新型相移光纤光栅的设计及传感特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相移光纤光栅作为一种新型的光无源器件,因其具有极窄线宽、多通道、组合灵活等特性,受到国内外学者的广泛关注。相移光纤光栅可根据需要设计其相移的数量、大小及位置,并获得灵活多变的折射率调制结构以及特殊的光谱,从而使其具有高灵敏度、多参量传感等应用特性。随着对光纤光栅写制方法的深入探索、写制技术的不断进步以及对其功能需求的不断提高,各种具有特殊结构及新颖功能的相移光纤光栅被不断设计和研制出来,并成为新型光子器件的研究热点。
     本文在继承前人对相移光纤光栅的写制方法和应用特性的研究基础上,对相移光纤光栅的形成机理和新型相移光纤光栅的设计及应用进行了研究。设计并实现了几种新型相移光纤光栅,并进行了传感和通信应用研究。所提出的研究方法和取得的研究成果,为新型光纤光栅的结构设计和优异光学特性的实现提供了新的途径。论文主要工作和取得的成果包括:
     1.系统阐述了光纤光栅的写制技术、光谱特点和发展历程。重点分析了相移光纤光栅的写制方法,以及由此而形成的独特光学性质及典型应用。总结了形成相移光栅的各种方法,并指出了这些方法的优缺点。
     2.对改变步长法形成的相移超长周期光纤光栅(PS-ULPFG)光谱特性及传感特性进行了研究。理论分析并推导出相移量大小与光栅结构的关系式,并采用高频CO_2激光脉冲曝光法进行了实验验证。研究表明,由改变步长法形成的PS-ULPFG相移量不仅与步长改变量有关,还与衍射阶有关。据此,提出了一种形成相移光栅的新方法,并用于判定超长周期光纤光栅衍射阶。
     3.提出并实现了一种基于PS-ULPFG的扭曲传感器,具有温度和应变均不敏感特性。理论研究和实验分析表明,通过测量PS-ULPFG的两谐振峰间距,可有效消除温度和轴向应力对扭曲传感测量的影响;若预先给定扭曲初始角度,则该传感器可用于扭曲方向的判别。
     4.设计并研制了一种新型相移长周期光纤光栅(PSLPFG),其相移量由一段相位调制光栅所形成。对该光栅建立了理论模型,并推导出相移量表达式。采用传输矩阵法和高频CO_2激光写制方法,从数值模拟和实验测量上对其进行了验证。研究表明,这种新型PSLPFG的相移量大小由相位调制光栅的长度和谐振峰的中心波长所决定。并且,利用其结构特点设计并实现了温度不敏感的应变传感测量。
     5.设计并研制了一种由衔套光栅形成相移的新型PSLPFG。研究表明,当该光栅的第二个相位调制光栅与被调制长周期光纤光栅结构相同时,为双相移PSLPFG;反之,则为单相移PSLPFG。PSLPFG单相移量的大小相当于两个光栅调制结构效果的总和,其光谱特性与第二个相位调制光栅的位置无关。
     6.在上述第5点工作的基础上,提出了一种新型双调制相移光纤Bragg光栅。该光纤光栅由高频CO_2激光和局部加热两种后处理法组合所形成,实现了一种单波长和双波长可转换以及输出位置可调谐的滤波器。与以往两个电阻丝形成的双波长滤波器相比,该滤波器仅使用一个加热装置,可有效消除温度串扰影响。
As a novel optic passive device, Phase-shifted fiber grating has inspired theinterests of internal and overseas investors because of its many natural merits such asnarrow bandwidth, multiple channels and flexible combination etc. By changing themagnitude, position or value of phase shift, the index distribution of Phase-shiftedfiber grating will become more complex than the general cases, which consequentlyresults in special spectrum and widely applications. With the further investigation ofgrating writing method and the development of grating writing technology, manyspecial structural phase shifted fiber grating with novel application are designed.Moreover, some of them recently receive more and more attentions in the novel opticdevice.
