红霉素衍生物的设计、合成与抗菌活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红霉素A是目前临床上常用的大环内酯类抗生素,主要用于治疗由革兰氏阳性菌引起的呼吸道感染、性病、皮肤以及软组织感染等疾病。但是,其抗菌谱窄、生物利用度差以及胃肠道副反应等缺点限制了红霉素A的应用。八十年代末期问世的第二代大环内酯类抗生素克服了红霉素A对酸不稳定性的缺点,具有抗菌谱广、活性高、药代动力学性质良好、毒副作用小等特点,现已广泛用于临床,其代表药物包括克拉霉素和阿奇霉素等。但是,第二代大环内酯类抗生素与红霉素A一样,对大环内酯耐药菌活性较差。
     目前,研究对大环内酯耐药菌有效的新型大环内酯类衍生物方面,取得重大进展,出现如酮内酯、酰内酯、4″-氨基甲酸酯和2,3-去氢内酯等新型红霉素衍生物。其中,酮内酯类代表药物泰利霉素已于2001年上市,对包括大环内酯耐药菌在内的革兰氏阳性菌显示良好抗菌活性,主要用于呼吸道感染的治疗;6-O-取代酮内酯衍生物Cethromycin的抗菌活性较泰利霉素更好,即将完成临床评价,并可能很快上市。
     本论文的研究工作是以红霉素A和阿奇霉素为先导化合物,通过对红霉素A9-位酮羰基以及阿奇霉素3-位克拉定糖基和其侧链部分进行化学修饰和结构优化,共设计、合成了目标化合物65个,均为未见文献报道的新化合物。
     首先,对阿奇霉素3-位克拉定糖基进行结构改造,通过脱3-位克拉定糖并利用DMAP为催化剂,DCC为缩水剂,进行3-位羟基酯化反应合成了阿奇霉素的酰内酯类衍生物F-1~F-8。
     在合成阿奇霉素4″-氨基甲酸酯衍生物的过程中,通过增加1,1′-羰基二咪唑和无水碳酸钾的投料比例,合成了2′-O-乙酰基-9-脱氧-9α-氮杂-4″-O-(咪唑-1-甲酰基)-9α-甲基-9α-同型红霉素A11,12-环碳酸酯。参照文献合成方法,经2′-O-乙酰基-9-脱氧-9α-氮杂-4″-O-(咪唑-1-甲酰基)-9α-甲基-9α-同型红霉素A11,12-环碳酸酯与不同的伯胺反应合
Erythromycin A has been routinely used to treat upper and lower respiratory tract infections, as well as social disease, skin and soft issue infections caused by gram-positive bacteria. However, erythromycin is hindered by its poor bioavailability, limited spectrum of activity and frequent gastrointestinal side effects. To overcome erythromycin A's limitation, the second-generation macrolide antibiotics, Clarithromycin and Azithromycin, were developed in 1980s. They have enjoyed great clinical success due to their enhanced antibacterial activity, expanded spectrum of activity, improved pharmacokinetic properties and attenuated gastrointestinal side effects as compared to erythromycin. Unfortunately, like erythromycin A, the second-generation macrolide antibiotics have poor activity against macrolide-resistant bacteria.
    Now, the intensive search for the third-generation macrolide antibiotics that overcome the problem of resistance have unveiled four classes of macrolides, termed ketolides, acylides, 4"-carbamates and 2,3-anhydrolides. Telithromycin, which is a ketolide representative and has come into market in 2000, shows good antibacterial activity against gram-positive macrolide-susceptive and -resistant organisms. It has fine acid-stability and is used in the treatment of respiratory tract infection. Cethromycin, which is a 6-O-substituated ketolide, shows improved antibacterial activity compared to Telithromycin and will come into market. These successes demonstrate that modifying the chemical structure of erythromycin is an important approach to finding novel macrolide antibiotics.
    Erythromycin A and Azithromycin were identified as lead compounds in this paper.
