盐胁迫下红树植物—角果木耐盐生理及分子基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红树是生长在热带、亚热带海岸潮间带的木本挺水植物,长期生长于高盐生境使红树植物具有一套独特的耐盐机制。本研究以红树科植物角果木(Ceriops tagal (Perr.) C.B.Rob.)为研究对象,从根的显微结构、生理变化、基因表达变化等3个方面对角果木的耐盐机理进行探索。
     主要结果如下:
     1、角果木幼苗在不同浓度处理一个月后,根尖的中柱鞘变得不明显,且盐浓度越大,中柱鞘越不明显,从而盐胁迫影响了角果木侧根的发生。盐胁迫对角果木根尖皮层也有较大影响:高盐(500 mmol·L-1)胁迫下,角果木根尖外皮层、内皮层明显增厚,以阻止有害离了进入。
     2、盐胁迫下,同一处理时间点随着盐浓度的增加角果木根部总蛋白含量下降,但随处理时间的延长各盐处理下的总蛋白含量与对照组的差异逐渐缩小,且在24h后略高于对照组,说明角果木在适应盐环境的过程中有新的蛋白产生。
     3、植物受到盐胁迫后会立即引起氧化胁迫,产生氧化胁迫后就导致膜脂过氧化,因此早期(≦9h) MDA含量急剧上升,这种信号的出现诱导植物中抗氧化防御系统的启动,相关酶的表达。因此在24h内各盐处理前期,角果木根部抗氧化酶类及抗氧化物质均有所增加,而处理24 h后,角果木根部MDA含量、ASA含量、POD活性以及SOD活性均恢复至对照水平,表明角果木在受盐胁迫后通过启动抗氧化酶类、抗氧化物质以清除活性氧对根部的损伤,而后开始适应外界盐环境。
     4、在高盐(500 mmol·L-1)胁迫下,角果木根部可溶性糖含量和Pro含量在盐胁迫前期(≦72h)均有所增加,而在72h后均处于稳定状态,而多酚含量在盐胁迫初期(≦24h)有所下降,之后也处于稳定状态。表明角果木在高盐胁迫下,在对盐渍的适应过程中需要渗透调节物质进行调节,当角果木适应外界盐环境后,这些渗透调节物质便趋于稳定。
     5、利用cDNA-AFLP技术筛选得到69个差异片段,经克隆测序及RT-PCR验证后,筛选获得61个差异片段。对所得到的61个差异片段进行生物信息学分析,经blastx功能分析后,得到38个已知基因,这38个基因按功能分为8大类,由此说明角果木在盐胁迫条件下要涉及大量的基因参与各种代谢途径。对角果木用不同盐浓度处理不同时间,通过半定量RT-PCR技术进行差异表达基因在盐胁迫下的表达谱分析,证实了所获得的基因序列是真正的诱导表达序列。
Mangroves are woody plants which form the dominant vegetation in tidal, saline wetlands along tropical and subtropical coasts. Mangroves show adaptation to the saline environment, either through morphological manifestations or through physiological adjustments that permit metabolic activities at these salt concentrations. In order to understand the salt-tolerant mechanism of the mangrove, Ceriops tagal, the microstrucure, physiological changes and expression of salt-tolerant genes of the root of Ceriops tagal were researched in this study.
     The main results as follows:
     1. Following the salinity increasing, the pericycle of the root tips decreased, the exodermis and endodermis of the root tips increased, the Ceriops tagal in culture treated with different salinity for one month.
     2. Under the salt stress for same time, the contents of total protein in toots reduced, as the salinity increasing. However, under the same salinity, the contents of protein increasing, as the stress time extending. This results show that the new protein were produced in the process of the Ceriops tagal adaptation to the saline environment.
