磷和砷对蜈蚣草的效应和菜蕨对锰的富集特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了两种蕨类植物在环境胁迫下的效应:无菌条件下砷(As)与磷(P)对蜈蚣草(pteris vittata)配子体的生长发育的影响和盆栽条件下蜈蚣草孢子体对P的吸收特性以及菜蕨(callipteris esculenta)对锰(Mn)的吸收特性,主要结果如下:
     1.高浓度As(大于30 mg/L)能扩大蜈蚣草配子体的假根着生点范围。浓度为900 mg P/L能促进蜈蚣草孢子萌发,增加前期原叶体面积;浓度为1500 mg P/L能使低浓度As扩大假根着生点分布,还可缓解As对配子体的毒害。
     2.当施P量低于250 mg/kg土时,施P量与蜈蚣草生物量呈正相关;当高于250 mg/kg时,施P量与生物量则呈负相关。蜈蚣草中磷主要分布在叶片,其含量在30g P/kg以上,高于多数植物,并且蜈蚣草在P含量很低时仍能存活。
     3.菜蕨植株Mn含量随着Mn添加量的增加而增加,营养叶Mn含量最高可达2510.3 mg/kg,比海金砂高9倍;当Mn添加量大于500 mg/kg时,还可显著提高植株对Mn的富集系数(1.9)。此外,施用Mn肥促进菜蕨植株根部长出小苗。
     4.施Mn量高于300 mg/kg时,施K肥降低菜蕨植株Mn含量,而施用Mn肥则对植株K含量影响很小,但降低孢子叶与根部Mg含量。
     综上所述,As能改变蜈蚣草配子体的假根分布范围,高浓度P能降低As对配子体的毒害作用,磷主要分布在叶片,其含量高于一般植物。菜蕨对Mn有一定的富集能力,施K降低菜蕨植株Mn含量,而施Mn则对植株K含量影响很小。
Effect of arsenic and phosphorus on gametophytes of Pteris vittata under aseptic condition, phosphorus absorption characteristic of potted Pteris vittata and manganese absorption characteristic of potted Callipteris esculenta were studied . Main results were as follows:
     1. Rhizoid distribution of Pteris vittata gametophytes was enlarged by higher arsenic concentration, which was not less than 100mg/kg. Spore germination was accelerated, and prothallium area was increased in 900mg P/L treatment. Rhizoid distribution was enlarged by low arsenic concentration in the condition of the highest phosphorus concentration (1500mg/L).
     2. Pteris vittata Biomass was positively correlative to phosphorus in the condition of phosphorus addition, which was not higher than 250mg/kg soil, but biomass was negatively correlative to phosphorus in the condition of phosphorus addition, which was higher than 250mg/kg soil. Phosphorus concentration mainly existed in pinna, and pinna phosphorus concentration, more than 30g/kg, was more than other common plant's. Furthermore, Pteris vittata can survive in the condition of few phosphorus culture medium.
     3. Callipteris esculenta manganese concentration was increased with manganese increasing. Trophylles manganese concentration was highest, up to 2510.3mg/kg, 9 times higher than lygodium. Manganese bioconcentration factor was significantly enhanced by manganese, whose addition was more than 500mg/kg, and furthermore, little seedling numbers on root were increased by manganese.
     4. Callipteris esculenta manganese concentration was decreased with potassium addition, when Mn addition is more than 300mg/kg, however, plant potassium concentration was effected slightly with manganese addition. Sporophylles and root magnesium concentration were decreased with manganese addition.
     In a word, gametophyte rhizoid distribution was enlarged by arsenic. Arsenic harm to gametophyte was decreased by high phosphorus concentration. Phosphorus concentration mainly existed in pinna, and pinna phosphorus concentration was higher than common plant. Furthermore, Callipteris esculenta can accumulate more manganese, and manganese concentration was decreased with potassium addition, but potassium concentration was effected slightly with manganese addition.