引文
[1] 沈萍.《微生物学》.北京:高等教育出版社,2000,37-39
    [2] 沈萍.《微生物学》.北京:高等教育出版社,2000,377-380
    [3] 张致平.抗菌药物研究进展.中国抗生素杂志,2002,27(2):67-79
    [4] 马绪荣,苏德模.《药品微生物学检验手册》.北京:科学出版社,2000,206-208
    [5] 李秀敏.细菌耐药机制研究进展.中国新药杂志,2003,12(1):29-31
    [6] 张致平.治疗革兰氏阴性菌感染药物的研究现状与进展.中国抗生素杂志,2003,28(12):705-711
    [7] Jacoby G, Han P, Tran J. Comparative in vitro activities of carbapenem L-749345 and other antimicrobials against multiresistant gram negative clinical pathogens. Antimicrob. Agents Chemother, 1997, 41(18): 1830
    [8] 胡雪芹,赵凤生,陈代杰.正在开发的碳青霉烯类抗生素.国外医药抗生素分册,2003,24(4):154-158
    [9] Prous JR. DA-1131. Drugs Future, 2001, 26(11): 1040-1045
    [10] Tsuji M, Ishi Y, Shao A. Invitro and in vivo antibacterial activity of S-4661, a new carbapenem. Antimierob. Agents Chemother, 1998, 42(1): 94
    [11] Prous JR. S-4661. Drugs Future, 1998, 23(4): 469
    [12] Graul A, Lee, son P, Castaner J, et al. CS-834. Drugs Future, 1998, 23(3): 261
    [13] Kawamoto Ⅰ. 1-methylearbapenem antibiotics. Drugs Future, 1998, 23(2): 181
    [14] Hashizume T, Hajime M. Design and synthesis of new 1-methylearbapenems. Drugs Future, 2000, 25(8): 833-841
    [15] Prous JR. J-111225. Drugs Future 2001,26(8): 804-807
    [16] Prous JR. J-114870. Drugs Future 2001, 26(8): 804-807
    [17] Hoeehst MR, Wyeth-Ayerst, Yamanonehi. Faropenem sodium. Drugs Future, 1998, 23(6): 672
    [18] Matsttzaki K, Nishiyama T, Hasegawa M, et al. In vitro bactericidal activities of new oral penem, faropenem against the various clinical isolates. Jpn J Antibiot, 1999, 52(5): 431-438
    [19] Uehino H, Tumai I, Yabuuehi H, et al. Faropenem transpot across the renal epithelial luminal membrane inorganic phosphate transporter Npt 1. Antimierob Agents Chemother, 2000, 44(3): 574-577
    [20] Prous JR. Ritipenem aeoxil. Drugs Future, 1999, 24(4): 464-465
    [21] Saito A, Kawakami Y, Yamaguchi E, et al. Comparative study on the efficacy of ritipenem acoxil and eefotialhexetil in chronic lower-respiratoty tract infeetions by the double blind method. Jpn J Antibiot, 1996, 49(3): 219-249
    [22] 国井乙彦,齐藤厚,熊泽净一,他.TMA230前期临床第1相实验成绩.日本化学疗法学会疗法,1995,43(6):655-661
    [23] Mealy N, Castaner J. Solupenem. Drugs Future, 1996, 21(7): 705-710
    [24] Watan K, Kato N, Tanaka-bandoh K, et al. In vitro activities of sulopenem, a new parenteral penem. Jpn J Antibiot, 1996, 49(4): 367-376
    [25] 长岛正人,五岛嵯智子,松本文夫,他.Solupenem特集.Jpn J Antibiot,1996,49(4):303·320
    [26] Fabio V, Elena P, Massimo DL, et al. In vitro antibacterial activity of MEN10700, a new penem antibiotic. Chemotherapy, 1999, 45(6): 405-410
    [27] Hamilton-Miller JMT, Shah S. Comparative anti-anaerobic activity of MEN10700, a penem antibiotic. Int J Anfimicrob Agents, 1998, 10(4): 321-324
    [28] Hamilton-Miller JMT Shah S. In vitro microbiological assessment of a new penem, MEN10700. J Anfimicrob Chemother, 1997, 39(5): 575-584
    [29] Clemett D, Markham A. Linezolid. Drugs, 2000, 59(4): 815-827
    [30] Bricker SJ, Hutchinson D, Barbachyn MR, et al. Synthsis and anfibacterialactivity of U-100592 and U-100766, two oxazolidinone antibacterial agents for the potential treatment of multiresistant gram-positive bacterial infections. J Med Chem,1996, 39(3): 673-685
    [31] Drago L, Devecchi E, Valii M, et al. Effect of linexolid in comparison with that of vancomycin on glycocolyx production in vitro study. Antimicrob Agents Chemother, 2002, 46(2): 598-602
