11种湿地植物在污染水体中的生长特性及对水质净化作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地植物作为水生态系统的重要组成部分,具有重要的生态功能。近年来,植物修复技术因其造价低、效果好而越来越多地被运用于各种重污染水体的净化和修复。已有的研究结果表明,湿地植物对水质的净化作用,与植物的生长状况、根系发达程度、光合效率和根系泌氧等生理生态特性之间存在密切相关。但植物的生理生态特性如何影响植物的净化作用,以及哪些因子对植物净化能力有重要影响,尚不清楚。因此,本研究主要从植物生理生态学角度探讨湿地植物对污染水体的适应机制及对水质净化的作用,以期为植物修复技术在水污染处理中的应用提供更多理论依据。
     本研究通过室内水培试验,以不同生长特性和不同根系结构的11种湿地植物为对象(包括根茎型挺水植物黄菖蒲、美人蕉和梭鱼草,须根型挺水植物风车草、香根草和象草,以及木榄、桐花树、老鼠勒、秋茄和无瓣海桑等红树植物),以氮、磷和有机物为污染负荷,通过对植物的一些生理生态特性进行测定和分析,得到如下主要结论:
     1.脯氨酸可作为指示植物抗逆性强弱的一项生化指标。本研究11种湿地植物的脯氨酸积累倍数显示,污染负荷对红树湿地植物产生的胁迫大于挺水湿地植物,5种红树湿地植物中的无瓣海桑和木榄的抗逆性相对较强,6种挺水湿地植物则具有相似的抗逆能力。而污染负荷对湿地植物生长的抑制主要表现在对茎叶生物量的抑制,11种湿地植物的相对生长速率(RGR)大小排序为:美人蕉≈香根草≈黄菖蒲>象草≈风车草>梭鱼草>无瓣海桑≈老鼠勒≈秋茄>桐花树≈木榄。
     2.湿地植物在生长过程中大量吸收可溶解态的氮、磷等营养元素,N和P吸收量范围为:1.05~146.55 mg/m2·d和0.34~13.91 mg/m2·d,不同植物间氮、磷吸收量的差异主要来自生物量的差异。11种湿地植物水上茎叶部分生物量均占总生物量的70%以上,部分挺水湿地植物的比例甚至达90%以上,呈现良好的生物量分布。
     3.根孔隙度与脯氨酸积累倍数呈极显著正相关关系(p<0.01),表明根孔隙度一定程度上也可作为植物抗逆性指标。其中红树植物根孔隙度最大,为17.70~43.79%;其次是根茎型湿地植物,10.75~32.49%;须根型湿地植物孔隙度最小,仅为9.95~15.43%。而6种挺水湿地植物根系泌氧率与孔隙度表现出极显著的线性相关关系(p<0.01),即孔隙度大的根茎型植物泌氧率高,为84.69~205.25μmol O2d-1g-1DWroot;而孔隙度较小的须根型植物泌氧率较低,为12.50~111.23μmol O2d-1g-1DWroot。从而推测孔隙度最大的红树植物具有更高的泌氧率。湿地植物总泌氧量越大,越有利于根系好氧微生物的作用以及植物根系对可溶解态氮、磷的吸收。
     4.PSⅡ最大光化学量子产量(Fv/Fm),反映了植物的潜在最大光合能力,正常生理状态下一般认为在0.8-0.85之间。在本研究试验期间,黄菖蒲、美人蕉、梭鱼草、风车草和香根草的Fv/Fm值维持在正常生理水平,表明该5种挺水植物对污染负荷的耐受能力。而5种红树植物的Fv/Fm值呈现先下降后上升的趋势,表明随着试验时间的延长,红树植物表现出对污染负荷条件的适应。PSⅡ的实际量子产量(Yield)反映了植物的实际光合效率。试验后期,黄菖蒲、美人蕉、梭鱼草和风车草的Yield值最高,表明具有最高的光合效率,其次是5种红树湿地植物,象草和香根草Yield值最低。光合效率越高的植物,其通过光合作用将氧传输至水下根部,有利于植物根系向更深的缺氧区域深入。因此,光合效率较高的黄菖蒲、美人蕉和梭鱼草,其根系可向下分布至15~20 cm的区域,香根草、风车草和5种红树植物则分布至10~15 cm区域,象草根系仅分布在0~6 cm区域。而根系分布范围越大,越有利于硝态氮和可生化有机物的好氧和厌氧的生物降解作用同时进行。
     5.对污染物去除效率的影响因子进行逐步回归分析,进一步证实:湿地植物可通过抗氧化酶系统的作用(脯氨酸积累)适应污染胁迫条件,并在生长过程中吸收可溶性氮、磷于茎叶部分积累,对氮、磷去除有重要贡献;植物根系生物量和总泌氧量对氨氮的硝化起重要影响;而光合作用则主要影响湿地植物对硝氮和可生化有机物的降解。
     6.综合评价11种湿地植物在本研究两个污染负荷条件下的表现,结果显示11种湿地植物在低污染负荷条件下的表现均优于高污染负荷条件,而6种挺水植物要普遍优于5种红树植物。其中美人蕉低负荷条件下的表现最佳;而象草高负荷条件下的表现最差。
     7.利用填料和湿地植物构建强化型生态浮床,对南方重污染城市河流进行原位修复。其中,湿地植物RGR排序为:美人蕉>再力花≈风车草>梭鱼草≈黄菖蒲。植物生长过程中吸收的氮、磷量分别为136.99~356.16 mg/m2·d和21.37~63.01 mg/m2·d.植物具有良好的根系分布,达到20 cm以下区域。而通过质量恒算法获得植物氧输送率为35.85-57.08 g O2·m-2·d-1,表明湿地植物对浮床系统净化效果的重要作用。
     综上所述,根系泌氧和植物体内的抗氧化酶系统一起组合成湿地植物对污染负荷的适应机制;而在水质净化过程中,发达的植物根系生物量保证了植物对可溶性氮、磷的吸收作用,根系泌氧促进了污染物的好氧降解,而光合作用主要影响硝氮和可生化有机物的降解。本研究可为植物修复技术应用需求提供参考。
As an important component of the aquatic ecosystem, wetland plants have important ecological functions, In recent years, phytoremediation technology is increasingly being used in the purification and restoration of heavily polluted water because of its low cost and high efficiency. Previous studies have showed significant corelation between water purification ability and physioecological characteristics, such as growth characteristics, root features, photo synthetic efficiency, root oxygen loss, and so on. But it remains unclear how these factors effect on water purification, and which one plays the leading role. Therefore, this study was carried out to investigate the adaptation mechanism and roles of wetland plants in wastewater purification from the angle of physiological ecology. The aim was to provide theory basis for the application of phytoremediation technology in wastewater treatment.