引文
鲍士旦.土壤农化分析(三).北京:中国农业出版社,1999
    陈怀满,等.土壤-植物系统中的重金属污染.北京:科学出版社,1996
    俄胜哲,袁继超,丁志勇,等.氮磷钾肥对稻米铁、锌、铜、锰、镁、钙含量和产量的影响.中国水稻科学,2005,19(5):434-440
    范稚莲,雷梅,陈同斌,等.砷对土壤-蜈蚣草系统中磷生物有效性的影响.生态学报,2006,26(2):536-541
    范稚莲,莫良玉,陈同斌,等.广西典型矿区中植物对Cu、Mn和Zn的富集特征与潜在的Mn超富集植物.地理研究,2007,26(1):125—131
    郭炎,王凯荣,胡荣桂.湘中某锰矿区农田锰污染状况与改良途.农业环境保,1993,12(5):230-232
    韩燕来,李青松,王宜伦,等.河南省大豆品种磷素营养特性的差异研究.干旱地区农业研究,2008,26(1):175—180
    胡克伟,颜丽,关连珠.土壤硅磷元素交互作用研究进展.土壤学报,2004,35(2):230-233
    贾可.磷肥在蔬菜上的产量效应及土壤中磷肥转化的研究:[学位论文].河北:河北农业大学,2004
    李凡庆,毛振伟,朱育新,等.铁芒其植物体稀土元素含量分布的研究.稀土,1992,13(5):16-19.
    凌婉婷,徐建民,高彦征,等.溶解性有机质对土壤中有机污染物环境化学行为的影响.应用生态学报,2004,15(2):326-330
    刘颖茹,陈同斌,黄泽春,等.野外条件下土壤砷浓度对蜈蚣草砷富集特征的影响.环境科学,2005,26(5):181-186
    罗亚平,李明顺,张学洪,等.广西荔浦锰矿区优势植物重金属积累特征.广西师范大学学报(自然科学版),2005,23(4):89-93
    骆永明.金属污染土壤的植物修复.土壤,1999,5:261-265
    孙小凤.镁锰硼铝供应水平对莴苣植株体内养分含量影响研究.青海科技,2005,(4):27-29
    田霄鸿,王朝辉,李生秀.氮钾锰硼的供应水平对莴苣植株累积矿质元素的影响.干旱地区农业研究,1999,17(2):53-58
    铁柏清,袁敏,唐美珍.美洲商陆(Phytolacca Americana L.)——一种新的Mn积累植物.农业科 学学报,2005,24(3):370-343
    万国江,胡其乐,曹龙,等.资源开发环境灾害地球化学——以贵州阿哈湖铁、锰污染为例.地学前缘,2001,4(8):353-358
    王济.贵阳市表层土壤重命属污染元素环境地球化学基线研究.北京:中国科学院研究生院,2004
    韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展.生态学报,2001,21(7):1196-1203
    沃尔什,比顿,周鸣铮(译).北京:农业出版社,1982.57-58
    肖细元,廖晓勇,陈同斌,等.砷、钙对蜈蚣草中金属元素吸收和转运的影响.生态学报,23(8):1477—1487
    薛生国,陈英旭,骆永明,等.商陆(Phytolacca acinosa Roxb.)的锰耐性和超积累.土壤学报,2004,4(6):889-895
    杨肖娥,龙新宪,倪昔钟,等.东南景天(sedum aorredii H)——一种新的锌超积累植物.科学通报,2002,47(13):1004—1006
    丁国营,吴燕玉.土壤环境中重金属的相互作用及其对吸附特性的影响.环境化学,1997,16(1):30-36
    岳庆玲.湖南典型矿区土壤和植物重金属污染研究.陕西:西北农林科技大学,2004
    张会民,刘红霞,王留好,等。钾锰配施对旱地冬小麦植株养分含量及产量和品质的影响。西北农林科技大学学报(自然科学版),2004,32(11):110-113
    张宪政.作物生理研究方法.北京:农业出版社,1992.148—150
    祖艳群,李元.土壤重金属污染的植物修复技术.云南环境科学(增刊),2003,22:58-61
    Alam S,Akiha F,Kamei S,et al.Mechanism of potassium alleviation of manganese phytotoxicity in barley.Journal of Plant Nutrition,2005,28(5):889-901
    Antunes A P M,Watkins G M and Duncan J R.Batch studies on the removal of gold(Ⅲ)from aqueous solution by Azolla filiculoides.Biotechnology Letters,2001,23:249-251
    Assumcao A G,Schat H,and Arats M G M,Thlaspi caerulescens,an attractive model species to study heavy metal hyperaccumulation in plants.New Phytologist,2003,159:351-360
    Baker A J M.,Brooks R R,Pease A J,et al.Studies on copper and cobalt tolerance in three closey related taxa with in the genus Silence L.(Caryophyllaceae)from Zaire.Plant and Soil,1983,73:377-385
    Barcelo J and Poschenrieder C.Phytoremediation:principles and perspectives.Contributions to Science,2003,2(3):333-344
    Benaroya R O, Tzin V, Tel-Orand E, et al. Lead accumulation in the aquatic fern Azolla filiculoides. Plant Physiology and Biochemistry, 2004,42(7-8): 639-645
    Bert V, Meerts P, Saumitou-Laprade P, et al. Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant and Soil, 2003,249: 9-18
    
    Bidwell R G S. plant physiology. (Eds.). New York: Macmillan Publishing, 1979. 264-265
    Bidwell S D, Woodrow I E, Batianoff G N, et al. Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia. Functional Plant Biology, 2002, 29(7): 899-905
    Bidwell S D. Hyperaccumulation of metals in Australian native plants: [Dissertation]. Australia: University of Melbourne, 2000
    Cenni E, Bussotti F and Galeotti L, The decline of a Pinus nigra Arn. reforestation stand on a limestone substrate: the role of nutritional factors examined by means of foliar diagnosis. Annales Des Sciences Forestieres, 1998, 55: 567-576