     3. The content of MDA in root increased sharply in the early of salt-stress, this signal induced the starting of the antioxidant defense system and the expression of the relevant enzymes in roots. So the activities of antioxidant enzymes and the contents of antioxidants raised firstly, and then decreased in 24 h of salt-stress. After salt-tolerant for 24 h, the contents of MDA, ASA and activities of POD, SOD had the same levels with control. It indicated that, under the salt-tolerant, the mangrove Ceriops tagal eliminate ROS to the root by the increasing of the activities of antioxidant enzymes and the contents of antioxidants, and then decreased after mangrove Ceriops tagal started to adapt the salt environment.
     4. In the high salt-stress, the contents of soluble sugar and Pro in roots went up in 72 h, and then kept stable level. However the ployphenol content in roots went down in 24 h, and then kept stable level. This result showed that, in high salt-stress, during the Ceriops tagal adapt to the saline, osmotic substance were needed to regulate the osmolarity, when the Ceriops tagal had adapted to the saline environment, the osmotic substance contents kept stable level.
     5. The technique of cDNA-AFLP was occupied to study genes differentially expressed in the roots of Ceriops tagal under salt-stress. Results showed the total of 69 differentially expressed bands was obtained.61 differential bands were picked and successfully cloned, sequenced and verified by RT-PCR analysis. Based on the results of blastx identification in NCBI,38 gene sequences of differentially were known. The 38 gene were into 8 classes by the different function.
引文
1. 陈银华.植物耐盐研究进展[J].海南大学学报(自然科学版),2007,1:79-82.
    2. Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants[J]. Crop Science,2005,45:437-448.
    3. Achard P, Cheng H, De Grauwe L, Decat J. Integration of plant responses to environmentally activated phytohormonal signals[J]. Science,2006,311:91-94.
    4. Cao W H, Liu J, He X, Mu R, Zhou H, Chen S, Zhang J. Modulation of ethylene response affects plant salt-stress responses[J]. Plant Physiology,2007,143:707-719.
    5. Zhang J Z, Creelman R A, Zhu J K. From laboratory to field:Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops[J]. Plant Physiology,2004, 135:615-621.
    6. 卓仁英,陈益泰.木本植物抗涝性研究进展[J].林业科学研究,2001,14(2):215-222.
    7. Jackson M.B., and Armstrong W., Formation of aerenchyma and processes of plant ventilation in relation to soil flooding and submergence[J]. Plant Biology,1999,1:274-287.
    8. Blom C.W.P.M., Adaptations to flooding stress:from plant commol/Lunity to molecule[J]. Plant Biol.,1999,1:261-273.
    9. Hans-Werner K., Ultrastructural and physiological changes in root cells of sorghum plants induced by NaCl[J]. Journal of Experimental Botany,1997,48(3):693-706.
    10. Stelzer R., and Lfiuchli A. Salt and flooding tolerance of Puccinellia pesonis L.[J]. Plant physiology,1978,88:437-448.
    11.朱字旌,张勇,胡自治,阎顺国.小花碱茅根适应盐胁迫的微结构研究[J].中国草地,2001,23(1):37-40.
    12.邓亚萍.环境因子对水稻根生长发育的影响[D].扬州大学,硕士学位论文,2009.
    13. Mallery, C.H.; Teas, H.J. The mineral ion relations of mangroves,1:Root cell compartments in a salt excluder and a salt secreter species(Avicennia and Rhizophora) at low salinities[J]. Plant and Cell Physiology,25(7):1123-1131.
    14. Cram J W, Torr P G, Rose D A. Salt allocation during leaf development and leaf fall in mangroves[J]. Trees,2002,16:112-119.
    15. Oku H, Baba S, Koga H. Lipid composition of mangrove and its relevance to salt tolerance[J]. Plant Res,2003,116:37-45.
    16.林鹏,陈德海,肖向明,等.海滩盐度对两种红树叶的碳水化合物和含氮化合物含量的影响[J].海洋学报,1984,6(6):851-855.