     Following the study of written methods and applications about Phase-shiftedfiber grating, we consider the formative principle, special structural design andapplications of Phase-shifted fiber grating. In our research, we design some novelPhase-shifted fiber gratings, and expound their applications in the filed of sensor andcommerce. The design method we proposed affords a new approach for gratingstructure design and achieve excellent optic trait. The main contents and results ofthis dissertation include are list as follows:
     1. We systematically summarize the written technology, spectrum properties and development of fiber grating. We particularly analyze the written method, specialspectrum characteristics and typical application of Phase-shifted fiber grating. Wemake some conclusions about the method to form Phase-shifted fiber gratingincluding their corresponding advantages and disadvantages.
     2. The spectrum and sensor characteristics of Phase shifted-ultra long period grating(PS-LPFG) formed by changing one written step is studied. Then we obtain therelationship of phase shift and fiber grating structural parameters. Theexperiments show that the phase shift value is dependence not only on the stepchange but also on the diffraction order. Based on the results, we propose a newmethod to identify the diffraction order.
     3. Based on a PS-ULPFG, we propose and demonstrate a temperature-and strain-insensitive torsion. We theoretically and experimentally show that by measuringthe spacing between the two phase shifted resonance peaks, the sensor could beeliminating the influence of temperature and axial sensor effectively. In addition,the sensor could be measure the twist oration if twist at first.
     4. We propose a novel Phase shifted long period grating (PSLPFG) formed byadding a modulated grating. By transfer matrix method and CO_2laser writtensystem, we establish and demonstrate its structural model and its phase shiftedvalue function. The experiments show that the phase shift value of the novelPSLPFG is dependent on the length and resonance peaks of the modulated grating. Based on the formed method, we obtain a temperature insentive strain sensor.
     5. We proposed a novel PSLPFG by adding an embedded modulated grating. Whenthe second modulated grating has the same structures with the original grating, thewhole grating was two phase shift PSLPFG. When the second modulated gratinghas the different structures with the original grating, the whole grating was singlePSLPFG and the phase shifted value is the sum of that brings by the twomodulated fiber grating.
     6. Based on the results of5, we proposed a tunable two wavelength filters based on anovel Phase Shifted fiber Bragg grating (PSFBG). The grating is formed by twomodulated method CO_2laser exposure and the temperature arises. Since it onlyneeds one temperature device, thus it will not have the problem of temperaturedisturb ion.
引文
[1] K. O. Hill, Y. Fujii, D. C. Johnson, et al. Photosensitivity in optical fiber waveguide: applicationto reflection filter fabrication. Applied Physics Letters,1978,32(10):647~649
    [2] G. Meltz, M. M. Morey, and W. H. Glenn. Formation of Bragg gratins in optical fibers by atransverse holographic method. Optics. Letters,1989,14(15):823~825
    [3] K. O. Hill. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposeurethrough a phase mask. Applied Physics Letters,1993,62(10):1035~1037
    [4] Ashish M. Vengsarkar, Paul J. Lemaire, Justin. B. Judkins, et al. Long-period fiber gratings asband-rejection filters. Journal of Lightwave Technology,1996,14(1):58~65
    [5] A. M.Vengsarkar, J. R. Pedrazzani, J. B. Judkins, et al. Long-Period Fiber Grating-based gainequalizers. optics Letters,1996.21(5):336-338.
    [6] D. D. Davis, T. K. Gaylord, E. N. Glytsis, et al. Long period fiber grating fabrication with focusedCO2laser pulses[J], Electronics Letters,1998,34(3):302~303
    [7] D. D. Davis, T. K. Gaylord, E. N. Glytsis, et al. CO2laser-induced long period fibre gratings:spectral characteristics, cladding modes and polarisation independence. Electronics. Letters.,1998,34(14):1416~1417
    [8] Chen K. P., Herman P. R., Taylor R., et al. Vacuum-ultraviolet laser-induced refractive-indexchange and birefringence in standard optical fibers. Journal of Lightwave Technology,2003.21(9):1969-1977
    [9] S. W. James, R. P. Tatam. Optical fibre long-period grating sensors: Characteristics andapplication. Measurement Science&Technology,2003.14(5): R49-R61.