    Chaney R L, Li Y M, Angle J S, et al. Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry N and Banuelos G S, Editors. Phytoremediation of Contaminated Soil and Water, Boca Raton. FL, USA, 2000,129-158
    Chen T B, Fan Z L, Lei M, et al. Efect of phosphorus on arsenic accumulation in As — hyperaccumulator Pieris vittata L. and its implication. Chinese Science Bulletin, 2002, 47(15): 1156-1159
    Chen T B, Wei C Y, Huang Z C, et al. Pteris vittata L.: an arsenic hyperaccumulator and its character in accumulating arsenic. Chinese Science Bulletin, 2002,47: 207-210
    Cohen-Shoel N, Barkay Z, Ilzycer D, et al. Biofiltration of toxic elements by Azolla biomass. Water, Air, Soil Pollution, 2002,135: 93-104
    Cornara L, Roccotiello E, Minganti V, et al. Level of trace elements in Pteridophytes growing on serpentine and metalliferous soils. Journal of plant nutrition and soil science, 2007, 170: 781-787
    Cunningham S D and Ow D W. Promise and prospects of phytoremediation. Plant Physiology, 1996, 110:715-719
    de Varennes A, Carneiro J P and Goss M J. Characterization of manganese toxicity in two species of annual medics. Journal of Plant Nutrition, 2001, 24: 1947-1955
    Dyer A F. The Experimental Biology of Ferns. (Ed.). London: Academic Press, 1979
    Elizabeth Olivares, Eder Pena, Eunice Marcano, et al. Aluminum accumulation and its relationship with mineral plant nutrients in 12 pteridophytes from Venezuela. Environmental and Experimental Botany, Article in Press, Corrected Proof, Note to users
    Fageria N K. Adequate and toxic levels of copper and manganese in upland rice ,common bean corn, soybean, and wheat grown on an oxisol. Communications in Soil Science and Plant Analysis, 2001, 32(9-10): 1659-1676
    Fischerova Z, Tlustos P and Jirina Szakova KS. A comparison of phytoremediation capability of selected plant species for given trace elements. Environmental Pollution, 2006, 144(1): 93-100
    Fogarty R V, Dostalek P, Patzak M, et al. Metal removal by immobilised and non-immobilised Azolla filiculoides. Biotechnology Technology, 1999, 13: 53-538
    Gureyeva I I. Homosporous ferns of South Siberia. Taxonomy, origin, Biomorphology, PopulationBiology. Tomsk: Tomsk State University Publisher, 2001
    Hocking P J. Response of typha domingensis to salinity and high levels of manganese in the rooting medium. Australian Journal of Marine and Freshwater Research, 1981, 32: 907-919
    Huang Z C, An Z Z, Chen T B, et al. Arsenic uptake and transport of Pieris vittata L. as influenced by phosphate and inorganic arsenic species under sand culture. Journal of Environmental Sciences, 2007,19(6): 714-718
    Jiang W, Liu D and Hou W. Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic (Allium sativum L.). Bioresource Technology, 2001, 76(1): 9-13
    
    Jones Jr J B. Plant Nutrient Manual. Boca Ration, FL, USA: CRC Press, 1998
    Kachenko A G, Singh B and Bhatia N P. Heavy metal tolerance in common fern species. Australian Journal of Botany Volume, 2007, 55: 63-73
    Koyama M, Shriakawa M, Takada J, et al. Trace elements in land plantsxoncentration ranges and accumulators of rare earths, Ba, Ra, Mn, Fe, Co and heavy halogens. The Journal of Radioanalytical and Nuclear Chemistry, 1987,112:489-506
    Kramer U and Chardonnens A N. The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Applied Microbiology and Biotechnology, 2001, 55: 661-672
    Langheinrich U, Tischne R r and Godbold D L. Influence of a high Mn supply on norway spruce (Picea abies (L.) Karst.) seedlings in relation to the nitrogen source. Tree Physiology, 1992, 10: 259-271
