淋洗对滩涂土壤孔隙水化学特征及重金属作物有效性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以珠江口湿地滩涂土壤为研究对象,采用淋洗脱盐的方法研究阴阳离子共存的盐分变化对重金属化学形态、迁移转化及作物有效性的影响,以期为重金属污染的滩涂土壤的开发与利用提供科学依据。
     通过对珠江口湿地滩涂土壤的淋洗实验,对不同脱盐阶段,土壤孔隙水的盐分离子与土壤中各重金属含量及各重金属不同形态的含量进行监测与分析。结果表明,淋洗后较淋洗前各盐分离子的下降率分别为:Na+80.3%、K+73.5%、Mg2+ 86.6%、Ca2+90%、Cl-81.8%, SO42-98.2%,土壤孔隙水的pH值呈上升趋势;土壤中各重金属的下降率分别是Cd 26.6%、Pb 22.8%、Cu 16.9%、Cr 7.9%、Zn 9.1%,碳酸盐结合态的重金属下降率分别为:Pb 77.8%、Cr 61.7%、Cu 68.4%、Zn 67.1%、Cd 7.1%,铁锰氧化物结合态的Cd和Pb分别是49.1%和23.5%。淋洗脱盐过程改变了土壤重金属的化学形态、迁移状况。
     对淋洗之后含不同盐分的珠江口滩涂土壤进行土培实验,配制与其盐分、重金属含量相近的营养液进行水培实验,来研究淋洗脱盐对重金属作物有效性的影响。结果表明,土培实验中,苋菜根部Cd、Pb、Cr、Ni、Cu的含量>茎叶中的含量,淋洗脱盐能够抑制根部吸收重金属Cd、Pb、Cr、Cu,促进其吸收重金属Ni,能够抑制茎叶吸收Cd、Pb、Cu;在不同脱盐梯度下,苋菜茎叶对Zn的转运能力最强,对Cr的转运能力最弱。水培实验中不同盐分梯度下,苋菜体内Cd、Pb、Cr、Zn、Ni的分布规律也是根系部分>茎叶部分,Cu是茎叶部分>根系部分:营养液中盐分梯度下降能够抑制根系吸收Cd、Pb、Cr、Cu,促进对Zn的吸收,同时茎叶对Cd、Cu的吸收会下降,对Zn和Ni的吸收会增强;根系吸收不同重金属能力的大小顺序是Zn>Cd>Cu≈Ni>Cr>Pb,茎叶吸收重金属能力的大小顺序是Zn>Cu>Cd>Ni>Cr>Pb;茎叶转运不同重金属能力的大小顺序是Cu>Zn>Cd、Ni、Cr、Pb。
In this paper, we collected the beach soil of Pearl River Estuary as our object, through out leaching method of desalination to investigate the influence of salt ions changes in the coexistence on changes of heavy metal speciation and the removal of heavy metals in the soil as well as heavy metal bioavailability, to provide effective foundation for the development and utilization of reclaimed tidal flats of the Pearl River Estuary, and the cultivation on saline and alkaline land.
     The salinity ion in soil pore water and the heavy metal content in soil as well as the heavy metal speciation were investigated in various stages of desalination during an experiment of leaching beach soil. Results show that salinity ion including Na+, K+, Mg2+, Ca2+, Cl- and SO42-decreased by 80.3%,73.5%,86.6%,90%,81.8%, 98.2% respectively compared to pre-leaching. The pH value of pore water increased with leaching time. The reductions of heavy metals after leaching were:Cd 26.6%, Pb 22.8%, Cu 16.9%, Cr 7.9%, Zn 9.1%. The concentrations of Pb, Cr, Cu, Zn and Cd in carbonate bound form decreased by 77.8%,61.7%,68.4%,67.1% and 7.1% respectively. The contents of Cd and Pb bound to Fe-Mn oxide decreased by 49.1%, 23.5% respectively. The procession of leaching desalination has influenced the chemical forms and migration status of heavy metal in soil.