    [32] Szczpa K, Bethejewska K, Nowak K, et al. In vitro activity of linezolid against gram-positive cocci isolated in Poland. J Antimicrob Chamother, 2001,48(6): 932-936
    [33] Banm SE, Crawford SA, McElmeel ML, et al. Comparative activities of the oxazolidinone AZD2563 and linezolid against selcted recent north American isolates of Straptococcus pneumoniae. Aurimicrob Agents Chemother, 2002, 46(9): 3094-3095
    [34] Anderegg TR, Biedenbach DJ, Jones RN. In vitro evaluation of AZD2563, a novel oxazolidinone, against 603 recent staphylococcal isolates. Anrimicrob Agents Chemother, 2002, 46(8): 2662-2664
    [35] Elioppoulos GM, Wennersten CB, Mocellering RC. In vitro activity of thje new oxazolidinone AZD2563 against enterococci. Anrimicrob Agents Chemother, 2002, 46(10): 3273-3275
    [36] Peric M, Lin G, Clark CL, et al. Antipneumococcal activity of AZD2563, a novel oxazolidinone, compared with nine other agents. J Antimicrob Chemother, 2002, 50(1): 95-100
    [37] Edine LM, Jacobs MR, Appolbaum PC. Antianaerobic activity of AZD2563, a novel oxazolidinone, compared with eight other agents. J Antimicrob Chemother, 2002, 50(1): 101-105
    [38] Flnit AC, Schmitz FJ, Verhoef J, et al. In vitro aotivityjof AZD2563, a novel oxazolidinone, against European gram-positive cocci. J Antimicrob Chemother, 2002, 50(2): 271-274
    [39] 李荣坡,周伟澄.噁唑烷酮类抗菌药构效关系新近展.中国新药杂志,2003,12(9):694-699
    [40] 张致平.治疗革兰氏阳性菌感染药物的研究现状与进展.中国抗生素杂志,2003,28(4):193-203
    [41] Ranboxy Laboratories Ltd. RBx-7644. Drugs Future, 2003, 28(11): 1070-1077
    [42] Snydman DR, Jacobus NV, McDernott LA, et al. In vitro activities of newer quinolones against bateriodes group organisms. Anrimicrob Agents Chemother, 2002, 46(10): 3276-3279
    [43] Wakunaga Pharmaceutical Co., Ltd. ABT-492. Drugs Future, 2002, 27(11): 1033-1038
    [44] Low DE, Muller M, Duncan CL, et al. Activity of BMS-284756, a novel des-fluoro(6) quinolone, against staphylococcus aureus, including contributions of mutation to quinolone resistance. Anrimicrob Agents Chemother, 2002, 46(4): 1119-1121
    [45] 郑忠辉,金洁,刘浚,武燕彬.吡啶酮类抗菌候选药物ABT-719和A-170568.中国新药杂志,2003,12(9):691-694
    [46] Paul AA, Kenneth K. Preparation of peptide hydroxamic acid or N-formylhydroxylamine derivatives as antibacterial agents, WO 03 89412, 2003-10-30
    [47] Raymond BP, Steven L, Gilles P, et al. Hydroxamie acid or N-formylhydroxylamine derivatives as inhibitors of bacterial polypeptide deformylase for treating microbial infections, WO 02 41886, 2002-5-30
    [48] Beger DL, Fink BE, Hedrick MP. Total synthesis of distamysin A and 2640 analogues: a solution-phase combinatorial approach to the discovery of new bioactive DNA binding affinity or DNA binding sequence selectivity. J Am Chem Soc, 2000, 122(27): 6382-6394
    [49] Sharma SK, Narayan Roddy BS, Lown JW. Approaches to develop DNA seguence-specific agents. Drugs Future. 2001, 26(1): 39-49
    [50] Dyatkina NB, Roberts CD, Keicher JD, et al. Minor groove DNA binders as antimicrobial agents. 1. Pyrrol. Tetraamides are potent antibacterials against vancomycin resistant enteroccoci and methicillin resistant staphylococcus aureus. J Med Chem, 2002, 45(4): 805-817
    [51] Ge Yigong, Difuntorum S, Touami S, et al. In vitro antimicrobial activity of GSQ 1530, a new heteroaromatic polycyclic compond. Antimicrob Agents Chemother, 2002, 46(10): 3168-3174