    [10] G. Meltz, W. W. Morey, W. Glenn. In Fibre Bragg grating tap. Presented at Optical FibreCommunications,1990
    [11] Erdogan T, Sipe J. E. Tilted fiber phase gratings. J Opt Soc Amer A,1996,13(2):296~313
    [12] C. Caucheteur, P. Mégret. Demodulation Technique for weakly tilted fiber Bragg gratingrefractometer. IEEE Photonics Technology Letters,2005,17(12):2703~2705
    [13] Christophe Caucheteur, Marc Wuilpart, Chengkun Chen, et al. Quasi-distributed refractometerusing tilted Bragg gratings and time domain reflectometry. Optics Express,2008,16(22):17882~17890
    [14] Kaiming Zhou, Lin Zhang, Xiaofeng Chen, et al. Optic sensors of high refractive-indexresponsivity and low thermal cross sensitivity that use fiber Bragg grating of80℃tiltedstructures. Optics Letters,2006,31(9)
    [15] F. Ouellette. Dispersion cancellation using linearly chirped Bragg grating filters in opticalwaveguides. Optics Letters,1987,12(10):847~849
    [16] D. P. Capmany, J. D. Ortega, et al. Design of apodized linearly chirped fiber gratings fordispersion compensation. Journal of Lightwave Technology,1996,14(11):2581~2588
    [17] K.C. Byron., K. Sugden,, T. Bricheno., I. Bennion. Fabricaion of chirped gratings inphotosensitive fibre. Electronics Letters,1993,29(18):1659~1660
    [18] G. Agrawal, S. Radic. Phase-shifted fiber Bragg gratings and their application for wavelengthdemultiplexing. IEEE Photonics Technology. Letters,1994,6(8):995~997
    [19] Ibsen, M. Durkin, M. K, et al. Sinc-sampled fiber Bragg gratings for identical multiplewavelength operation. Photonics Technology Letters,1998,10(6):842~844
    [20] J.X. Cai, K. M. Feng, A. E. Willner, et al. Simultaneous tunable dispersion compensation of manyWDM channels using a sampled nonlinearly chirped fiber Bragg grating. IEEE PhotonicsTechnology Letters,1999,11(11):1455~1457
    [21] Chinhua Wang, J. Azana, L. R. Chen. Efficient technique for increasing the channel density inmultiwavelength sampled fiber Bragg grating filters. IEEE Photonics Technology Letters,2004,16(8):1867~1869
    [22] J. Zhang, X. P. Cheng, N. Q. Ngo, et al. Analysis of linearly Tapered fiber Bragg grating fordispersion slope compensation. IEEE Photonics Technology Letters,2003,15(10):1389~1391
    [23] W. J. Bock, Jiahua Chen, Mikulic, P, et al. A Novel fiber-optic tapered long-period grating sensorfor pressure monitoring. IEEE Transactions on Instrumentation and Measurement,2007,56(4):1176~1180
    [24] L. Zhang, K. Sugden, I. Bennion, A. Molony. Wide-stopband chirped fibre moiré gratingtransmission filters. Electronics Letters,1995,31(6):477~479
    [25] Andrew Michael Gillooly, Helen Dobb, Lin Zhang, et al. Distributed load sensor by use of achirped moiré fiber Bragg grating. Applied Optics,2004,43(35):6454~6457
    [26] S Legobin, E Fertein, M Douay, et al. Formation of moiré grating in core of germanosilicate fibreby transverse holographic double exposure method, Electronics Letters,1991,27(21):1945~1947
    [27]徐新华,王青.线性啁啾莫尔光纤光栅的理论研究.光子学报,2007,36(9):1618~1623
    [28] B. Malo, S. Thériault, D. C. Johnson et al. Apodised in-fiber Bragg grating reflectorsphotoimprinted using a phase mask. Electronics Letters,1995,31(3):223~225
    [29] T. Komukai, K. Tamura, M. Nakazawa. An efficient0.04nm apodized fiber Bragg grating and itsapplication to narrow band spectral filtering. IEEE Photonics Technology Letters,9(7):934~936