     Through out the soil culture experiment of leaching Pearl River estuary beach soil with different salt, we prepared the nutrient solution with the salt and heavy metals closed to which in the soil culture experiment, to study the influence of leaching desalination on crops. The results showed:the salinity decreased was found to bate its uptake by the root of Common Amaranth for Cd、Pb、Cr、Cu and enhance its absorption ability for Ni.The absorption ability of Cd、Pb、Cu in the overground part of Common Amaranth has downtrend. The contents of Cd、Pb、Cr、Ni、Cu in the root of Common Amaranth> the contents of them in the overground part. The translocation abilities of Zn is strongest while to Cr is least. In the experiment of nutrient solution culture, the heavy metal distribution of Cd、Pb、Cr、Zn、Ni in Common Amaranth is the root> overground part in different contents of salinities, while Cu is overground part> the root. With the decreasing of the salinities in the nutrient solution, the contents of Cd、Pb、Cr、Cu have downtrend, but the Zn has uptrend in the overground part of Common Amaranth; the accumulation abilities of Cd、Cu were lower while to Zn、Ni was gather head in the overground part of Common Amaranth; The accumulation abilities of heavy metals in the root were Zn>Cd>Cu≈Ni>Cr>Pb in the root and Zn>Cu>Cd>Ni>Cr>Pb in the overground part of Common Amaranth. Translocation abilities of the overground part of Common Amaranth were Cu>Zn>Cd、Ni、Cr、Pb.
引文
[1]裘江海.开发滩涂资源,拓展生存空间[J].浙江水利水电专科学校学报,2005,17(3):13-16.
    [2]李开孟.沿海滩涂资源的开发利用[J].中国投资,2008,12:96-99.
    [3]裘江海.我国近代滩涂开发利用综述[J].水利发展研究,2006,3:26-28.
    [4]陈吉余.开发浅海滩涂资源,拓展我国的生存空间[J].中国工程科学,2000,2(3):27-31.
    [5]徐承祥,周柏水.浙江滩涂围垦的现状与展望[J].东海海洋,2004,22(2):53-58.
    [6]潘家玮,毛光烈,夏阿国.海洋:浙江的未来[M].杭州:浙江科学技术出版社,2003.
    [7]苏德源.上海滩涂开发利用的现状及规划[J].上海建设科技,2003,3:18-19.
    [8]董哲仁.荷兰围垦区生态重建的启示[J].中国水利,2003,21(13):45-47.
    [9]陆发熹.珠江三角洲土壤[M].北京:中国环境科学出版社,1988.
    [10]崔伟中.珠江河口滩涂湿地的问题及其保护研究[J].湿地科学,2004,2(1):26-30.
    [11]胡振宇.珠江三角洲重金属排放及空间分布规律研究.中国科学院广州地球化学研究所博士论文.2004.6
    [12]广州市海洋与渔业局.2004 广州市海洋环境公报[EB/OL].http://www.gzocean.com.2005.
    [13]QuSheng Li, ZhiFeng Wu, Bei Chu, et al. Heavy metals in coastal wetland sediments of the Pearl River Estuary, China[J]. Environmental Pollution,2007,149(2):158-164.
    [14]李取生,楚蓓,石雷,等.珠江口滩涂湿地土壤重金属分布及其对围垦的影响[J].农业环境科学学报,2007,26(4):1422-1426.
    [15]尚爱安,刘玉荣,梁重山,党志.土壤中重金属的生物有效性研究进展.土壤.2000,6:294-300.
    [16]Williams T P, Bubb J M, Lester J N. Metal accumulation within salt marsh environment:a review [J]. Marine Pollution Bulletin,1994,28(5):277-290.
    [17]陈振楼,许世远,柳林,等.上海滨岸潮滩沉积物重金属元素的空间分布与积累[J].地 理学报.2000,55(6):641-650.