    [52] Kaizerman JA, Gross MI, Ge Yigong, et al. DNA binding ligands targeting drug-risistant bacteria: structure, activity and pharmacology. J Med Chem, 2003, 46(18): 3914-3929
    [53] Neu HC. Macolides: Chemistry, Pharmacology and Clinical Uses, (Eds.: Bryskier, A.J, Butzer, J.P., Neu, H.C., et al. Arnette Blackwell: Pairs, 1993
    [54] McGuire JM, Bunch RL, Anderson RC, et al. Ilotycin, a new antibiotic. Antibiot. Chemother, 1952, 2:281-283
    [55] Harris DR, McGeachin SG, Mills HH. The structure and stereochemistry of erythromycin A. Tetrahedron Latter, 1965:679-685
    [56] Corey EJ, Hopkins PB, Kims N, et al. Total synthesis of erythromycin 5. total synthesis of erythromycin A. J Am Chem Soc, 1979, 101:7131-7134
    [57] Brisson-Noe A, Trieu-Cuot P, Courvalin P. Mechanism of acrion of spiramycin and other macrolides. J Antimicrob Chemother, 1988, 22 (suppl. B): 13-23
    [58] 张致平.大环内酯类抗生素的研究进展.国外医药抗生素分册,1997,18(2):81-86
    [59] Omura S, Tanaka H. Macrolide antibiotics, chemistry, biology and practise, (Ed.: Omura, S.), Academic Press: New York, 1984
    [60] Kurath P, Jones PH, Egan RS, et al. Acid degradation of erytlu'omycin A and erythromycin B. Experentia, 1971, 27(5): 362-368
    [61] Morimoto S, Takahashi Y, Watanabe Y, et al. Chemical modification of erythromycin, synthesis and antibacterial activity of 6-O-methylerythromycin A. J Antibiot, 1984, 37:343-345
    [62] Chantot, JF, Bryskier A, Gasc JC. Antibacterial activity of roxithromycin: a laboratory evaluation. J Antibiot, 1986, 39(5): 660-668
    [63] Retsema, JA, Girard AE, Schekly W, et al. Spectrum and mode of action of azithromycin (CP-62993), a new 15-membered-ring macrolide with improved potency against gram negative organisms. Anfimicrob. Agents Chemother, 1987, 31(12): 1939-1947
    [64] Massey EH, Kitchell RS, Martin LD, et al. Antibacterial activity of 9(S)-erythromycylamine-alde -hyde condensation products. J Med Chore, 1974, 17(1): 105-107
    [65] Toscano L, Fioriello G, Silingarcli S, et al. Preparation of 8-(S)-8-flouroerythronolide A and B, potential substrates for the biological synthesis of new macrolide antibiotics. Tetrahedron, 1984, 40(11): 2177-2181
    [66] Freiberg LA, Edward CM, Bacino D J, et al. 29th Intersci. Conf. Antmmicrob. Agents Chemother.(1989), Houston, T.X. Abstr. No. 1029
    [67] Baker WR, Clark JD, Stephens RL, et al. Modification of macrolide antibiotics. Synthesis of 11-deoxy-11-(carboxyamino)-6-O-methylerythromycin A 11,12-(cyclic esters) via intermolecular Michael reaction of O-carbamates with an unsaturated ketone. J Org Chem, 1988, 53:2340-2348
    [68] Baker WR, Clark JD, Stephens RL, et al. Semisynthetic erythromycin antibiotics. US 4742049 1988
    [69] Brighr GM, Nagel AA, Bordner J, et al. Synthesis in vitro activity of novel 9-deoxo-9a-aza-ga-homo erythromycing A derivatives. J Antibiot, 1988, 41(8): 1029-1047
    [70] Lartey PA, DeNinno SL, Faghih R, et al. Synthesi and actvityof C-21 alkylamino derivatives of 9(R).crythromycylamine. J Antibiot, 1992, 45(3): 380-385
    [71] Jones AB. New macrolide antibiotics: synthesis of 14-membered azalide. J Org Chem, 1992, 57(16): 4361-4367
    [72] Lonks JK, Medeiros AA. High rates of erythromycin and clarithromycin resistance among strephylococus pneumoniae isolates from blood cultures from providence. Antimicrob. Agents Chemother, 1993, 37(9): 1742-1745
    [73] Lai C, Weisblum B. Alterred methylation of ribosomal RNA in an erythromycin-resistant strain of staphylococcus aurous. Proc Nat Acad Sci USA, 1971, 68:856-860
