盐生植物獐毛耐盐基础生理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物的耐盐方式多种多样,耐盐机理也很复杂,涉及到植物生理生化方面,所以不同的植物在适应盐渍环境的过程中,形成了自己独特的形态结构。泌盐方式是盐生植物适应盐渍环境的一条重要途径,泌盐盐生植物的叶片和茎部的一些特殊的表皮细胞在发育过程中可分化成盐腺,通过盐腺把吸收到体内的盐分排出体外,以维持体内的低盐水平。本实验对单子叶植物獐毛(Aeluropus sinensis)的耐盐机理进行了研究和探讨,主要结果如下:
     1.NaCl处理对獐毛生长状况的影响
     (1)随着盐浓度的增加,植株的叶片面积明显减小,以尽量降低蒸腾速率,根系的长度变化较小,以便根系可以从高盐环境中吸收水分,避免造成生理干旱。同时,植株的高度、分蘖数量和根容量也逐渐降低。
     (2)盐胁迫下,植株的鲜重、干重和含水量均小于对照,虽然无机干重和有机干重都小于对照,但有机干重所占的比例越来越大。根冠比呈上升趋势,不过,鲜重基础上的根冠比始终大于干重基础上的根冠比。
     2.盐处理对獐毛叶片和根细胞汁液渗透势的影响
     NaCl处理使獐毛叶片和根细胞汁液渗透势降低,在盐浓度相同的情况下,叶的渗透势大于根。
     3.盐处理对獐毛叶片和根质膜透性的影响
     NaCl处理使獐毛叶片和根的质膜透性增加,但叶片受到的影响较大,根部受到的影响较小。
     4.盐处理对獐毛叶片和根中丙二醛(MDA)含量的影响
     随着盐浓度的增加,獐毛叶片和根中丙二醛含量逐渐增加。在盐浓度相同的情况下,叶片中的丙二醛含量大于根中的丙二醛含量。
     5.盐处理对獐毛叶绿素含量的影响
     盐处理下,叶片中的叶绿素a和叶绿素b的含量呈上升趋势,但叶绿素a/b的比值呈下降趋势。
     6.盐处理对獐毛无机离子和有机溶质含量的影响
     獐毛叶片和根内的Na~+、K~+、Cl~-含量均随盐处理浓度的升高而增加,200mmol/L
    
    盆全茵游带丢对盆基础全理村研穷
    NaCI时,根内的Na+、K+、CI’含量分别是叶片内的1 .10、143和1.07倍。Na十服+
    也呈增加趋势,但叶部的Na+/K+比值大于根部的Na十爪+比值。
     盐处理后,叶片和根内的有机溶质的总量增加,其中可溶性糖、氨基酸和脯氨
    酸的含量增加较明显,有机酸含量增加的程度相对较小,另外,蔗糖阿溶性糖的比
    值也随盐浓度的升高而增加。
    7.盐腺抑制剂对璋毛生长的影响
     分别用loomm。比NaCI和loommol几NaCI+盐腺抑制剂处理材料后,后者虽
    提高了植物体内的Na+、K+、Cl一含量,但泌Na+率却由82.65%降为35.23%,这是樟
    毛生长继续受到抑制的主要原因。
    8.璋毛盐腺的形态与结构
     璋毛的盐腺主要分布在叶脉上及其附近。从盐腺的显微结构来看,盐腺只由一
    个较大的基细胞和一个较小的帽细胞组成,盐腺并不是深深地下陷到表皮层中,而
    是镶嵌于其中。
    9.Na+含量的x一ray微区分析
     在对照情况下,盐腺细胞的Na十含量与表皮细胞和叶肉细胞几乎相同,但在盐
    处理下,盐腺细胞的Na+含量明显大于表皮细胞和叶肉细胞,表明樟毛能通过盐腺
    活动有效降低周围细胞的Na+含量以维持其正常的生理功能;另外,盐腺细胞液泡
    中的Na+含量大于细胞质中的含量,表明液泡在分泌过程中起着重要作用。
     总之,璋毛具有较强的适应盐渍环境的能力和很好的渗透调节能力。在
    20ommol几NaCI的条件下虽然生长受到抑制,但仍能正常生长,在盐渍环境中,璋
    毛能通过盐腺活动将体内的Na+、K+和CI.排出体外,从而使璋毛表现出一定的耐盐
    能力。
    关键词:璋毛;Nacl;生长;盐腺;盐腺抑制剂;显微结构;x一ray微区分析
    论文分类号:Q945·78
Plants have many different kinds of salt -tolerance ways, and the salt -tolerance mechanisms are very complex relating to many kinds of biochemical events, thus the plants display singular structures during its adaptation to salt stress. Salt secretion is an important way in various halophytic plants adapting to salt stress, some special epidermis cells of leaves and stems of the recretohalophytes can differentiate into salt glands during its development, the salt which was absorbed into the plants can be secreted from these salt glands, thus the plants can keep a low level of salt. In this experiment, the salt tolerence mechanism of Aeluropus sinensis( monocotyledon) is studied. The main results are shown as fllows:1. The effects of salt-treatment on the growth situations of Aeluropus sinensis(1) The area of leaf from plant grown in the increasing salt concentration became smaller, thus its transpivation fell; the longth of roots was minished, but not very obviously, so that roots could absorb water from higher salinity in case of physiological drought. At the same time, the high of plant, the number of tiller and the volume of roots declined gradually.