    [18]Spencer K L. Spatial variability of metals in the inter-tidal sediments of the Medway Estuary, Kent, U K [J]. Marine Pollution Bulletin,2002,44:933-944.
    [19]Liang Y, Wong M H. Spatial and temporal organic and heavy metal pollution at Mai Po Marshes Nature Reserve, Hong Kong [J]. Chemosphere,2003,52:1647-1658.
    [20]Cuong D T, Obbard J P. Metal speciation in coastal marine sediments from Singapore using a modified BCR-sequential extraction procedure [J]. Applied Geochemistry,2006,21(8): 1335-1346.
    [21]Otero X L, Huerta-Diaz M A, Macias F. Heavy metal geochemistry of saltmarsh soils from the Ria of Otigueira [J]. Environmental Pollution,2000,110:285-296.
    [22]Fernandes C, Fontainhas-Fernandes A, Peixoto F, et al. Bioaccumulation of heavy metals in Liza saliens from the Esmoriz-Paramos coastal lagoon, Portugal[J]. Ecotoxicology and Environmental Safety,2007,66:426-431.
    [23]Speelmans M, Vanthuyne D R J, Lock K, et al. Influence of flooding, salinity and inundation time on the bioavailability of metals in wetlands [J]. Science of the Total Environment,2007, 380:144-153.
    [24]Cacador I, Vale C, Catarino F. Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root-sediment system of Spartina maritima and Halimione portulacoides from Tagus estuary salt marshes[J]. Marine Environmental Research,2000,49:279-290.
    [25]王学锋,朱桂芬.重金属污染研究新进展[J].环境科学与技术,2003,26(1):54-56.
    [26]Kehriga H A, Pintoa F N, Moreirab I, et al. Heavy metals and methyl mercury in a tropical coastal estuary and a mangrove in Brazil[J]. Organic Geochemistry,2003,34:661-669.
    [27]Cacador I, Vale C, Catarino F. Accumulation of Zn, Pb, Cu, Cr and Ni in sediments between roots of the Tagus Estuary salt marshes, Portugal[J]. Estuarine Coastal and Shelf Science,1996,42:393-403.
    [28]卢豪良,严重玲.秋茄(Kandeliacandel(L))根系分泌低分子量有机酸及其对重金属生物有效性的影响[J].生态学报,2007,27(10):4173-4181.
    [29]Speelmans M, Vanthuyne D R J, Lock K, et al. Influence of flooding, salinity and Inundation time on the bioavailability of metals in wetlands. Science of The Total Environment,2007.
    [30]陈承利,廖敏.重金属污染土壤修复技术研究进展[J].广东微量元素科学,2004,11(10):1-8.
    [31]Otero X L, Huerta-Diaz M A, Macias F. Heavy metal geochemistry of salt marsh Soils from the Ria of Otigueira [J]. Environmental Pollution,2000,110:285-296.
    [32]高太忠,李景印.土壤重金属污染研究与治理现状[J].土壤与环境,1999,8(2):137-140.
    [33]Man K W, Zheng J S, Leung A P, et al. Distribution and behavior of trace metals in the sediment and Pore water of a tropical coastal wetland [J]. Science of the Total Environment, 2004,327:295-314.
    [34]Norvell W A, Wu J, Hopkins D G, Welch R M. Association of cadmium in durum wheat grain with soil chloride and chelate-extractable soil cadmium [J]. Soil Science Society of America Journal,2000,64:2162-2168.
    [35]Cacador I, Vale C, Catarino F, Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root-sediment system of Spartina maritime and Halimione Portulacoides from Tagus estuary salt marshes[J]. Marine Environmental Research,2000,49:279-290.
    [36]李法云,曲向荣,吴龙华.污染土壤生物修复理论基础与技术[M].北京:化学工业出版社,2005,57.