    [74] Barthelemy P, Antissier D, Gerbaud G, et al. Enzymic hydrolysis of erythromycin by a strain of Ecsherichia coil Anew mechanism of resistance. J Antibiot, 1985, 3712:1692-1699
    [75] Yan W, Taylor D. Characterization of erythi'omycin resisrance in Campylobacter jejini and Campylobacter coli. Antimicrob. Agents Chemother, 1991, 35(10): 1989-1996
    [76] Chu DTW, Platter JJ, Katz L. New direction in antibacterial research. J Meal Chem, 1996, 39(20): 3853-3874
    [77] Tanikawa T, Asaka T, Kashimura M, et al Synthesis of antibacterial activity of acylides (3-O-acyl-erytromyin derivatives): A novel class of macrolide antibiotics. J Meal Chem, 2001, 44(22): 4027-4030
    [78] Wu Y-J, Su W-G. Current developments on ketolides and macrolides. Current Med Chem, 2001, 8(14): 1727-11758
    [79] Allen NE. Macrolide resistance in Staphylococcus aureus, inducers of macrolide resistance. Agents Chemother., 1977, 11:669-675
    [80] Pestka S, Vince R, LeMahieu R, Weiss F, et al. Introduction of erythromycin resistace in Staphylococcus aureus by erythromycin derivatives. Antimicrob Agents Chemother, 1976, 9: 128-130
    [81] LeMahieu R, Cason M, Kierstead RW. Glycoside cleavage reaction on erythromycin A. Preparation oforythronolide A. J Med Chem, 1974, 17:953-956
    [82] LeMahieu R, Pestka S. Effect of erythromcin analogues on binding of [~(14)C]erythromycin to Ercherichia coli ribosomes. Antimicrob Agents Chemother, 1974, 6:479-488
    [83] Agouridas C, Denis A, Auger JM, et al. Synthesis and antibacterial activity of ketolides (6-O-methyl-3-oxoerythromycin derivatives): a new class of antibacterial highly potent against macrolide-resistant and -susceptible respiratory tract pathogens. J Med Chem, 1998, 41: 4080-4100
    [84] Baker WR, Clark JD, Stephens RL, et al. Modification of macrolide antibiotics. Synthesis of 11-deoxy-11-(carboxyamino)-6-O-methylerythromycin A 11,12-(cyclic ester) via an intramolecular Michael Reaction of O-carbamates with an α, β-unsturated ketone. J Org Chem, 1988, 53: 2340-2345
    [85] Femandes PB, Baker WR, Freiberg LA, et al. New macrolides active against Strephylococcus pyogenes with inducible or constitutive type of maerolide-linesamide-streplogramin B resistance. Antimicrob Agents Chemother, 1989, 33(1): 78-81
    [86] George G, Yat SD, Dabiel JWC, et al. 3-Keto-11,12-carbazate derivatives of 6-O-methyl erythromycin A, synthesis and in vitro activity. J Antibiot, 1996: 495-465-
    [87] Constantin A, Alain B, Francois CJ, et al. Erythromycin derivatives as medicaments. EP 596802, 1994
    [88] Constantin A, Alain B, Francois CJ, et al. Erythromycin derivatives as antibaeterieide. EP 676409, 1995
    [89] Constantin A, Francois CJ, Alexis D, et al. Erythromycin derivatives their process of preparation and their use as medicament. EP 680967, 1995
    [90] Constantin A, Francois CJ, Alexis D, et al. Preparation of erythromycins as bactericides. FR2732684, 1996
    [91] Xiong Y-Q, Le TP. Telithromycin(HMR3647): the first ketolide antibiotic. Drugs of today, 2001, 37(9): 617-628
    [92] Or YS, Clark RF, Wang S, et al. Design, synthesis,and antimicrobial activity of 6-O-substituted ketolides active against resistant respiratory tract pathogens. J Med Chem, 2000, 43(8): 1045-1049