    [30] Z. Xiong, G. D. Peng, B. Wu, P. L. Chu. Highly tunable Bragg grating in single mode polymeroptical fibers. IEEE Photonics Technol. Lett.,1999,11(3):352~354
    [31]金龙.微结构光纤的理论、实验与应用研究:[博士毕业论文].天津,南开大学,2008
    [32]张伟刚.纤栅式传感系列器件的设计及技术研究:[博士毕业论文].天津,南开大学,2002
    [33] V. Mirzrahi, J. E. Sipe. Optical properties of photosensitive fiber phase gratings. Journal ofLightwave Technology,1993,11(10):1513~1517
    [34] S. Savin, M. J. F. Digonnet, G. S. Kino, et al. Tunable mechanically induced long period fibergratings. Optics Letters,2000,25(10):710~712
    [35] I. B. Sohn, N. K. Lee, H. W. Kwon, J. W. Song. Tunable gain flattening filter using microbendinglong period fiber gratings. Optic. Eng.,2002,41(7):1465~1466
    [36] Kai Chen, Qiuqin Sheng, Xiaoyi Dong. Band-rejection and band-pass filter based onmechanically induced long period fiber grating. Microwave and optical technology Letter,2005,42(1):1715~1744
    [37] Enboa Wu, Rou-Ching Yang, Kuo-Ching San et al. A highly efficient thermally controlledloss-tunable long period fiber grating on corrugated metal substrate. Journal of LightwaveTechnology.2005,17(3):612~614
    [38] P. G. Kryukov, Yu. V. Larionov, et al. Long-period fibre grating fabrication with fetosecond pulseradiation at different wavelengths. Microelectronic Engineering,2003,69:248~255
    [39] Malo. B., Bilodeau. F., Albert, J., et al. Point-by-point fabrication of micro-Bragg gratings inphotosensitive fibre using single excimer pulse refractive index modification techniques. Electron.Letters,1993,29(18):1668~1669
    [40] Martinez A., Khrushchev I. Y., Bennion I. Fabrication of highly reflective Bragg gratings throughfiber coating by infrared femtosecond laser OSA Topical Meeting on Bragg gratings, Poling andPhotosensitivity BGPP/ACOFT,2005
    [41] Mehrdad Shokooh-Saremi, Vahid G. Ta′eed, Neil J. Baker et al. High-performance Bragg gratingsin chalcogenide rib waveguides written with a modified Sagnac interferometer. JOSA B,2006,23(7):1323~1331
    [42]高侃,蔡海文,陈高庭等,一种改善长周期光纤光栅热稳定性的方法.光学学报.2002,22(9):1076~1080
    [43] Ky N. H., Limberger H. G., Salathe R. P., et al. UV-irradiation induced stress and index changesduring the growth of type-I and type-IIA fiber gratings. Optics Communications,2003.225(4-6):313~318.
    [44] M. Fujimaki, Y. Ohki. Fabrication of long period optical fiber gratings by use of ion implantation.Optics Letters.2000,25(2):88~89
    [45] M. L. Von Bibra, A. Roberts. Fabrication of long period fiber gratings by use of focused ion-beamirradiation. Optics Letters.2001,26(11):765~767
    [46] Yamasakis,Akinyma, et al. Characteristics of long period fiber grating utilizing periodic stressrelaxation. IEICE Trans Electron.2000,E83-C(3):440~443
    [47] Archambault J. L., Reekie L., and Russell P. S. J..100%reflectivity Bragg reflectors produced inoptical fibres by single excimer laser pulses. Electronics Letters,1993.29:453~455
    [48] Rainer F., Lowdermilk W. H., and Milam D. Bulk and surface damage thresholds of crystals andglasses at248nm. Opt. Eng.,1983.22:431-434
    [49] P. Palai, M. N. Satyanarayan, Mini Das et al. Characteristion and simulation of long periodgratings fabricated using elestric discharge. Optics Communication.193(2001):182~185
    [50] Georges Humbert, Abdelrafik Malki, Mohamed. Ketata. Long-period fiber gratings filtersfabrications and characterizations using electric arc in non-hydrogenated fibers. Pro. of SPIE.2001,4532:510~516