    [37]郑国章.农业土壤重金属污染研究的理论与实践[M].北京:中国环境科学出版社,2007,28-29.
    [38]熊明礼.石灰对土壤吸附镉行为及有效性影响[J].环境科学研究,1994,7(1):35-38.
    [39]周东美.陆地生物配体模型(t-BLM)初探:镁离子降低铜离子对小麦根的毒性[J].生态毒理学报,2007,2(1):41-48.
    [40]Ghulam Mustafa, Balwant Singh, Rai S, Kookana. Cadmium adsorption and desoprtion behaviour on goethite at low equilibrium concentrations:effect of pH and index cations [J]. Chemosphere,2004,57(10):1325-1333.
    [41]Appel Chip, Ma Lena. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils [J]. Journal of Environmental Quality,2002,31(2):581-589.
    [42]周卫,汪洪,林葆.镉胁迫下钙对镉在玉米细胞中分布及对叶绿体结构与酶活性的影[J].植物营养与肥料学报,1999,5(4):335-340.
    [43]刘平,钾肥伴随阴离子对土壤铅和镉有效性的影响及其机制[D],中国农业科学院博士论文,2006.
    [44]White P J, Broadley M R. Chloride in soils and its uptake and movement within the plant:A review. Annals of Botany,2001,88:967-988.
    [45]Fitzgerald E J, Caffrey J M, Nesaratnam S T, et al. Copper and lead concentrations in salt marsh plants on the Suir Estuary, Ireland [J]. Environmental Pollution,2003,123:67-74.
    [46]Manousaki E, Kadukova J, Papadantonakis N, et al. Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils[J]. Environmental Research,2008,106 (3):326-332.
    [47]Comino E, Whiting S N, Neumann P M, et al. Salt (NaCl) tolerance in the Ni hyperaccumulator Alyssum murale and the Zn hyperaccumulator Thlaspi caerulescens[J]. Plant and Soil,2005,270:91-99.
    [48]徐明岗,刘平,宋正国等.施肥对污染土壤中重金属行为影响的研究进展农业[J].环境科学学报,2006,25(增刊):328-333.
    [49]刘平,徐明岗,宋正国.伴随阴离子对土壤中铅和镉吸附-解吸的影响[J].农业环境科学学报,2007,26(1):252-256.
    [50]杨亚提,张一平.陪伴离子对土壤胶体吸附Cu2+和Pb2+的影响[J].土壤学报,2003,40(2):218-223.
    [51]衣纯真,傅桂平,张福锁.不同钾肥对水稻镉吸收和运移的影响[J].中国农业大学学报,1996,1(3):65-70.
    [52]刘平,徐明岗,李菊梅,宋正国等.不同钾肥对土壤铅植物有效性的影响及其机[J].环境科学,2008,29(1):202,302,402,502,602.
    [53]陈苏,孙丽娜,晁雷等.无机阴离子对镉、铅解吸特性的影响[J].生态环境,2008,17(1):105-108.
    [54]郭房庆,汤章城.NaCl胁迫下抗盐突变体和野生型小麦Na+、K+累积的差异分析[J].植物学报,1999,41(5):515-518.
    [55]Munns R&Termaat A. Whole plant responses to salinity (J). Aust J Plant physiology,1968.13:143-160.
    [56]Cotter-Howells J D, Caporrn S. Remediation of contaminat-ed land by formation of heavy metal phosphates. Applied Geochemistry,1996,11:335-342.
    [57]Koeppe D E. Lead: Under standing the minimal toxic of lead in Plants.In:Leppn Wed. Effect of heavy metal Polltuion on Plants. London and New jersey:APP.Sci Pub.1981,55-75.
    [58]刘岳峰,韩慕康,邬伦,等.珠江三角洲口门区近期演变与围垦远景分析[J].地理学报,1998,53(6):492-500.
    [59]广州市海洋与渔业局.2003广州市海洋环境公报[EB/OL]. http://www.gzocean.com,2004.