(2) Comparing with control, the fresh weight, dry weight and water content of the whole plant declined with the increase of NaCl concentration in medium. Although the inorganic dry weight and the organic dry weight declined, the ratio of the organic dry weight and the whole dry weight was increasing. In addition, the ratios of roots and shoots of both fresh weight and dry weight also increased with the increase of NaCl concentration in medium, but that of the fresh weight was higher than that of the dry weight.2. The effects of salt-treatment on osmotic potential of Aeluropus sinensisWith the increase of NaCl concentration, osmotic potential in leaves and roots of plants decreased, while osmotic adjustment ability increased gradually, when the concentrations of Na+ were equal, the osmotic potential in leaves were stronger than that
    
    in roots.3. The effects of salt-treatment on the plasmalemma permeability of AeluropussinensisThe plasmalemma permeability of leaves and roots increased gradually with the increase of NaCl concentration in medium, but the leaves were affected greatly, the roots were affected weakly.4. The effects of salt-treatment on the content of Malon dialdehyda(MDA) of Aeluropus sinensisUnder the salt stress, the content of Malon dialdehyda(MDA) of plants increased with the increase of NaCl concentration, the content of Malon dialdehyda(MDA) in leaves increased significantly, which was much higher than that in roots.5. The effects of salt-treatment on the content of chlorophyll of Aeluropus sinensisThe content of of plants increased with the increase of NaCl concentration, the content of Chla and Chlb of leaves increased, but Chla /b declined gradually.6. The effects of salt-treatment on the contents of inorganic ions and soluable organic components of Aeluropus sinensisThe contents of Na+, K+and Cl" in the leaves and roots of plants increased with the increase of NaCl concentration. At 200mmol/L NaCl, the contents of Na+, K+and Cl" in the roots were 1.10, 1.43 and 1.07 times higher than those of in leaves, the ratios of Na+/K+ increased, but the ratios of leaves were higher than those of in roots.After salt treatment, the contents of soluable organic components increased, the contents of proline, amino acids and soluable sugar increased much higher than organic acids. The ratios of sucrose and soluable sugar increased too.7. The effects of the inhibitor on the growth situations of Aeluropus sinensisAfter the plants were treated respectively with 100mmol/L NaCl and 100mmol/L NaCl+inhibitor, the later enhanced the contents of Na+, K+and Cl" in plants, Na+ especially. The quotiety of Na+ recreted by leaves declined from 82.65% to 35.23%, thus the growth of plants were inhibited.8. The shape and structure of salt glands of Aeluropus sinensisThe salt glands of Aeluropus sinensis distributed around the nervations of leaves mostly. A salt gland c
引文
[1] 陈长平,王文卿,林鹏.盐度对无瓣海桑幼苗的生长和某些生理生态特性的影响.植物学通报,2000,17(5):457~461
    [2] 陈伽,王学臣.高等植物代谢物质的运输蛋白.见:植物生理学辅导教材-1996年教学讨论会40年纪念.1996
    [3] 陈宗权.再谈C_3—C_4中间型植物.植物杂志,1987,6:35~45
    [4] 高辉远,李卫军.Na_2SO_4.胁迫对苇状羊茅和鸭茅吸收与分配的影响.中国草地,1995,5:43~48
    [5] 林植芳,李双顺,林桂珠,孙谷畴,郭俊彦,水稻叶片的衰老与超氧化物歧化酶活性及膜脂过氧化作用的关系.植物学报,1984,26(6):605~615
    [6] 陆静梅.二色补血草叶片泌盐结构的扫描电镜观察.应用生态学报,1995,6(4):355~358
    [7] 陆静梅,刘友良,胡波,庄炳昌.中国野生大豆盐腺的发现.科学通报,1998,43(19):2074~2078
    [8] 邱全胜.植物细胞质膜H~+-ATPase的结构与功能.植物学通报,1999,16(2):122~126
    [9] 山东师范大学植物抗性生理研究室编.植物抗性生理实验技术.