    17. Li N Y, Chen S L, Zhou X Y. Effect of NaCl on photosynthesis, salt accumulation and ion compartmentation in two mangrove species, Kandelia candel and Bruguiera gynnorhiza[J]. Aquatic Botany,2008,88:303-310.
    18. Aziz I, Khan M A. Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta Pakistan [J]. Aqua bot,2001,70(3):259-268.
    19. Parida A K, Das A B, Mittra B. Effects of salt on growth, ion accumulation photosynthesis and leaf anatomy of the mangrove Bruguiera parviflora [J]. Trees-Struct. Funct,2004,18: 167-174.
    20. Kura-Hotta M, Mimura M, Tsujimura T, et al. High salt-treatment-induced Na+ extrusion and low salt-treatment-induced Na+ accumulation insuspension-cultured cells of the mangrove plant, Bruguiera sexangula [J]. Plant Cell Environ,2001,24(10):1105-1112.
    21.王劲,杜世章,刘君蓉.植物耐盐机制中的渗透调节[J].绵阳师范学院学报,2006.25(5):56-61.
    22.姜卫兵,马凯,朱建华.多效唑提高草莓耐盐性的效应[J].江苏农业学报,1992,8(4):13-17.
    23. Petrusa LM, W inicolL. Proline status in salt tolerant and salt sen-sitive alfalfa cell lines and plants in response to NaCl[J]. Plant PhysiolBiochem,1997,35:303-310.
    24. Soussi M, Ocana A, Liuch C. Effects of salt stress on growth photo-synthesis and nitrogen ixation in chick-pea[J]. JExp Bot,1998,49:1329-1337.
    25. Parida A K, Das A B, Das P. NaCl stress causes changes in photosynthetic pigments proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydoponic cultures[J]. Plant Biol.2002,45:28-36.
    26. Parida A K, Das A B, Sanada Y. Effects of salinity on biochemical components of the mangrove Aegiceras corniculatum [J]. Aqua Bot,2004,80:77-87.
    27. Kochhar S, Kochhar VK. Expression of antioxidant enzymes and heat shock proteins in relation to combined stress of cadmium and heat in Vigna mungo seedlings[J]. Plant Science, 2005,168:921-929.
    28. Parida A K, Das A B, Mohanty P. Defense potentials to NaCl in a mangrove, Bruguiera parviflora:differential changes of isoforms of some antioxidative enzymes[J]. Plant Physiology,2004,161:531-542.
    29. Ben Amor N, Jimenez A, Megdiche W. Kinetics of antioxidant response to salinity in the halophyte Cakle maritime[J].Journal of Integration Plant Biology,2007,49:1-11.
    30. Achmadi S, Syahbirin G, Choong E T, et al. Catechin-3-O-rhamnoside chain extender units in polymeric procyanidins from mangrove bark[J]. ACGC Chem Res Commu,1994,2(1): 21-24.
    31. Peter J. Hernes, Ronald Benner, Gregory L. Cowie, et al. Tannin diagenesis in mangrove leaves from a tropical estuary:a novel molecular approach[J]. Geochimica et Cosmochimica Acta,2001,65(18):3109-3122.
    32. Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008,59:651-681.
    33. T Hibino, Y Meng, Y Kawamitsu, et al. Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumulating mangrove Avicennia marina (Forsk.) Vierh[J]. Plant Molecular Biology,2001,45(3):353-363.
    34. Waditee R, Hibino T, Tanaka Y. Functional characterization of Betaine/proline transporters in betaine accumulating mangrove[J]. Journal of Biology Chemistry,2002,277:18373-18382.
    35.周涵涛,林鹏.利用mRNA差别显示技术分离盐胁迫下红树植物白骨壤耐盐相关cDNA.生物工程学报,2002,18:51-54.
    36. K Sugiharal, N Hanagatal. Z Dubinsky, et al. Molecular Characterization of cDNA Encoding Oxygen Evolving Enhancer Protein 1 Increased by Salt Treatment in the Mangrove Bruguiera gymnorrhiza[J]. Plant and Cell Physiology,2000,41(11):1279-1285.