    [93] Chang YL, Con NH, Lin MF, et al. Determination and pharmacolinetic study of meropenem in rat bile using on-line microdialysis and liquid chromatography. Chromatographia A, 2002, 96(1): 119-125
    [94] Zhanel GG, Waiters M, Noreddin A, et al. The ketolides. Drugs, 2002, 6(12): 1771-1804
    [95] Singh KV, Malathum K, Murray BE. In vitro activities of a new ketolide, ABT-773, against multidrug-resisrant gram-positive cocci. Anfimicrob Agents Chemother, 2001, 45(12): 3640-3643
    [96] Ma Z-K, Clark RF, Braze,ale A, et al. Novel eryhromycin derivatives with aryl group tethered to the C-6 position are potent protein synthesis inhibitors and active against multidrug-resistant respiratory pathogens. J Med Chem, 2001, 44(24): 4137-4156
    [97] Barry A, Fuchs PC, Brown S. In vitro activity of the ketolide ABT-773. Antimicrob Agents Chemother, 2001, 45(10): 2922-2924
    [98] Strigl S, Robin PH, Reznik T, et al. In vitro activity of ABT-773, a new ketolide antibiotics against chlamydia pneumoniae. Antimicrob Agents Chemother, 2000, 44(4): 1112-1114
    [99] Keyes RF, Carter JJ, England EE, et al. Synthesis and antibacterial activity of 6-O-arylbutynyl ketolides with improved activity against some key erythromycin-resisrant pathogens. J Med Chem, 2003, 46(10): 1795-1798
    [100] Ma Z-K, Nemoto PA. Discovery and development of ketolides as a new generation of macrolide antimicrobial agent. File: :A//acyl...\Design,synthesis and antibacterial activity of 6-o-substituted ketolides.ht 03-1-7
    [101] Dennis A, Boanefoy A. Novel fluoroketolides, synthesis and antibacterial activity. Drugs Future, 2001, 26(10): 975-984
    [102] Kaneko T., Su W-G, Wu Y-J. Preparation ofcarbamate and ketolide erythromycins, WO 00 17218, 2000
    [103] 张建民,杨秀珍.酮内酯类抗生素的研究进展.国外医药抗生素分册,2004,25(4):181-187
    [104] Wu Y-J, Su W-G. Current development on ketolides and macrolides. Curr Med Chem, 2001, 8(14): 1727-1758
    [105] 顾觉奋,高捷.大环内酯类药物抗性基因及新药研究进展.药物生物技术,2001,8(2):112-116
    [106] Elliott RL, Prieh D, Griesgraber G, et al. Anhydolide macrolides. 1. Synthesis and antibacterial activiy of 2,3-anhydro-6-O-methyl-11,12-carbamate erythromycin A analogues. J Med Chem, 1998, 41:1651-1659
    [107] Griesgraber G, Kramer MJ, Elliott RL, et al. Anhydolide macrolides. 2. Synthesis and antibacterial activiy of2,3-anhydro-6-O-methyl-11,12-carbamate erythromycin A analogues. J Med Chem, 1998, 41:1660-1670
    [108] 胡兴成,丁正.新红霉素衍生物.国外医药抗生素分册,1996,17(4):285-288
    [109] 李显志,王浴生.第一个15元环大环内酯类抗生素Azithromycin.国外医药抗生素分册,1991,12(2):118-125
    [110] 傅燕芳,吴景汾.大环内酯类抗生素的新品种.国外医药抗生素分册,1994,15(2):111-114
    [111] Hanske JR, Bright GM. Azahomoerythromycin B derivatives and intermediates thereof. EP 0136, 831, 1984-04-10
    [112] Timms GH, Wildsmith E. The reduction of oximes with tervalent titanium, a mild deoximation procedure and the partial synthesis of eryfhromycylamine. Tetrahodron Letter, 1971, 2:195-198
    [113] Leeds JP, Kirst HA. A mild single-step reduction of oxime to amines. Synth. Commun, 1988, 18(8): 777-782
    [114] Massey EH, Kitchel BS, Martin LD, et al. Antibacterial activity of 9(S)-erythromycylamine-aldehde condensation products. J Med Chem, 1974, 17(1): 105-107.
    [115] Y Bing wei V. Intermodiate for azithromycin. WO 26758, 1994-03-14
    [116] Asaka T, Tanikawa T, Kashimura M, et al. Synthesis and antibacterial activity of acylides (3-O-acyl-erythromycin derivatives), a novel class of macrolide antibiotics. J Med Chem, 2001, 44: 4027-4030.