    [10] 上海生理学会编.植物生理学实验手册.上海科学技术出版社.上海.1985.
    [11] 孙群,文蓉.植物体内有机酸的测定.见:西北农业大学植物生理生化教研组编.植物生理学实验指导.陕西:陕西科技出版社,1986,122~124
    [12] 王宝山.高粱不同器官生长对NaCl的响应.山东师大学报,1996,11:57~60
    [13] 王宝山,邹琦,赵可夫.高粱不同器官生长对胁迫的响应及其耐盐阈值.西北植物学报,1997,17:279~285
    [14] 文蓉,孙群.植物组织中游离氨基酸的测定.见:西北农业大学植物生理生化教研组编.植物生理学实验指导.陕西:陕西科技出版社,1986,122~123
    [15] 武维华.植物信号转导.见:植物生理学辅导教材-1996年教学讨论会40年纪念.1996
    [16] 西北农业大学编.基础生化实验手册.陕西:陕西科技出版社,1985,51~53
    [17] 殷立娟.植物生态学报松嫩平原碱化草甸朝鲜碱茅、獐毛耐盐碱性的比较研究1996,20(4):322~329
    [18] 张振清.植物材料中可溶性糖的测定.见:上海植物生理学会编.植物生理学实验手册.上海:上海科技出版社,1985,134~138
    [19] 赵可夫.植物抗盐生理.中国科学技术出版社,北京,1993.
    
    [20] 赵可夫,冯立田.中国盐生植物资源.北京:科学出版社,2001,18
    [21] 赵可夫,李法增.中国盐生植物.科学出版社,北京,1999.
    [22] 赵可夫,李军.盐浓度对3种单子叶盐生植物滲透调节剂及其在渗透调节中贡献的影响.植物学报,1999,41(12):1287~1292
    [23] 中国植物志编辑委员会.中国植物志.北京科学出版社,1959~1998
    [24] 周三,韩军丽,赵可夫.泌盐盐生植物研究进展.应用与环境生物学报,2001,7(5):496~501
    [25] Arise WH, Camphuis IJ, Heikens H, van Tooren AJ. The Secretion of the Salt Glands of Limonium Latifolius Ktze. Acta Botanica Neerlandica, 1955,4:323~338
    [26] Arise WH, Camphuis IJ, Heikens H, Vantooren AJ. The secretion of the salt glands of Limonium latifolium Ktze. Acta Bot Neerlandica, 1955,4(3):321~338
    [27] Ashraf M, O Leary JW. Does pattern of ion accumulation vary in alfalfa at different growth stages?J Plant Nutr, 1994, 1443~1461
    [28] Barkla BJ, Pantoja O. Physiology of ion transport across the tonoplast of higher plants. Ann. Rev. Plant Physiol. Plant Mol. Biol, 1996,47:127~157
    [29] Bernstein L. Osmotic adjustment of plants to saline media. Amer J Bot, 1961, 48:909~918
    [30] Berry WL. Characteristics of salts secreted by Tamarix aphylla. American Journal of Botany, 1970, 57:1226~1230
    [31] Boursier P, Lauchli A. Growth responses and mineral relations of salt-stressed sorghum. Crop Sci, 1990, 30:1226~1233
    [32] Breckle SW. How do halophytes overcome salinity? Biology of salt-tolerant plants. Michigan USA: Khan M Aungar IA, 1995,199~213
    [33] Chary P. Dillon S. Schroeder AL. Natvig DO. Superoxide dismutase (sod-Ⅰ) null mutant of Neurspora crassa: oxidative stress sensitivity. spontaneous mutation rate and response to mutagent. Genetics, 1994,137:723~730
    [34] Clipson NJW, Flowers TJ. Salt tolerance in the halophyte Suaeda maritime L. Dum The effect of salinity on the concentration of sodium in the xylem. New Phytol, 1987, 105:359~36
    [35] Cramer GR, Abdel-Basset R, Seemann FR. Salinity-calcium interactions on root growth and osmotic adjustment of two corn cultivars differing in salt tolerence. J Plant Nutr, 1990, 13:1453~1462
    [36] Dracup M N, Greenway H. A procedure for isolating vacuoles from leaves of the halophytes Suaeda maritime. Plant Cell Environ, 1985,8:149~154
    [37] Drennan PM, Berjak P, Lawton JR, Pammenter NW. The Function Ultrastrcture of the Salt Glands Avicennia Marina. Proc. Electron Microso Soc.South.Afr. 1985,15:83-84
    
    [38] Drennan PM, Berjak P, Lawton JR, Pammenter NW. Ultrastrcture of the salt gland of the Mangrove, Avicennia Marina(Forssk.) Vierch, as Indicated by the Use of Selective Staining.Planta, 1987,172:176-183
    [39] Dschida WJ,Platt-Aloia KA,Thomson WW.Epidermal Peels of Avicennia Germinans(L.)Stearn:A Useful System to Study the Function of Salt Gland.Annals of Botany,1992,70:501~509