    37. Takemura T, Hanagata N, Dubinsky Z, Karube Ⅰ. Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dismutase and catalase from Bruguiera gymnorrhiza [J]. Trees,2002,16:94-99.
    38. Toshiaki Banzai, Gitit Hershkovits, Don J. Katcoff, et al. Identification and characterization of mRNA transcripts differentially expressed in response to high salinity by means of differential display in the mangrove, Bruguiera gymnorrhiza[J]. Plant Science,2002,16(4): 494-505.
    39. Miyama M, Hanagata N. Microarray analysis of 7029 gene expression patterns in burma mangrove under high-salinity stress[J]. Plant Science,2007,172:948-957.
    40. Nguyen P D, Ho C L, Harikrishna J A. Generation and analysis of expressed sequence tags from the mangrove plant Acanthus ebracteatus Vahl [J]. Tree Genetics Genome,2006,2: 196-201.
    41. Jithesh M N, Prashanth S R, Sivaprakash K R. Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stress in the high salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh by mRNA analysis[J]. Plant Cell Report,2006, 25:865-876.
    42.杨瑰丽.盐胁迫下海生和陆生黄槿基因表达的芯片研究.中山大学,博士学位论文,2007.
    43. Bachem C WB, Oomen R J F J, Visser R G F. Transcriptimaging with cDNA-AFLP:a step-by-step protocol[J]. Plant Molecular Biology Report,1998,16:157-173.
    44. Yang L, Zheng B S, Mao CZ. Analysis of gene expression during enhanced seminal root elongation of rice under upland condition by cDNA-AFLP[J]. J Plant Physiol Mol Biol,2003, 29(1):65-70.
    45. Marnik Vuylsteke, Johan D Peleman, Michiel J T. AFLP-based transcriptprofiling (cDNA-AFLP) for genome wide expression analysis[J]. Nature protocols,2007,2(6): 1399-1413.
    46. Kwon S. J., Hong S. W., Kim N. S., et al. Isolation of Callus-specific mRNAs from Differentiating Embryogenic Somatic Calli of Pimpinella brachycarpa by cDNA-AFLP[J]. Molecules and Cells,2004,17(1):39-44.
    47. Bachem C W, Oomen R J F J, Kuyt S, et al. Antisense suppression of a Potato a-SNAP Homologue leads to alterations in cellular development and distribution[J]. Plant Molecular Biology,2000,43:473-484.
    48. Hegarty M J, Jones J M, Wilson I D, et al. Development of anonymous cDNA micro arrays to study changes to the Senecio floral transcriptome during hyrid speciation[J]. Mol Ecol, 2005,14(8):2493-2510.
    49. Bove J, Lucas P, Godin B, et al. Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia [J]. Plant Mol Biol,2005,57(4):593-612.
    50. Zhang C K, Lang P, Dane F, et al. Cold acclimation induced genes of trifoliate orange[J]. Plant Cell Rep,2005,23(10-11):764-769.
    51. Simoes-Araujo J L, Rodrigues R L, Gerhardt L B, et al. Identification of differentially expressed genes by cDNA-AFLP technique during heat stress in cowpea nodμLes[J]. FEBS Letters,2002,515(1-3):44-50.
    52. Yang L, Zheng B, Mao C, et al. cDNA-AFLP analysis of inducible gene expression in rice seminal root tips under a water deficit[J]. Gene,2003,18(314):141-148.
    53. Hmida-Sayari A, Costa A. Identification of Salt Stress-Induced Transcripts in Potato Leaves by cDNA-AFLP[J]. Mol Biotechnoi,2005,30(1):31-40.
    54. Petters J, Gobel C, Scheel D. A Pathogen-responsive cDNA from Potato enzymes a protein withhomology to a phosphate starvation-induced phosphates[J]. Plant Cell Physiology,2002, 43(9):1049-1053.