     We have drawn conclusions as follows after hydroponic experiments under greenhouse conditions and filed application, which were related to the activities for the growing features, physioecological characteristics and decontamination efficiency of 11 species of wetland plants. These plants were three kinds of rhizomatic root plants (Canna indica, Iris pseudacorus and Pontederia cordata), three kinds of fibril root plants (Cyperus alterniflius, Vetiveria zizanioiaes and Pennisetum americanum) and five mangroves (Sonneratia apetala, Acanthus ilicifolius, Kandelia candel, Aegiceras corniculatum and Bruguiera gymnorrhiza).
     Firstly, proline can be used as an indicator to indicate the tolerance ability of plants. The change of poline concentration in these 11 species of plants have showed that, the stress to wetland plants grown in high concentration sewage was higher than that in low concentration, while the stress to mangroves was higher than emerged plants. This stress was found mainly to reduce the above-water biomass of wetland plants. The relative growth rates (RGR) order of the 11 species of wetland plants was C. indica≈V. zizanioiaes≈I. pseudacorus> P. americanum≈C. alterniflius> P. cordata> S. apetala≈A. ilicifolius≈K. candel> A. corniculatum≈B. gymnorrhiza.
     Secondly, plants can absorb soluble nitrogen and phosphorus during growth process. The total gross absorption for N and P was estimated to be 1.05 to 146.55 and 0.34 to 13.91 mg/m2·d. The difference of N and P accumulation by plants mainly came from the biomass differences. The plants have showed good biomass distribution, the stem and leaf biomass accout for over 70% of the total biomass.
     Thirdly, there was significant positive correlation between root porosity and proline accumulation (p< 0.01). The root porosity also can be used as a tolerance index of plants in a way. Of all these plants, mangroves stood out for its highest root porosity (17.70 to 43.79%), followed by rhizomatic root plants (10.75 to 32.49%). The lowest one was the fibril root plants, only 9.95 to 15.43%. There was significant positive correlation between the root of radial oxygen loss (ROL) rate and porosity of 6 species of emerged plants (p< 0.01), ie the ROL rate of high root porosity (rhizomatic root plants) was higher than the low one (fibril root plants), which were 84.69 to 205.25 and 12.5 to 111.23μmolO2d-1g-1DWroot, respectively. The larger the total ROL amount, the more active the aerobic rhizospherebacterial, which was also useful for the root to absorb more soluble nitrogen and phosphorus.