    [60]刘平.钾肥伴随阴离子对土壤铅和镉有效性的影响及其机制[D].北京:中国农业科学院,2006.
    [61]Chip A, Lena M. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils [J]. Journal of Environmental Quality,2002,31 (2):581-589.
    [62]Bufflap S E, Allen H. Comparison of pore water sampling techniques for trace metals [J]. Water Research,1995,29(9):2051-2054.
    [63]中国环境监测总站.土壤元素的近代分析方法[M].北京:中国环境科学出版社,1992.
    [64]城乡建设环境保护部环境保护局.环境监测分析方法[M].北京:中国环境科学出版社,1983.
    [65]GB/T 13580.5-1992.大气降水中氟、氯、亚硝酸盐、硝酸盐、硫酸盐的测定,离子色谱[S].
    [66]陈怀满.环境土壤学[M].北京:科学出版社,2005.219-221.
    [67]Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals [J].Analytical Chemistry,1979,51:844-851.
    [68]国家环保总局.HJ/T 166-2004.土壤环境监测技术规范[M].北京:中国环境科学出版社,2004.
    [69]陈巍,陈邦本,方明.辽东半岛滨海盐土脱盐过程中pH上升及碱化问题探讨[J].南京农业大学学报,1998,21(2):59-64.
    [70]殷仪华,陈邦本.江苏省滨海盐土脱盐过程pH值上升原因的探讨[J].土壤通报,1991,22(1):5-7.
    [71]陈邦本,方明,胡蓉卿,等.江苏滨海盐土碱化可能性的探讨[J].南京农业大学学报,1987,(2):76-81.
    [72]胡纪常,祝寿泉.滨海盐渍土的碱化问题[J].土壤学报,1981,18(3):281-288.
    [73]Usman A R A, Kuzyakov Y, Stahr K. Effect of immobilizing substances and salinity on heavy metals availability to wheat grown on sewage sludge-contaminated soil [J]. Soil & Sediment Contamination,2005,14:329-344.
    [74]Weggler K, McLaughlin M J, Graham R D, et al. Effect of Chloride in soil solution on the plant availability of biosolid-borne Cadmium [J]. Journal of Environmental Quality,2004, 33:496-504.
    [75]Du L G., De V R, Vandecasteele B, et al. Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary [J]. Coastal and Shelf Science,2008, 77(4):589-602.
    [76]Mustafa G, Singh B, Rai S. Kookana. Cadmium adsorption and desorption behaviour on goethite at low equilibrium concentrations:effect of pH and index cations [J]. Chemosphere, 2004,57(10):1325-1333.
    [77]Wangstrand H, Eriksson J, Oborn I. Cadmium concentration in winter wheat as affected by nitrogen fertilization[J]. European Journal of Agronomy,2007,26:209-214.
    [78]李宇庆,陈玲,仇雁翎,等.上海化学工业区土壤重金属元素形态分析[J].生态环境,2004,13(2):154-155.
    [79]万国江.环境质量的地球化学原理.北京:中国环境科学出版社,1988,38-42.
    [80]中国土壤学会.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [81]杨祖英,马永健,常风启.食品检验[M].北京:化学工业出版社,2003,222-262
    [82]刘平,徐明岗,李菊梅,等.不同钾肥对土壤铅植物有效性的影响及其机制[J].环境科学,2008,29(1):202-206.
    [83]聂俊华,刘秀梅,王庆仁.Pb超富集植物对营养元素N、P、K的响应[J].生态环境,2004,13(3):306-309.
    [84]GDu Laing, A.M.K.Van de Noortel, W.Moors, et al. Factors affecting metal concentrations in reed plants (Phragmites australis) of intertidal marshes in the Scheldt estuary [J]. Ecological Engineering,2009,35(2):310-318.
    [85]赵可夫.植物对盐渍逆境的适应[J].生物学通报,2002,37(6):7-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700