    Liu R X, Guo J L and Tang H X. Adsorption of fluoride, phosphate, and arsenate ions on a new type of ion exchange fiber.Journal of Colloid and Interface Science,2002,248(2):268-274
    Ma L Q,Komar K M,Tu C,et al.A fern that hyperaccumulates arsenic.Nature,2001,409(6820):579
    Marschner H,Mineral Nutrition of Higher Plants,London:Academic Press,1995
    McGrath S P and Zhao F J.Phytoextraction of metals and metalloids from contaminated soils.The Current Opinion Joumals,2003,14:277-282
    Meharg A A and Hartley-Whitaker J.Tansley review no.133:arsenic uptake and metabolism in arsenic resistant and nonresistant plant species.New Phytologist,2002,154:29-43
    Meharg A A and Macnair M R.An altered phosphate-uptake system in arsenate-tolerant holcus-lanatus 1.New Phytologist,1990,116:29-35
    Meharg A A and Macnair M R.Suppression of the high-affinity phosphate-uptake system:a mechanism of arsenate tolerance in holcus-lanatus 1.Journal of Experimental Botany,1992,43:519-524
    Meharg A A and Macnair M R.Uptake,accumulation and translocation of arsenate in arsenate-tolerant and nontolerant holcus-lanatus 1.New Phytologist,1991,117:225-231
    Meharg A A,Naylor J and Macnair M R.Phosphorus-nutrition of arsenate-tolerant and nontolerant phenotypes of velvetgrass.Journal of Environmental Quality,1994,23:234-238
    Meharg A A.Variation in arsenic accumulation-Hyperaccumulation in ferns and their allies.New Phytologist,2003,157(1):25-31
    Minguizzi C and Vergnano O.Conteruto di nichel nell ceneri di Alyssum bertolonni.Desv.Atti.Soc.Tosc.Sci.Nat.Mem,1948,55:49-74
    Nowack B and Stone A T.Competitive adsorption of phosphate and phosphonates onto goethite.Water Research,2006,40(11):2201-2209
    Page C N.Ecological strategies in fern evolution:a neopteridological overview.Review of Palaeobotany and Palynology,2002,119(1-2):1-33
    Page C N.Experimental aspects of fern ecology(Ed.).The experimental biology of ferns.London,Academic Press,1979,551-589
    Pollard A J and Powell K D.The genetic basis of metal hyperaccumulation in plants.Critical Reviews in Plant Sciences,2002,21(6):539-566
    Pope C J,Peters W A and Howard J B.Thermodynamic driving forces for PAH isomerization and growth during thermal treatment of polluted soil.Journal of Hazardous Materials,2000,79(1-2):189-208
    Raskin I and Ensley B D.Phytoremediation of toxic metals:using plants to clean up the environment.New York:John Wiley & Sons,Inc.,2000
    Raskin I,Smith R D and Salt D E.Phytoremediation of metals:using plants to remove pollutants from the environment.Current Opinion journals,1997,8:221-226
    Reeves R D and Adigüzel N.Rare plants and nickel accumulators from Turkish serpentine soils,with special reference to Centaurea species.Turkish Journal of Botany,2004,28:147-153
    Reeves R D and Baker A J M.Phytoremediation of toxic metals:using plants to clean up the environment.Metal-accumulating plants,2000,193-229
    Reeves R D.Tropical hyperaccumulators of metals and their potential for phytoextraction.Plant and Soil,2003,249(1):57-65
    Reisenaur H M.Determination of plant-available soil manganese.In:H.M.Graham,R.J.Hannam and N.C.Uren,Editors.Determination of plant-available soil manganese.Kluwer,Dordrecht,1988,87-100
    Rothwell G W.Pteridophytic evolutionan often underappreciated phytological success story.Review of Palaeobotany and Palynology,1996,90:209-222
    Salt D E,Smith R D and Raskin I.Phytoremediation,annual review plant physiology.Plant Molecular Biology,1998,49:643-668