     Fourthly, PSⅡmaximum photochemical efficiency (Fv/Fm) value, reflected the potential maximal photosynthetic capacity of plants. For C. indica, I. pseudacorus, P. cordata, C. alterniflius and V. zizanioiaes, their Fv/Fm values have maintained between 0.80 to 0.85, showing the normal physiological condition. The Fv/Fm value of mangroves decreased firstly and then increased, it suggested the adaptability of pollutants. The Yield value reflected the actual photosynthetic efficiency, so the higher the Yield value, the higher the photosynthetic efficiency. Of all these plants,I. pseudacorus, C. indica, P. cordata and C. alterniflius stood out for their highest photosynthetic efficiency, and then were five mangroves; the lowest were V. zizanioiaes and P. americanum. For the high photosynthetic efficiency plant, it was much easier for the above-water part of the plant to transport oxygen down to the root system to help the root to reach deeper anoxic area. Therefore, for I. pseudacorus, C. indica and P. cordata, their roots can reach upper 15 to 20 cm layer, and V. zizanioiaes, C. alterniflius and five kinds of mangroves, can reach upper 10 to 15 cm layer, but the root of P. americanum was below 6 cm. In addition, as the roots distribution deepened, the aerobic and anaerobic biodegradation of nitrate nitrogen and biochemical organic compounds could take place at the same time and show better performance.
     Fifthly, Stepwise regression analysis showed that:antioxidant enzyme in plant tissues was a very efficient and important mechanism for tolerance and adaptability of wastewater by wetland plants. Nitrogen and phosphorus accumulation in stem and leaf have made an important contribution to nitrogen and phosphorus removal. Root biomass and the total ROL amount had important effect on nitrification, and photosynthesis plays an important role in degradation of nitrate nitrogen and biochemical organic compounds.
     Sixthly, Principal component analysis (PCA) showed that:(a) the performance of these 11 species of wetland plants was better in low concentration sewage than in high concentration; (b) the 6 species of emerged plants was better than the 5 mangroves in low concentration sewage, of which C. indica have the highest photosynthetic efficiency, the largest biomass and the deepest root distribution. And the P. americanum performed the worst in high concentration sewage.
     Seventhly, we have been trying to establish an enhanced ecological floating bed system by using fillers and wetland plants, hoping to restore the water quality of the heavily polluted south urban tidal rivers in situ. As a result of our observation and monitoring, the RGR order of the wetland plants was C. indica> Thalia dealbata≈C. alterniflius> P. cordata≈I. pseudacorus. N and P were removed by mowing the above water-part of the plants, the total gross was estimated to be 136.99 to 356.16 and 21.37 to 63.01 mg/m2·d, respectively. Wetland plants showed good root distribution that can reach upper 20 cm layer. Finally, the oxygen-transfer rates was estimated, which was 35.85 to 57.08 gO2·m-2·d-1. Wetland plants showed the advantages of improving the treatment effect of pollutants.
     In conclusion, antioxidant enzymes in plant tissues combined ROL from roots are very efficient and important mechanisms for tolerance and adaptability of pollutants (N, P and organic compounds) by wetland plants. Well developed root system keeps the nitrogen and phosphorus absorption, root oxygen loss improves the aerobic biodegradation, and photosynthesis plays an important role in degradation of nitrate nitrogen and biochemical organic compounds. This study can provide reference for application of phytoremediation technology.