    55.郭军,屈冬玉,王晓武,等.马铃薯晚疫病菌小种特异无毒基因候选表达序列的cDNA-AFLP举定[J].园艺学报,2005,32(1):44-48.
    56. Annelies D P, Mamik V, Paul V H, Marc Z, Dominique V D S. Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insight into the early response to ethylene inArabidopsis[J]. Plant Journal,2004,39(4):537-559.
    57. Ling yang, Bingsong zheng, Chuanzao mao, et al. cDNA-AFLP analysis of inducible gene expression in rice seminal root tips under a water deficit[J]. Gene,2003,314:141-148.
    58.沙爱华,林兴华,黄俊斌,等.水稻白叶枯病成株抗性相关基因的表达谱[J].分子植物育种,2006,4(4):469-476.
    59. Donson J, Fang Y, Espiritu-Santo G. Comprehensive gene expression analysis by transcriptprofiling[J]. Plant Molecular Biology,2002,48:75-95.
    60. Lauchli A, Luttge U. Salinity:Environment-Plants-Molecules[M]. Netherlands:Kluwer Academic Publishers,2002:113-135.
    61.冯立田,赵可夫.叶绿体对盐胁迫的某些生理适应机制[J].植物学通报,1998,(15)(增刊):62-67.
    62.马建华,郑海雷,张春光,李筱泉,林鹏.盐度对秋茄和桐花树幼苗蛋白质、H2O2及脂质过氧化作用的影响[J].厦门大学学报(自然科学版),2002,41(3):354—358.
    63.彭存智.红树耐盐相关蛋白的分离和MALD1-TOF (?)贡谱鉴定[D].华南热带农业大学,博士位论文,2005.
    64.刘婉,胡文玉.胁迫下离体小友叶片内抗坏血酸与几种生理生化指标变化的关系[J].植物生理学通讯,1997,33(6):423.
    65.毛桂莲,许兴,徐兆帧.对盐生理生化研究进展[J].中国生态农业学报,2004,12(1):43—46.
    66. Peng M, Kuc J. Peroxidase-generated hydrogen peroxide as a source of antifungal-activityin vitroand on to-bacco leaf disks[J]. Phytopathol,1992,82:696-699.
    67. Martinez C, Baccou J C, Bresson E, et al. Salicylic acid mediated by the oxidative burst is a key molecule in local and systemic responses of cotton challenged by an avirulent race ofXanthomonas campestrispvmal-vacearum[J]. Plant Physiol,2000,122:757-766.
    68.赵丹华.盐胁迫下盐芥(Thellungiella halophila)和拟南芥(Arabidopsis thaliana)生理响的比较研究[D].中央民族大学,硕士学位论文,2008.
    69.谢文华.盐胁迫下梭梭幼苗生理生态响应机制的研究[D].新疆农业大学,硕士学位论文,2007.
    70. Noctor G, Foyer C H. Ascorbic and glutathione keeping active oxygen under control [J]. Annu.Rev.Plant Physiol.Plant Mol. Biol.,1998,49:249-279.
    71.韩志平,郭世荣,尤秀娜,等.盐胁迫对西瓜幼苗活性氧代谢和渗透调节物质含量的影响[J].西北植物学报,2010,30(11):2210-221.
    72.华奋,上仁甫,刘友良.外源AsA对盐胁迫下水稻叶绿休活性氧清除系统的影响[J].作物学报,2004,30(7):692-696.
    73. Shalata A, Meumann P M. Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation[J]. JExp Bot,2001,52(364):2207-2211.
    74. Bowler C, Van Montage M, Inze Q. Superoxide dismutase and stress tolerance[J]. Annu.Rev.Plant Physiol.Plant Mol.Biol.,1992,43:83-116.
    75.田晓艳,刘延吉,张蕾,等.盐胁迫对景天三七保护酶系统、MDA、Pro及可溶性糖的影响[J].草原草坪,2009,6:11-14.