    [40] Dvorak J, Gorham J. Methodology of gene transfer by homologous recombination into Triticum turgidum. transfer of K/Na discrimination from Triticum aestivum. Genome, 1992,35:639-646
    [41] E.Fritz. X-ray microanalysis of diffusible elements in plant cells after freeze-drying.pressure infiltration with ether and embedding in plastic.Scanning Microscopy, 1989,3:517-526
    [42] Faraday CD, Thomson WW. Functional Acpects of the Salt Glands of the Plumbaginaceae.Journal of Experrmental Botany, 1986,37:1129-1135
    [43] Faraday CD, Thomson WW. Morphometric Analysis of Limonium Salt Glands in Relation to Ion Efflux. Journal of Experimental Botany, 1986,37:471~481
    [44] Faraday CD, Thomson WW. Structural Aspects of the Salt Glands of the Plumbaginaceae. Journal of Experimental Botany, 1986,37:461-470
    [45] Flowers TJ, Haijibagheri MA, Clipson NJW. Halophytes. The Quart Rev Biol, 1986, 61:313-337
    [46] Flowers TJ, Yeo AR. Ion relation of plants under drought and salinity. Aust J Plant Physiol, 1986,13:75-91
    [47] Flowers TJ. The mechanism of salt tolerance in halophytes. Ann.Rev. Plant Physiol, 1977,28:89-121
    [48] Greenway H,Munns R.Mechanisms of salt talerance in nonhalophytes. Annual Review of plant physiology, 1980,31:149-190
    [49] Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Ann.Rev. Plant Physiol. Plant Mol. Biol, 2000,51:463~499
    [50] Hill AE. Ion and Water Transport in Limonium. II.Short-Circuit Analysis. Biochim Biophys Acta, 1976,135:461-465
    [51] Hill AE. Ion and Water Transport in Limonium. I. Active Transport by the leaf Gland Cells. Acta, 1967,135:454-460
    [52] Hill AE. Ion and Water Transport in Limonium. III. Time Constants of the Transport System. Biochim Biophys Acta, 1970,196:66-72
    
    [53] Hill AE. Ion and Water Transport in Limonium. IV. Delay Effects in the Transport Process. Biochim Biophys Acta, 1970,196:73-79
    [54] Jian-kang Zhu, Ji-ping Liu and Ming-xiong Li. Genetic Analysis of salt tolerance in Arabidopsis, Evidence for a Critical role potassium nutrition. The Plant Cell, 1998,10:1191-1194
    [55] Kinraide TB,Interactions among Ca2+,Na+ and K+ in salinity toxicity:quantitative effects.J Exp Bot, 1999,50:1495-1505
    [56] Larkum AWD,Hill AE. Ion and Water Transport in Limonium. V. The Ionic Status of Chloroplasts in the Leaf of Limonium Vulgore in Relation to the Activity of the Salt Gland. Biochim Biophys Acta, 1970,203:13 3-13 8
    [57] Lauchli A. Salt exclusion: An adaptation of legumes for crops and pastures under saline conditions. In: Staples R C, Tonniessen G H eds. Salinity Tolerance in Plant-Strategies for Crop Improvement. New York: John Willy and Sons, 1984, 171-187
    [58] Levering CA, Thomson WW. Studies on the ultrastrcture and mechanism of secretion of the salt gland of the grass Spartina. In: Proc.30th Electron Microscope Soc. of America, 1972,222-223
    [59] Levering CA, Thomson WW. The ultrastrcture of the salt gland of Spartina foliosa. Planta, 1971,97:183-196
    [60] Levitt J. Responsess of plant to environmenntal stress 2nd ed. New York: Academic press, 1980,365-488