引文
1. Armstrong J, Armstrong W. Rice:sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Annals of Botany,2005,96:222-232
    2. Armstrong J, Armstrong W, Wu Z. A role for phytotoxins in the Phragmites die-back syndrome? Folia Geobot Phytotax,1996,31:127-142
    3. Armstrong W, Strange ME, Cringle S, Beckett PM. Microelectrode and modeling study of oxygen distribution in roots. Annals of Botany,1994,74:287-299
    4. Bezbaruah AN, Zhang TC. Quantification of oxygen release by Bulrush (Scirpus validus) roots in a constructed treatment wetland. Biotechnology and Bioengineering,2005,89:308-318
    5. Bojcevska H, Tonderski K. Impact of loads, season, and plant species on the performance of a tropical constructed wetland polishing effluent from sugar factory stabilization ponds Ecological Engineering, 2007,29:66-76
    6. Bolhar-Nordenkampf HR, Long SP, Baker NR, Oquist G, Schreiber U, Lechner EG. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field:A review of current instrumentation. Functional Ecology,1989,3:497-514
    7. Brix H. Do macrophytes play a role in constructed treatment wetland? Water Science and Technology, 1997,35:11-17
    8. Calheiros CSC, Rangel AOSS, Castro PML. Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Reasearch,2007,41:1790-1798
    9. Chang J, Liu D, Cao HQ, Chang SX, Wang XY, Huang CC, Ge Y. NO3-/NH4+ ratios affect the growth and N removal ability of Acorus calamus and Iris pseudacorus in a hydroponic system. Aquatic Botany,2010, 93:216-220
    10. Chen ZH, Chen F, Cheng XY. Reasearch on macrophyte roots in the constructed wetlang (A review). Current Tropic in Plant Biology,2004,5:131-142
    11. Christoph P. Design recommendations for subsurface flow constructed wetlands for nitrification and denitrification. Water Science Technology,1999,40:257-263
    12. Coleman J, Hench K, Garbutt K, Sexstone A, Bissonnette G, Skousen J. Trwatment of domestic wastewater by three plant species in constructed wetland. Water, Air and Soil Pollution,2001,128: 283-295
    13. Collins BS, Sharitz RR, Coughlin SD. Elemental composition of native wetland plants in constructed mesocosm treatment wetlands. Bioresource Technology,2005,96:937-948
    14. Colmer TD. Long-distance transport of gases in plants:a perspective in internal aeration and radial oxygen loss from roots. Plant, Cell and Environment,2003,26:17-36
    15. Colmer TD, Cox MCH, Voesenek LACJ. Root areation in rice (Oryza sativa):evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytologist.,2006,170: 767-778
    16. Colmer TD, Gibberd MR, Wiengweera A, Tinh TK. The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution. Journal of Experimental Botany,1998,49: 1431-1436
    17. Fennessy MS, Cr onk JK, Mitsch WJ. Macrophyte productivity and community development in created freshwater wetlands under experimental hydrological conditions. Ecological Engineering,1994,3: 469-484
    18. Guadagno CR, Santo AVD, Ambrosio ND. A revised energy partitioning approach to assess the yields of non-photochemical quenching components. Biochimica et Biophysica Acta,2010,1797:525-530