    76. E Ezatollah, S Fariborz, S Farid, et al. The effect of salt stress on antioxidant enzymes activity and lipid peroxidation on the Wheat seeding[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca,2007,35(1),48-56.
    77.黄薇,林栖凤,李冠一,赵文明.盐分对红树植物秋茄某些生理特性的影响[J].海南大学学报(自然科学版),2004,20(4):328-331.
    78. Singh N K. Proteins associated with adaptation of culture tobacco cells to NaCl[J]. Plant Physiol,1987,84(2):324-331.
    79. Yan Li. Effects of NaCl Stress on Antioxidative Enzymes of Glycine Soja sieb[J]. Pakistan Journal of Biological Sciences.2009,12(6):510-513.
    80.袁琳,克热木·伊力.盐胁迫对阿月浑子可溶性糖、淀粉、脯氦酸含量的影响[J].新疆农业大学学报,2004,27(2):19-23.
    81.於丙年,章文华.NaCl对大麦幼苗根系蛋白质和游离氮基酸含量的影响[J].西北植物学报,1997,17(4):439442.
    82. M.R. Amirjani. Effect of Salinity Stress on Growth, Mineral Composition, Proline Content, Antioxidant Enzymes of Soybean[J]. American Journal of Plant Physiology,2010,5(6): 350-360.
    83.安树青.湿地生态工程-湿地资源利用保护的优化模式[M].北京:化学工业出版社,2002:12.
    84. Parida A K, Das A B. Salt tolerance and salinity effects on plants:a review[J]. Ecotoxicology and Environmental Safety,2005,60:324-349.
    85.李大志,陈霄,邓子牛,等.应用cDNA-AFLP技术分离应答BABA诱导的番茄抗病相关基因TaVHA-C[J].湖南农业大学学报,2007,33(1):32-36.
    86.林剑伟.利用cDNA-AFLP分析甘蔗与黑穗病菌互作后的基因差异表达[D].福建农林大学,硕士学位论文,2008.
    87.朱文超cDNA-AFLP分析辣椒抗寒性及CaAQP基因克隆与表达研究[D].西北农林科技大学,硕士学位论文,2010.
    88. Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations[J]. Current Opinion in Biotechnology,2005,16:123-132.
    89. Yokoi S, Bressan R A, Hasegawa P M. Salt stress tolerance of plants[J]. JIRCAS Working Report,2002,1:25-33.
    90. Zhu J K. Regulation of ion homeostasis under salt stress[J]. Current Opinion in Plant Biology, 2003,6:441-445.
    91. Johanson U, Karlsson M, Johansson Ⅰ, Gustavsson S, Sjovall S, Fraysse F, Weig A R, Kjellbom P. The complete set of genes encoding major intrinsic proteins provides a framework for a new nomenclature for major intrinsic proteins in plants[J]. Plant Physiology,2001,126:1358-1369.
    92. Maurel C, Reizer J, Schroeder J I, Chrispeels M J. The vacuolar membrane protein y-TIP creates water specific channels in Xenopus oocytes[J]. Europe Molecular Biology Journal, 1993,12:2241-2247.
    93. Dreher K, Callis J. Ubiquitin, hormones and biotic stress in plants. Annals of Botany,2007: 1-35. Ezatollah Esfandiari, Fariborz Shekari, Farid Shekari, Manouchehr Esfandiari. The effect of salt stress on antioxidant enzymes'activity and lipid peroxidation on the Wheat seeding[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca,2007,35(1):48-56.
    94. Cheong J J, Yang D C. Methyl jasmonate as a vital substance in plants[J]. Trends in Genetics, 2003,19:409-413.
    95. Christiane S, Martin J M, Heribert W. Cloning and expression of a tomato cDNA encoding a methyl jasmonate cleaving esterase[J]. European Journal of Biochemistry,2004,271: 2976-2983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700