    [61] Li Qi & E.Fritz. X-ray microanalysis of ion contents in roots of Populus maximowiczii grown under potassium and phosphurs deficiency.Journal of Plant Physiology, 1991,138:180-185
    [62] Li Qi & E.Fritz. X-ray microanalysis of ion contents in stem tip meristem and leaves of Populus grown under potassium and phosphurs deficiency.Journal of Plant Physiology, 1990,136:61-65
    [63] Maggio A,Reddy MP.Joly.Leaf gas exchange and solute accumulation in the Halophyte Salvadora presica grown at moderate salinity. Environ Exp Bot,2000,44:31~38
    [64] Marcum KB, Anderson SJ, Engelke MK. Salt Gland Ion Secretion: A Salinity Tolerance Mechanism Among FiveZoysiagrassSpecies. Crop Science, 1998,38(3): 806-810
    [65] Maslenkora LT. Adaptation to salinity as monitored by PSII oxygen evolving reaction in barley thylakoids.J. of PlantPhysiol, 1993,142:629-634
    [66] Mccord JM., Fridovich I. Superoxide dismutase:An enzymic function for crythrocuprein (hemocuprein) . J. Biol. Chem. 1969,244:6049-6055
    
    [67] Munns R,Termaat A. Whole-plant responses to salinity.Aust J Plant physiol,1986,13: 143-160
    [68] Munns R. Physiological processes limiting plant growth in saline soils: Some dogmas and hapotheses.Plant Cell and Environment, 1993,16:15-24
    [69] Naidoo Y, Naidoo G. Sporobolus Viginicus Leaf Salt Glands:Morphology and Ultrastrcture. South African Journal of Botanty,1998,64(3): 1 129-1 135
    [70] Nakamura Y,Tanaka K,Ohta E,Sakata M.Protective effect of external Ca2+ on elongation and the intracellular of K in intact mung bean roots under high NaCl stress.Plant Cell Physiol, 1990,31:815-821
    [71] Niu X, Bressan RA. Hasegawa PM, et al. Ion homeostasis in NaCl stress environments. Plant Physiol, 1995,109:735-742
    [72] Oross WJ, Thomson WW. The Ultrastrcture of the Salt Glands:Secreting and Nonsecreting. Eur J Cell Biol,1984,34(2):287~291
    [73] Platt-Aloia KA,Bliss RD,Thomson WW.Lipid-Lipid Interactions and Membrane Fusion in Plant Salt Glands.In: Biosynthesis and Function of Plant Lipids. Eds W W. Thomson, I B Mudd,M Gibbs. Amerian Society of Plant Physiologists, Rockville,M D. 1983,160-172
    [74] Pollak Q Waisel Y. Salt Secretion in Aeluropus Litoralis(Willd.) Parl.Annals of Botany, 1970,34:879-888
    [75] Rao GG, Rao GRPigment composition and chlorophyyase activity in pigment pea and Gingelley under NaCl salinity. Indian J Exp.Biol, 1981,19:768-770
    [76] Rodriguez HG,Roberts JKM,Jordan WR,Drew MC. Growth, water relations and accumulation of organic and inorganic solutes in roots of maize seedings during salt stress.Plant Physiol, 1997,113:881-893
    [77] Scandalios JGOxygen stress and superoxide dismutase. Plant Physiol , 1993,101:7-12
    [78] Scholander PF,Hammel HT,Hemmingsen EA, Garey W. Salt balance in mangroves.Plant Physiology, 1962,37:722~729
    [79] Shah CB, Loonmis RS. Ribonucleic acid and protein metabolism in sugar beet during rough.Physiol Plant, 1965,18:240~254
    [80] Shennan C.Salt tolerance in Aster tripolium L.III.Na and K Fluxes in intact seedings.Plant Cell Environ, 1987,10:75-81
    [81] Shimony C, Fahn A. Light and electron microscopical studies on the structure of salt glands of Tamarix aphylla L. J Linn Soc, 1968,60:282-288