    19. Hadad HR, Maine MA, Bonetto CA. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere,2006,63,1744-1753
    20. Huang J, Wang SH, Yan L, Zhong QS. Plant photosynthesis and its influence on removal efficiencies in constructed wetlands. Ecological Engineering,2010,36:1037-1043
    21. Iamchaturapatr J, Yi SW, Rhee JS. Nutrient removals by 21 aquatic plants for vertical free surface-flow (VFS) constructed wetland. Ecological Engineering,2007,29:287-293
    22. Kantawanichkul S, Kladprasert S, Brix H. Treatment of high-strength wastewater in tropical vertical flow constructed wetlands planted with Typha angustifolia and Cyperus involncratus. Ecological Engineering, 2009,35:238-247
    23. Kirk GJD. Plant-mediated processes to acquire nutrients:nitrogen uptake by rice plants. Plant and Soil, 2001,232:129-134
    24. Kludze HK, DeLaune RD, Patrick WH. A colorimetric method of assaying dissolved oxygen loss from container-grown rice roots. Agronomy Journal,1994,86:483-487
    25. Kludze HK, DeLaune RD, Patrick WH. Aerenchyma formation and methene and oxygen changes in rice. Soil Science Society of America journal,1993,57:386-391
    26. Kludze HK, DeLaune RD. Straw application effects on methane and oxygen exchange and growth in rice. Soil Science and Society of America journal,1995,59:824-830
    27. Knauer K, Leimgruber A, Hommen U, Knauert S. Co-tolerance of phytoplankton communities to photosynthesis II inhibitors. Aquatic Toxicology,2010,96:256-263
    28. Li M, Wu YJ, Yu ZL, Sheng GP, Yu HQ. Nitrogen removal from eutrophic water by floating-bed-grown water spinach (Ipomoea aquatica Forsk.) with ion implantation. Water Research,2007,41:3152-3158
    29. Li XN, Song HL, Li W, Lu XW, Nishimura O. An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecological Engineering,2010,36: 382-390
    30. Liu Y, Tam NFY, Yang JX, Pi N, Wong MH, Ye ZH. Mixed heavy metals tolerance and radial oxygen loss in mangrove seedlings. Marine Pollution Bulletin,2009,58:1843-1849
    31. Mei XQ, Ye ZH. The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw. Environmental Pollution,2009,157:2550-2557
    32. Muller P, Li XP, Niyogi KK. Non-photochemical quenching:A response to excess light energy. Plant Physiology,2001,125:1558-1566
    33. Pesce S, Margoum C, Montuelle B. In situ relationships between spatio-temporal variations in diuron concentrations and phototrophic biofilm tolerance in a contaminated river. Water Research,2010,44: 1941-1949
    34. Peterson SB, Teal JM. The role of plants in ecologically engineered wastewater treatment systems. Ecological Engineering,1996,6:137-148
    35. Rogers KH, Breen PF, Chick AJ. Nitrogen removal in experimental wetland treatment systems:Evidence for the role of aquatic plants. Water Environment Federation,1991,63:934-941
    36. Sakadevan K, Bavor HJ. Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems. Water Research,1998,32:393-399