    [51] G. Rego, O. Okhotnikov, E. Dianov et al. High-Temperature stability of long period fiber gratingsproduced using an electric arc. Journal of Lightwave Technology,2001,19(10):1574~1579
    [52] G. Humbert, A. Maliki. Annealing time dependence at very high temperature of electricarc-induced long period fibre gratings. Electronics Letters,2002,38(10):449~450
    [53] C.M.Tagdale, D.C.J.Reld, I.Bennion. Narrowband fiber grating filters. Proc, optical fibercommun.1989
    [54] Govind P. Agrawal, Stojan Radic. Phase-shifted fiber bragg gratings and their application forwavelength demultiplexing. IEEE Photonics Technology Letters,1994,6(8):995~997
    [55] J. Canning, M.G. Sceats. π-phase-shifted periodic distributed structures in optical fibres by UVpost-processing. Electronics Letters,1994,30(16):1344~1345
    [56] A. Asseh, H. Storoy, J.T. Kringlebotn et al.10cm Yb3+DFB fibre laser with permanent phaseshifted grating. Electronics Letters,1995,31(12):969~970
    [57] Young-Geun Han, Ju Han Lee, Sang Bae Lee. Discrimination of bending and temperaturesensitivities with phase-shifted long-period fiber gratings depending on initial coupling strength.Optics Express,2004,12(14):3204~3208
    [58] Agostino Iadicicco, Andrea Cusano, Stefania Campopiano et al. Thinned Fiber Bragg Grating asRefractive Index Sensor. IEEE Sensors Journal,2005,5(6):1288~1295
    [59] Kun-Wook Chung, Shizhuo Yin. Design of a phase-shifted long period grating using the partialetching technique. Microwave and Optical Technology Letters,2005,45(1):18~21
    [60] Hironori Kumazaki, Yoshihisa Yamada, Hidetoshi Nakamura et al. Tunable wavelength Filterusing a Bragg grating fiber thinned by plasma etching. IEEE Photonics Technology Letters,2001,13(11):1206~1208
    [61] Andrea Cusano, Domenico Paladino, Agotino Iadicicco. Single and multiple phase shifts titledfiber Bragg gratings. Research Letters in Optics,10.1155/2009/481010
    [62] J. T. Kringlebotn, J.-L. Archambault, L. Reekie, D. N. Payne. Er3+:Yb3+-codoped fiberdistributed-feedback laser. Optics Letters,1994,19(24):2101~2103
    [63] A.K. Ahuja, P.E. Steinvurzel, B.J. Eggleton et al. Tunable single phase-shifted and superstructuregratings using microfabricated on-fiber thin film heaters. Optics Communications,2000,184:119~125
    [64] M. Janos, J. Canning. Permanent and transient resonances thermally induced in optical fibreBragg gratings. Electronics Letters,1995,31(12):1007~1008
    [65] M.G. Xu, A.T. Alavie, R.Maaskant, M.M. Ohn. Tunable fibre bandpass filter based on a linearlychirped fibre Bragg grating for wavelength demultiplexing. Electronics Letters,1996,32(20):1918~1920
    [66] Jesús Palac, Pere Pérez-Millán, Guillermo Eduardo Villanueva et al. Tunable photonicmicrowave filter with single bandpass based on a phase-shifted fiber Bragg grating. IEEEPhotonics Technology Letters,2010,22(19):1467~1469
    [67] Xuxing Chen, YVES Painchaud, Kazuhiko Ogusu, Hongpu Li. Phase shifts induced by thepiezoelectric transducers attached to a linearly chirped fiber Bragg grating. Journal of LighwaveTechnology,2010,28(14):2017~2022
    [68] Yicheng Lai, W. Zhang, L. Zhang, et al. Optically tunable fiber grating transmission filters.Optics Letters,2003,28(24):2446~2448
    [69] R. Kashyap, P. F. Mckee, D. Armes. UV written reflection grating structures in photosensitiveoptical fibres using phase-shifted phase masks. Electronics Letters,1994,30(23):1977~1978