    [82] Shimony C,Fahn A,Reinhold L. Ultrastrcture and Ion Gradients in the Salt Glands of Avicennia Marina(Foresk.) Vierh.New Phytologist, 1973,72:27~37
    [8
    
    [83] Smirnoff C, Thonke B, Popp M. The compatibility of D-pinitol and 1 D-1-o-methyl-mucoinositol with malate dehydrogenase activity. Bot Acta , 1990,103:270~273
    [84] Storey R, Pitman MG, Stelzer R, Carter C. X-ray micro-analysis of cells and cell compartments of Atriplex spongiosa leaves. J Exp Bot, 1983,34(144):778~794
    [85] Storey R. Wye Jones RG Responses of Atriplex Spongioss and Suaeda Monocial to salt. Plant Physiol, 1979,82:156~160
    [86] Strogonow BP. New trends in the study of salt tolerence. Israel Program Sci Transl Jerusalem, 1974,:24~29
    [87] Thomson WW. The Structure and Function of Salt Glands.In: Poljakoff-Mayber A. Gale J. eds. Plants in Saline Environments. Berlin: Springer-Verlag, 1975,118~146
    [88] Valentina M. Activities of SOD and the ascorbate-glutathion cycle enzymes in subcellular compaetments in leaves and roots of the cultivated tomoto and its wild salt-tolerant relative Lycopersicon pennellii. Plant physiol, 2000,33: 65~77
    [89] Vissilyev A E, Stepanova A A.The Ultrastructure of Ion-Secreting and Non-Secreting Salt Gland of the Limonium Platyphyllum. Journal of Experimental Botany, 1990,41:41~46
    [90] Wang Y. Photosynthetic adaptation to salt stress in three-color leaves of a C_4 plant Amaranthus tricolor. Plant Cell Physiol, 1999,40:668~674
    [91] Yeo AR. Salt tolerance in the halophyte Suaeda maritime. Dum L, Phi D(eds). Univ. Sussex England. 1974,183~1844
    [92] Zhang H-Y(张海燕), Zhao K-F(赵可夫).Effects of salt and water stresses on osmotic adjustment of Suaeda salsa seedings.Acta Bot Sin (植物学报), 1998,40:56~61
    [93] Zhao KF (赵可夫) Study on biological strategies of the improvement and utilization of salt wasteland in Yellow river delta. China Popul Resour Environ (中国人口、资源与环境), 1992, 2 (2): 55~58
    [94] Zhao K-F(赵可夫), Fan H(范海), Harris P J C. Effects of exogenous ABA on the salt tolerance of Zea mays seedings under salt stress. Acta Bot Sin(植物学报), 1995, 37:295~300
    [95] Zhao K-F(赵可夫), Feng L-T(冯立田), Lu Y-F(卢元芳), Fan H(范海). The osmotica and their contribution to the osmotic adjustment for Kandelia candel (L.) Druce and Avicennia marina (Forsk) Vierh growing in the Jiulongjiang River Estuary. Oceanol Limnol Sin(海洋和湖沼学报), 1999, 30:58~61
    [96] Zhao K-F(赵可夫), Feng L-T(冯立田), Zhang S-Q(张圣强). Study on the adaptive physiology on salt tolerance of different ecotype reefs at Yellow River Delta. Acta Ecol Sin(生态学报), 1998, 5:8~14
    [9
    
    [97] Zhu JK, Liu JP, Li MX. Genetic Analysis of salt tolerance in Arabidopsis: Evidence for a critical role of potassium nutrition. Plant Cell, 1998,41:1125~1132
    [98] Zhu JK, Liu JP, Li MX. Genetic Analysis of salt tolerance in Arabidopsis: Evidence for a critical role of potassium nutrition.Plant Cell, 1998,10:1181~1192
    [99] Ziegler H, Luttge U. Die Salzdrusen von Limonium Vulgar I. Die Feinstruktur. Planta, 1966,70:193~206
    [100] Ziegler H, Luttge U. Die Salzdrusen Von Limonium Vulgate Ⅱ: Die Lokalisierung des Chloride., 1967,74:1~17
    [101] Zou B-J(邹邦基).Plant Nutrient. Beijing: Agriculture Press, 1982,296~298

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700