    [117] Hamilton CS, Alberty RA. Furylaerylic acid. Org Syn, 1955, Coil Vol 3:425-427
    [118] Mory R, Schenkel H. Zur kenntnis der thiazol-essigsauren. Helvetica Chimica Acta, 1950, 33(2): 405-4410
    [119] Brighty KE, Kaneko T, Linde RG, et al. Erythromycin derivatives. EP 0 895,999, 1997-05-23
    [120] James C, Mary SN, William DG. 5-Methyl furfuryldimethylamine. Org Syn, 1963, Col Vol 4: 626-627
    [121] Dox AW. Acetamidine hydrochloride. Org Syn, 1941, Coll Vol 1:5-7
    [122] Compbell SF, Hardstone JD, Palmer MJ. A covenient synthesis of 2,4-diaminoquinoline derivatives. Tetrahodron Letter, 1984, 25(42): 4813-4816
    [123] Bose AK, Grcer F, Gets JS, Price CC. Some derivatives of glycineamidine. J Org Chem, 1959, 24: 1309-1317.
    [124] Bredereck H, Effenberger F, Hofmann A. Erwin ferber und hans bendix: Zer kenntnis der 4-amino-cyclohexyl-essigsaure. Chemische Berichte, 1939:847-846
    [125] Meyers AI, Fuentes LM, Yoshikazu Kubota. Enantioselective alkylation of α-amino carbanions. The synthesis of(S)-1-alkyl-1,2,3,4-tetrahydroisoquinolines. Tetrahedron, 1984, 40(8): 1361-1370
    [126] Lin YJ, Qiu ZM, Duan HF, et al. Ionic liquid solvent based on cyclic guanidinium cation for nucleophlic displacement reations. Chore Res J Chinese Universities, 2004, 20(1): 46-49
    [127] Meyers AI, Bose M, Dickman DA, et al. (S)-N,N-dimetyl-N' -(1-tert-butoxy-3-methyk-2-butyl) formamidine. Org Syn, 1988, 67: 52-59.
    [128] Herrbst RM, Shemin D. Acetylglycine. Org Syn, 1943, Coil Vol 2:11-12
    [129] Hans-G Bier. N-Formyl piperidine. Beilsteins Handbuch der Orgamchen Chemiie, 1978, Springer-Verlag Berlin, Heidelberg, Now York
    [130] Olin SS, Breslow R. 6-(Dimetylamino)fulvene. Org Syn, 1973, Coil Vol 5:431-433
    [131] Abdulla RF, Brinkmeyer RS. The chemistry of formamide actals. Tetrahedron, 1979, 35: 1675-1735
    [132] Lucier JJ, HarrinAD, Korosec PS. N-methylbutylamiae. Org Syn, 1973, Coil Vol 5:736-737
    [133] Wawzonek S, Sckillip W, Peterson CJ, et al. N-methylethylamine. Org Syn, 1973, Coil Vol 5: 758-759
    [134] Omura S, Neszmelyi A, Sangare M, et al. Conformational homogeneity in solution of 14-membered macrolide antibiotics evidenced by ~(13)C-NMR spectroscopy. Tetrahodron Letter, 1975, 34:2939-2942
    [135] Djokic S, Kobrehel G, Lazarevski K, et al. Erythromycin series part Ⅱ, ring expansion of erythromycin A oxime by the Beckmann rearrangement. J Chem Soc Perkin trans Ⅰ, 1986, 11: 1881-1890
    [136] Kirst HA, Wind JA, Leeds WJ, et al. Synthesis and structure-activity relationship of 9-N-alkyl derivatives of 9(S)-erythromycylamine. J Med Chem, 1990, 33(11): 3086-3095
    [137] Bright GM, Nagel AA, Bordeer J, et al. Synthesis, in vitro and in vivo activity of novel 9-deoxo-9a-aza-9a-homoerythromycin A derivatives, a new class of macrolide antibiotics, the azalides. J Antibiotics, 1988, 16(8): 1029-1047
    [138] Yang BV, Golsmith M, Rizzi JP. A novel product from beckmann rearrangement of erythromycin A 9(E)-oxime. Tetrahedron Letter, 1991, 35(19): 3019-3025

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700