    37. Sasikala S, Tanaka N, WahWah HSY, Jinadasa KBSN. Effects of water level fluctuation on radial oxygen loss, root porosity, and nitrogen removal in subsurface vertical flow wetland mesocosms. Ecological Engineerin,2009,35:410-417
    38. Sooknah RD, Wilkie AC. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecological Engineering,2004,22:27-42
    39. Stanley JN, Julien MH, Center TD. Performance and impact of the biological control agent Xubida infusella (Lepidoptera; Pyralidae) on the target weed Eichhornia crassipes (waterhyacinth) and on a non-target plant, Pontederia cordata (pickerelweed) in two nutrient regimes. Biological Control,2007,40: 298-305
    40. Stottmeister S, Wieβner A, Kuschk P, Kastner M, Bederski O, Miiller RA, Moormann H. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances,2003,22: 93-117
    41. Sun LP, Liu Y, Jin H. Nitrogen removal from polluted river by enhanced floating bed grown canna. Ecological Engineering,2009,35:135-140
    42. Thullen JS, Sartoris JJ, Nelson SM. Managing vegetation in surface-flow wastewater treatment wetlands for optimal treatment performance. Ecological Engineering,2005,25:583-593
    43. Visser EJW, Colmer TD, Blom CWP, Voesenek LACJ. Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono-and dicotyledonous wetland species with contrasting types of aerenchyma. Plant, Cell and Encironment,2000,23:1237-1245
    44. Wiepner A, Kuschk P, Stottmesister U. Oxygen release by roots of Typha latifolia and Juncus effuses in laboratory hydroponic system. Acta Biotechnologica,2002,22:1-2,209-216
    45. Wu MY, Franz EH, Chen SL. Oxygen fluxes and ammonia removal efficiencies in constructed treatment wetlands. Water Environment Research,2001,73:661-666
    46. Xu JT, Zhang J, Xie HJ, Li C, Bao N, Zhang CL, Shi QQ. Physiological responses of Phragmites australis to wastewater with different chemical oxygen demands. Ecological Engineering,2010,36: 1341-1347
    47. Yang Q, Chen ZH, Zhao JG, Gu BH. Contaminant Removal of Domestic Wastewater by Constructed Wetlands:Effects of Plant Species. Journal of Integrative Plant Biology,2007,49:437-446
    48. Yang Q, Tam NFY, Wong YS, Luan TG, Su WS, Lan CY, Shin PKS, Cheung SG. Potential use of mangroves as constructed wetland for municipal sewage treatment in Futian, Shenzhen, China. Marine Pollution Bulletin,2008,57:735-743
    49. Yao F, Shen GX, Li XL, Li HZ, Hu H, Ni WZ. A comparative study on the potential of oxygen release by roots of selected wetland plants. Physics and Chemistry of the Earth.2010, In Press
    50. Zehnder AJ, Wuhrmann K. Titanium (III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science,1976,194:1165-1166
    51. Zhang XB, Liu P, Yang YS, Chen WR. Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes. Journal of environmental sciences,2007,19:902-909
    52. Zhang ZH, Rengel Z, Meney K. Interactive effects of N and P on growth but not on resource allocation of Canna indica in wetland microcosms. Aquatic Botany,2008,89:317-323
    53.白峰青,郑丙辉,田自强.水生植物在水污染控制中的生态效应[J].环境科学与技术,2004,27(4):99-110
    54.陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J].浙江农业学报,2006,18(1):51-55