    [70] Sui P. Yam, Zourab Brodzeli, Betty P. Kouskousis et al.. Fabrication of a π-phased-shifted fiberBragg grating at twice the Bragg wavelength with the standard phase mask technique. OpticsLetters,2009,34(13):2021~2023
    [71] Edmon Chehura, Stephen W James, Ralph P Tatam. A simple and wavelength-flexible produre forfabricating phase-shifted fibre Bragg gratings. Mesurment science and technology,2010,21:094001
    [72] W. H. Loh, M. J. Cole, M. N. Zervas et al. Complex grating structures with uniform phase masksbased on the moving fiber-scanning beam technique. Optics Letteers,1995,20(20):2051~2053
    [73] Chen Kai, GE Chun feng, Sheng Qin-qin, Dong Xiao yi. Mechanically tunable phase-shifted longperiod fibe gratings. Joural of optoelectronics Laser,2004,15(9):1035~1037
    [74] Alessandro Candiani, Walter Margulis, Carola Sterner, Maria Konstantaki, Stavros Pissadakis.Phase-shifted Bragg microstructured optical fiber gratings utlizing infiltrated ferrofluids. OpticsLetters,2011,36(13):2548~1560
    [75] M.G. Xu, A.T. Alavie, R.Maaskant, M.M. Ohn. Tunable fibre bandpass filter based on a linearlychirped fibre Bragg grating for wavelength demultiplexing. Electronics Letters,1996,32(20):1918~1920
    [76] S. Y. Li, N. Q. Ngo, S. C. Tjin. P. Shum, I. Zhang. Thermally tunable narrow-bandpass filterbased on a linearly chirped fiber Bragg grating. Optics Letters,2004,29(1):29~31
    [77] Xiaojun Zhou, Shenghui Shi, Zhiyao Zhang, Jun Zou, Young Liu. Mechanically induced π-shiftedlong period fiber gratings. Optics Express,2011,19(7):6253~6259
    [78] W.H. Loh, R.I. Laming.1.55μmphase-shifted distributed feedback fibre laser. ElectronicsLetters,1995,31(17):1440~1441
    [79] O. Deparis, R. Kiyan, O. Pottiez, et al. Bandpass filters based on π-shifted long-period fibergratings for actively mode-locked erbium fiber lasers. Optics Letters,2001,26(16):1239~1241
    [80] Michiko Harumoto, Masakazu Shigehara, Hiroshi Suganuma. Gain-flattening filter using longperiod fiber gratings. Journal of lightwave technology,2002,20(6):1027~1033
    [81] Yinian Zhu, Ping Shum, Chao Lu, et al. EDFA gain flattening using phase-shifted long periodgrating. Microwave and optical technology letters,2003,37(2):153~157
    [82] Isa Navruz, Ahmet Altuncu. Optimization of phase-shifted long period fiber gratings formultiband rejection filters. Journal of lightwave technology,2008,26(14):2155~2161
    [83] Michel LeBlanc, Sandeep T. Vohra, Tsung E. Tsai, E. Joseph Friebele. Transverse load sensing byuse pi-phase-shifted fiber Bragg gratings. Optics Letters,1999,24(16):1091~1093
    [84] Yinian Zhu, Ping Shum, Xiaoyan Chen, et al. Resonance-temperature-insensitive phase-shiftedlong period fiber gratings induced by surface deformation with anomalous strain characteristics.Optics Letters,2005,30(14):1788~1790
    [85] Youngmin Kim, Yong Wook Lee, Byoungho Lee. Simultaneous measurement of strain andtemperature using phase-shifted long period gratng written on polarization maintaining fiber.OSA OFS,2006, TuE82
    [86] Naum K. Berger, Boris Levit, Baruch Fischer. Temporal differentiation of optical signals using aphase-shifted fiber Bragg grating. Optics Express,2007,15(2):371~381
    [87] Mykola Kulishov, José Aza a. Design of high-order all-optical temporal differentiators based onmultiple-phase-shifted fiber Bragg gratings. Optics Express,2007,15(10):6152~6166
    [88] Mohammad H. Asghari, José Aza a. Design of all-optical high-order temporal integrators basedon multiple-phase-shifted Bragg gratings. Optics Express,2008,16(15):11459~11469
