial control region of the African side-necked turtle, Pelomedusa subrufa. Gene., 1998a, 216 (1): 149-153.
    Zardoya R, and Meyer A. Complete mitochondrial genome suggests diapsid affinities of turtles. Proc. Natl. Acad. Sci. USA., 1998b, 95: 14226-14231.
    Yang Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Mol.Evol., 1994, 39: 306-314.
    彭巧玲, 蒲友光, 王志方, 聂刘旺. 中华鳖线粒体基因组序列分析. 中国生物化学与分子生物学报., 2005, 21 (5): 591-596.
    蒲友光, 彭巧玲, 王志方, 聂刘旺. 乌龟线粒体全基因组序列和结构分析.动物学报., 2005, 51 (4): 691-696.
    吴平,周开亚,杨群. 亚洲淡水和陆生龟鳖类 12SrRNA 基因片段的序列分析和系统发生研究. 动物学报.,1999, 45 (3): 260-267.
    吴平, 周开亚. 龟鳖类系统学研究概况.动物学研究., 1998, 33 (6): 38-45.
    叶祥奎. 论龟科与陆龟科. 古脊椎动物与古人类, 1982, 20:10-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700