    55.陈鹭真,林鹏,王文卿.红树植物淹水胁迫响应研究进展[J].生态学报,2006,26(2):586-593
    56.陈文音,陈章和,何其凡,等.两种不同根系类型湿地植物的根系生长[J].生态学报,2007,27(2):450-458
    57.陈永华,吴晓芙,蒋丽鹃,等.处理生活污水湿地植物的筛选与净化潜力评价[J].环境科学学报,2008,28(8):1549-1554
    58.成水平,况琪君,夏宜琤.香蒲、灯心草人工湿地的研究-Ⅰ,净化污水的效果[J].湖泊科学,1997,9(4):351-358
    59.成水平,吴振斌,况琪军.人工湿地植物研究[J].湖泊科学,2002,14(2):179-184
    60.成水平,吴振斌,夏宜琤.水生植物的气体交换与输导代谢[J].水生生物学报,2003,27(4):413-417
    61.成水平,夏宜琤.香蒲、灯心草人工湿地的研究-Ⅱ,净化污水的空间[J].湖泊科学,1998,10(1):62-66
    62.邓泓,叶志鸿,黄铭洪.湿地植物根系泌氧的特征[J].华东师范大学学报(自然科学版),2007,6:69-76
    63.董志龙,王宝山.浅水湖泊中沉水植物修复探讨[J].甘肃科技,2009,25(4):70-73
    64.冯琳.潜流人工湿地中有机污染物降解机理研究综述[J].生态环境学报,2009,18(5):2006-2010
    65.付广义,俞盈,等.广州城市河涌氮、磷污染研究[J].水资源保护,2010,26(1):24-28,35
    66.国家环境保护局《水和废水监测分析方法》编委会.水和废水检测分析方法(第四版)[M].北京:中国环境科学出版社,2003
    67.韩耀宗,念宇.污染物负荷与组成对潜流人工湿地脱氮效果影响研究[J].环境科技,2009,22(6):1-5
    68.韩志国.20种湿地植物的叶绿素荧光特性[D].暨南大学,2006
    69.何小莲,李俊峰,何新林,等.稳定塘污水处理技术的研究进展[J].水资源与水工程学报,2007,18(5):75-78
    70.贺建,陈桂珠,罗航.四种红树林植物的淡水驯化试验[J].生态科学,1999,18(3):12-15
    71.胡勇有,王鑫,张太平,等.用低浓度生活污水筛选适于华南人工湿地的植物[J].华南理工大学学 报(自然科学版),2006,34(9):111-116
    72.黄娟a,王世和,雒维国,等.人工湿地污水处理系统植物光合作用特性的研究[J].安全与环境工程,2006,13(2):55-57
    73.黄娟b,王世和,雒维国,等.植物光合特性及其对湿地DO分布、净化效果的影响[J].环境科学学报,2006,26(11):1828-1832
    74.黄蕾,翟建平,聂荣,等.5种水生植物去污抗逆能力的试验研究[J].环境科学研究,2005,18(3):33-38
    75.黄亮,吴乃成,唐涛,等.水生植物对富营养化水系统中氮、磷的富集与转移[J].中国环境科学,2010.30:1-6
    76.蒋高明a.植物生理生态学[M].高等教育出版社,2004
    77.蒋高明b.植物生理生态学的学科起源与发展史[J].植物生态学报,2004,28(2):278-284
    78.蒋跃平,葛滢,岳春雷,等.轻度富营养化水人工湿地处理系统中植物的特性[J].浙江大学学报,2005,32(3):309-319
    79.靖元孝,李晓菊,杨丹菁,等.红树植物人工湿地对生活污水的净化效果[J].生态学报,2007,27(6):2365-2374
    80.靖元孝,任延丽,陈桂珠.人工湿地污水处理系统3种红树植物生理生态特性[J].生态学报,2005,25(7):1612-1619
    81.靖元孝,任延丽,杨丹菁,等.人工湿地污水处理系统三种红树植物抗性生理特性[J].应用生态学报2006,17(8):1544-1546
    82.赖闻玲a,胡菊芳,陈章和.四种挺水植物生理生态特性和污水净化效果研究[J].热带亚热带植物学报,2010,18(4):421-427
    83.赖闻玲b,王玉彬.四种湿地植物在人工湿地的生长特性研究[J].热带亚热带植物学报,2010,18(3):238-244
    84.李芳柏,吴启堂.无土栽培美人蕉等植物处理生活废水的研究[J].应用生态学报,1997,8(1):88-92
    85.李光辉,何长欢,刘建国.不同湿地植物的根系泌氧作用与重金属吸收[J].水资源保护,2010,26(1):17-20
    86.李林锋.4种湿地植物光合作用特性的比较研究[J].西北植物学报,2008,28(10):2094-2102
    87.李林锋,年跃刚,蒋高明.植物吸收在人工湿地脱氮去磷中的贡献[J].环境科学研究,2009,22(3):337-342
    88.李强,徐晔春.湿地植物[M].南方日报出版社,2010
    89.李睿华,管运涛,何苗,等.用美人蕉、香根草、荆三棱植物带处理受污染河水[J].清华大学学报(自然科学版),2006,46(3):366-370
    90.李小霞,解庆林,游少鸿.人工湿地植物和填料的作用与选择[J].工业安全与环保,2008,34(3):54-56
    91.李志刚,蒋越华,李素丽,等.人工湿地污水处理对三种植物光合作用及叶绿素荧光特性的影响[J].生态环境,2008,17(6):2187-2191
    92.梁威,胡洪营.人工湿地净化污水过程中的生物作用[J].中国给水排水,2003,19(10):28-31
    93.梁威,吴振斌,周巧红,等.复合垂直流构建湿地植物根区磷酸酶及脲酶活性与污水净化的关系[J].植物生理学通讯,2002,38(6):545-548
    94.廖岩,陈桂珠.两种红树植物湿地系统对水中N、P的去除效应[J].海洋环境科学,2009,28(5):539-543
    95.廖新俤,骆世明,吴银宝,等.人工湿地植物筛选的研究[J].草业学报,2004,13(5):39-45
    96.刘超翔,胡洪营,张健,等.人工复合生态床处理低浓度农村污水[J].中国给水排水,2002,18(7):1-4
    97.刘从玉,刘平平,刘正文,等.沉水植物在生态修复和水质改善中的作用-以惠州南湖生态系统的修复与构建(中试)工程为例[J].安徽农业科学,2008,36(7):2908-910
    98.刘士哲,林东教,唐淑军,等.利用漂浮植物修复系统栽培风车草、彩叶草和茉莉净化富营养化污水的研究[J].应用生态学报,2004,15(7):1261-1265
    99.刘娅琴,邹国燕,宋祥,等.框式复合型生态浮床对富营养水体浮游植物群落结构的影响[J].水生生物学报,2010,34(1):196-203
    100.刘永.常见红树植物根部渗氧在其重金属(Pb,Zn,Cu)和多环芳烃耐性中的作用及机理[D].中山大学博士学位论文,2009
    101.刘玉超.沉水植物对水体中磷营养的吸收机制研究[J].安徽农业科学,2011,39(2):642-643,645