    Schwartz C,Echevarria G and Morel J L.Phytoextraction of cadmium with Thlaspi caerulescens.Plant and Soil,2003,249(1):27-35
    Sharma N C and Sahi S V.Characterization of phosphate accumulation in Lolium multiflorum for remediation of phosphorus-enriched.Soils Environment Science and Technology,2005,39(14):5475-5480
    Shen Z G,Zhao F J,McGrath S P.Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum.Plant,Cell and Environment,1997,20:898-906
    Shi W,Bischoff M,Turco R,et al.Long-term effects of chromium and lead upon the activity of soil microbial communities.Applied Soil Ecology,2002,21(2):169-177
    Singh N and Ma L Q.Arsenic speciation,and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L.and non-hyperaccumulator Pteris ensiformis L.Environmental Pollution,2006,141(2):238-246
    Smith K A and Paterson J E. Manganese and cobalt. In: Alloway B J, Editor. Manganese and cobalt. New York, 1990,224-244
    Solis-Dominguez F A, Gonzalez-Chavez M C, Carrillo R, et al. Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system. Journal of Hazardous Materials, 2007, 141(3): 630-636
    Tu C and Ma L Q. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pieris vittata L. Environmental Pollution, 2005,135 (2): 333-340
    Tu C, Ma L Q, Zhang W H, et al. Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata L.). Environmental Pollution, 2003, 124 (2): 223-230
    Wang H B, Wong M H, Lan C Y, et al. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China. Environmental Pollution, 2007,145(1): 225-233
    Wang J, Zhao F J, Meharg A A, et al. Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiology, 2002, 130: 1552-1561
    Wei C Y, Sun X, Wang C, et al. Factors influencing arsenic accumulation by Pteris vittata: A comparative field study at two sites. Environmental Pollution, 2006, 141 (3): 488-493
    Wei S, Zhou Q and Koval P V. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation. Science of the Total Environment, 2006,369: 441-446
    Weinberg E S and Voeller B R. External factors inducing germination of fem spores. American Fem Journal, 1969,59:153-167
    Wong M H, Lau W M, Li S W, et al. Root growth of two grass species on iron ore tailings at elevated levels of manganese, iron, and copper. Environmental Research, 1983, 30: 26-33
    Wood J M. Biological cycles for toxic element in the environment. Science, 1974, 183:1049-1052
    Xue S G, Chen Y X, Reeves R D, et al. Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environmental Pollution, 2004,131(3): 393-399
    Zhang W H, Cai Y, Tu C, et al. Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Science of the Total Environment, 2002, 300: 167-177
    
    Zhang X, Lin A J, Zhao F J, Xu G Z, et al. Arsenic accumulation by the aquatic fem Azolla: Comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoide. Environmental Pollution,2008,Available online
    Zhao F J,Dunham S J,McGrath S P.Arsenic hyperaccumulation by different fern species.New Phytologist,2002,156(1):27-31
    Zhao F J,Lombi E,Breedon T.Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri..Plant,Cell and Environment,2000,23:507
    Zhao M and Duncan J R.Batch removal of sexivalent chromium by Azolla filiculoides.Biotechnology and Applied Biochemistry,1997,26:172-179
    Zhao M and Duncan J R.Removal and recovery of nickel from aqueous solution and electroplating rinse effluent using Azolla filiculoides.Process Biochemistry,1998,33:249-255
    Zheljazkov V D and Nielsen N E.Effect of heavy metals on peppermint and commint.Plant and Soil,1996,178:59-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700