    [89] Turan Erdogan. Cladding mode resonances in short-and long-period fiber grating filters. J. Opt.Soc.1997,14(8):1760~1773
    [90] T. Erdogan, Fiber grating spectra. Lightwave Technology, Journal of,1997.15(8):1277-1294
    [91] Xuewen Shu, Xuemei Zhu, Qinglin Wang. Dual resonat peaks of LP015cladding mode in longperiod gratings. Electronics Letters,1999,35(8):649~650
    [92] Xinwei Lan, Qun Han, Tao Wei, et al. Turn-around-point long period fiber gratings fabricated byCO2laser point-by-point irradiations. IEEE Photonics technology Letters,2011,23(22):1664~1666
    [93] Yanju Gu, Kin Seng Chiang, Yun Jiang Rao. Writing of Apodized phase-shifted long period fibergratings with a computer-controlled CO2laser. IEEE Photonics Techonology Letters,2009,21(10):657~659
    [94] Y.J Rao, T. Zhu, Q.J. Mo. Highly sensitivie fiber-optic torsion sensor based on an ultra longperiod fiber grating. Optics Communications,2006,266:187~190
    [95] Tao Zhu, Yun-jiang Rao, Qiu-Ju Mo. Simultaneous measurement of refractive index andtemperature using a single ultra long period fiber grating. IEEE Photonics Technology Letters,2005,17(12):2700~2702
    [96] Yun Jiang Rao, Yi-Ping Wang, Zeng Ling Ran, Tao Zhu. Novel fiber-optic sensors based on longperiod fiber gratings written by high-frequency CO2laser pulses. Journal of lightwave technology,2003,21(5):1320~1322
    [97] Y.P. Wang, Y.J. Rao. Long period fibre grating torsion sensor measuring twist rate anddetermining twist direction simultaneously. Electronics Letters,2004,40(3):164~166
    [98] Tao Zhu, Kin Sen Chiang, Yun Jiang Rao, Cui Hua Shi, Yun Song, Min Liu. Characterization oflong period fiber gratings written by CO2laser in twisted single mode fibers. Journal oflightwave technology,2009,27(21):4863~4869
    [99] H. Y. Fu, Sunil K. Khijwania, H. Y. Tam, P. K. A. Wai, C. Lu. Polarization maintaining photoniccrystal fiber based all optical polarimetric torsion sensor. Applied Optics,2010,49(31):5954~5958
    [100] Orlando Fraz o, Ricardo M. Silva, Jens Kobelke, Kay Schuser. Temperature-and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber. OpticsLetters,2010,35(16):2777~2779
    [101] Weiguo Chen, Shuqin Lou, Liwen Wang, Hui Zou, Wenliang Lu, Shuisheng Jian. Highlysensitive torsion sensor based on sagnac interferometer using side-leakage photonic crystal fiber.IEEE Photonics Technology Letters,2011,23(21):1639~1641
    [102] Peng Zu, Chi Chiu Chan, Yongxing Jin, et al. A temperature insensitive twist sensor by usinglow-birefriengence photonic crystal fiber based sagnac interferometer. IEEE PhotonicsTechnology Letters,2011,23(13):920~922
    [103] Yun-Jiang Rao, Yi-Ping Wang, Zeng-Ling Ran, Tao Zhu,“Novel fiber-optic sensors based onlong fiber gratings written by high-frequency CO2laser pulses” J. Lightwave Technol.2003,21(5):1320-1327
    [104] Y. P. Wang, D, N, Wang, W.Jin, et al. Asymetric long period fiber fabricated by use of CO2laserto carve periodic grooves on the optical fiber. Appl, Phys, Lett., vol.89, pp151105-151108,2006
    [105] A. Noya, H. G. Park, F. Fornasiero. Nanofluidics in carbon nanotubes, Nanotoday,2007,2(6):22-29[106] M. Pisco, M. Consales, A. Cutolo, et al. Hollow fibers integrated with singlewalled carbon nanotubes:Bandgap modification and chemical sensing capability, Sensors andActuators B,2008,129:163~170[107]姜萌,张伟刚,颜艾东,尚佳彬,碳纳米管涂覆的光纤环衰荡腔探测技术初步研究,中国激光,2010,37(6):1451~1453

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700