    102.刘志宽,牛快快,马青兰,等.8种湿地植物根部泌氧速率的研究[J].贵州农业科学,2010,38(4):47-50
    103.卢建a.人工湿地有机物处理工艺设计关键与参数优化试验研究[D].暨南大学硕士学位论文,2010
    104.卢建b,杨扬,尹振娟,等.生物法-人工湿地组合工艺处理小城镇混合污水研究[J].环境工程学报,2010,4(6):1262-1266
    105.卢少勇,金相灿,余刚.人工湿地的氮去除机理[J].生态学报,2006,26(8):2670-2677
    106.卢少勇,张彭义,余刚,等.农田排灌水的稳定塘-植物床复合系统处理[J].中国环境科学,2004,24(5):605-609
    107.罗固源a,卜发平.生态浮床的去污效果与机理研究[J].四川大学学报(工程科学版),2009,41(6):108-113
    108.罗固源b,郑剑锋,许晓毅,等.4种浮床栽培植物生长特性及吸收氮磷能力的比较[J].环境科学学报,2009,29(2):285-290
    109.马婷,王国祥,李强,等.富营养化水体中菹草光合荧光特性研究[J].生态环境,2007,16(3):758-761
    110.缪丽华,陈煜初,石峰,等.湿地外来植物再力花入侵风险研究初报[J].湿地科学,2010,8(4):395400
    111.牛晓军.我国人工湿地植物系统的研究进展[J].四川环境,2005,24(5):45-47
    112.潘瑞炽,王小青,李娘辉.植物生理学[M].高等教育出版社,2008
    113.彭江燕,刘忠翰.不同水生植物影响污水处理效果的主要参数比较[J].云南环境科学,1998,17(2):47-51
    114.全先庆,张渝洁,单雷,等.脯氨酸在植物生长和非生物胁迫耐受中的作用[J].生物技术通讯,2007,18(1):159-162
    115.上官周平.植物生理生态学研究现状及发展[J].世界农业,1997,2:23-25
    116.谭卫锋,陈文音,陈章和.光照强度对水鬼蕉(Hymenocallis littoralis)生长及生理生态特性的影响[J].生态学报,2009,29(3):1320-1329
    117.万晓红,李旭东,王春雨,等.不同水生植物对湿地无机氮素去除效果的模拟[J].湖泊科学,2008,20(3):327-333
    118.王全金,李丽,李忠卫.四种植物潜流人工湿地脱氮除磷的研究[J].环境污染与防治,2008,30(2):33-36
    119.王庆安,黄时达,孙铁珩.湿地植物光合作用向水体供氧能力的试验研究[J].生态学杂志,2000,19(5):45-51
    120.王圣瑞,年跃刚,侯文华,等.人工湿地植物的选择[J].湖泊科学,2004,16(1):91-96
    121.王震宇,温胜芳,邢宝山,等.4种水生植物根际磷素耗竭效应的比较[J].环境科学,2008,29(9):2475-2481
    122.魏华,成水平,吴振斌.水文特征对水生植物的影响[J].现代农业科技,2010,(7):13-16
    123.闻岳,周琪,蒋玲燕,等.水平潜流人工湿地对污水中有机物的降解特性[J].中国环境科学,2007,27(4):508-512
    124.吴海明,张建,李伟江,等.人工湿地植物泌氧与污染物降解耗氧关系研究[J].环境工程学报,2010,4(9):1973-1977
    125.吴玲.湿地植物与景观[M].中国林业出版社,2010
    126.吴振斌,陈辉蓉,贺峰,等.人工湿地系统对污水磷的净化效果[J].水生生物学报,2001,25(1):28-34
    127.徐德福,徐建民,王华胜,等.湿地植物对富营养化水体中氮、磷吸收能力研究[J].植物营养与肥料学报,2005,11(5):597-601
    128.徐和胜,付融冰,褚衍洋.芦苇人工湿地对农村生活污水磷素的去除及途经[J].生态环境,2007,16(5):1372-1375
    129.徐治国,何岩,闫百兴,等.湿地植物对外源氮、磷输入的响应研究[J].环境科学研究,2007,20(1):64-68
    130.杨俊兴.湿地植物通气组织和渗氧对其铅锌耐性的影响及机理研究[D].中山大学博士学位论文,2008
    131.杨长明,顾国泉,邓欢欢,等.风车草和香蒲人工湿地对养殖水体磷的去除作用[J].中国环境科学,2008,28(5):471-475
    132.尹振娟,杨扬,卢建,等.生物法-人工湿地组合工艺对小城镇混合污水氮素去除效果研究[J].生态环境学报,2010,19(5):1044-1049
    133.余天翔,李化军,曾学云,等.受污染感潮河道综合治理技术浅析[J].人民珠江,2010,14(2):43-44
    134.袁东海,景丽洁,张孟群,等.几种人工湿地基质净化磷素的机理[J].中国环境科学,2004,24(5):614-617
    135.袁琳,张利权,吉志钦.入侵植物互花米草(Spartina alterniflora)叶绿素荧光对淹水胁迫的响应[J].环境科学学报,2010,30(4):882-889
    136.原保忠,王静,赵松岭.植物补偿作用机制探讨[J].生态学杂志,1998,17(5):45-49
    137.张波,南亚彬,孙健.生态稳定塘及植物净化法处理造纸废水的应用技术[J].环境科学与管理,2009,34(8):110-112
    138.张国平,周伟军.植物生理生态学(译)[M].浙江大学出版社,2005
    139.张荣社,李广贺,周琪,等.潜流湿地中植物对脱氮除磷效果的影响中试研究[J].环境科学,2005,26(5):83-86
    140.章家恩.生态学常用实验研究方法与技术[M].北京:化学工业出版社,2007
    141.章金鸿,李玫,陈桂珠.红树林湿地对榨糖废水中N、P的吸收和净化的可能性[J].重庆环境科学,1999,21(6):39-41
    142.赵建刚,陈章和.单种和多种群落湿地对污水的净化效果和植物生长生物量研究[J].应用与环境生物学报,2006,12(2):203-206
    143.赵建刚,杨琼,陈章和,黄正光.几种湿地植物根系生物量研究[J].中国环境科学,2003,23(3):290-294
    144.赵学敏,虢清伟,周广杰,等.改良型生物稳定塘对滇池流域受污染河流净化效果[J].湖泊科学,2010,22(1):35-43
    145.钟华平,樊江文,胡中民,等.白三叶种间竞争与草地数量化管理指数的关系[J].草业学报,2006,15(4):21-29
    146.周小平,王建国,薛利红,等.浮床植物系统对富营养化水体中氮、磷净化特征的初步研究[J].应用生态学报,2005,16(11):195-199
    147.朱伟萍,张晶,朱伟萍,等.水处理生物学[M].中国电力出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700