大挠性多体结构卫星刚柔耦合动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天技术的发展,现代大型航天器通常都带有大型挠性结构。如大尺度挠性天线、太阳帆板和大型空间桁架等。在航天器结构日趋复杂的同时,在轨运行航天器的运动因素也更加复杂多样。例如航天器整体经历的轨道转移、大角度姿态运动,航天器柔性部件的伸展运动、展开运动、大角度机动等。这些大范围的刚体运动将激发柔性体的弹性变形运动,而且这两种运动相互耦合,相互影响,导致其动力学行为非常复杂,出现动力刚化等特殊动力学现象。因此,研究航天器大范围刚体运动与其挠性附件弹性变形运动的刚柔耦合动力学具有重要的意义。本文就这个问题,进行了以下几个方面的研究:
     1) 针对航天器结构中常见的梁式构件,建立了计及动力刚化的刚柔耦合一次近似动力学方程。分别用假设模态法和有限元方法对梁的弹性变形进行离散,并编制了相应的程序进行数值仿真。仿真结果表明,当大范围刚体运动达到一定程度时,例如转动速度达到或超过柔性梁的一阶振动角频率时,没有计及动力刚化的传统零次近似动力学模型所得结果误差较大,甚至是完全错误的;而计及了动力刚化的一次近似刚柔耦合动力学模型能够正确反映挠性体的动力学行为,并验证了所谓的动力刚化现象,即挠性体的振动频率随着大范围刚体运动速度的增加而增大。
     2) 针对航天器结构中的另外两类挠性构件,板和桁架,根据各自的特点,采用不同的建模方法得到了系统的刚柔耦合一次近似动力学模型。数值仿真结果说明:传统动力学建模方法在解决这类挠性结构经历大范围刚体运动时的动力学问题时存在严重缺陷,必须建立一次近似刚柔耦合动力学模型才能正确预示其动力学行为。
     3) 针对一在轨运行的挠性多体结构卫星,建立起能够完整模拟其在轨运行动力学行为的刚柔耦合一次近似动力学方程组。为便于卫星姿态控制系统的设计,人们常把卫星模化为刚体卫星。然而,数值仿真发现,将挠性卫星模化为刚体而得到的姿态控制规律一般不适用于挠性体卫星,因为这样的控制系统可能引起卫星姿态和挠性附件弹性变形的发散。其次,在某些外界激励下,传统的零次近似动力学模型不能正确预示卫星的动力学行为,包括卫星的姿态运动和挠性体弹性变形运动,而本文所建立的刚柔耦合一次近似动力学模型能够得到满意的结果。
     本文研究发现,当一些带有大型挠性附件的航天器经历大范围刚体运动时,由于其刚体运动与挠性附件弹性变形运动的耦合作用,传统的零次近似动力学模型无法正确揭示系统的动力学行为;必须建立计及动力刚度项的刚柔耦合一次近似动力学模型,才能正确预示系统的动力学行为。
     本文的研究为大范围运动下挠性航天器的姿态控制系统设计及其挠性附件的振动控制系统设计奠定了基础。
With the development of aerospace technology, the large-scale spacecraft having large flexible structures appeared. The flexible structures, such as the great antenna, solar panels, large truss, had made the spacecraft configuration complex. Furthermore, the large overall motion of the spacecraft had become more complicated and diversiform. Unfortunately, the elastic deformed motion of the flexible structures aroused by the large overall motion of the spacecraft was not neglected again. Because of the coupling of the two motions, the dynamic analysis of the whole spacecraft is more difficult. What's more, the especial dynamic phenomenon, dynamic stiffening, became important in the analysis of spacecraft dynamics. Thus, research on the coupling of the large overall motion and the elastic deformed motion is important. The studies included in this thesis are as follows:Firstly, in view of the flexible beams of the spacecraft undergoing large overall motion, the rigid-flexible dynamic equations were established via the mode assumption and the finite element method. The results of numerical simulation show that the traditional dynamic modeling method can't indicate truly the dynamic action of flexible beams undergoing large overall motion. However, the dynamic model in this thesis can. Moreover, the dynamic stiffening phenomenon was verified.Secondly, in view of the flexible solar panel and large truss undergoing large overall motion, the rigid-flexible dynamic equations were established via the different methods. The results of numerical simulation show that there are some limitations in the traditional modeling method.Finally, the dynamic equations that can simulate completely the dynamic action of a flexible satellite flying on the orbit were established. It was funded that the control law of the rigid satellite's attitude can't be applied into the attitude control of the flexible satellite. Actually the attitude control system will arouse the instability of flexible satellite. Furthermore, with the effects of environment power, the traditional dynamic model can't indicate truly the dynamic action of the flexible satellite. On the contrary, the rigid-flexible dynamic model in this study can indicate the dynamic action of satellite.This research show that, the traditional dynamic model can't indicate the dynamic action of flexible satellite undergoing large overall motion because of the coupling of the rigid motion and the deformed motion. In order to indicate the dynamic action truly of the flexible satellite, it is prerequisite to establish the first order approximation rigid-flexible coupling dynamic model.
引文
[1] 黄圳珪,赵志建编著.大型航天器动力学与控制.长沙:国防科技大学出版社,1990
    [2] 马兴瑞,王本利,苟兴宇等著.航天器动力学—若干问题进展及应用.北京:科学出版社,2001年9月第一版.
    [3] T. R. Kane, R. R. Ryant, A. K. Banerjee. Dynamics of a Cantilever Beam Attached to a Moving Base. Journal of Guidance, Control and Dynamics, 1987, 10(2): 139~151
    [4] A. K. Banerjee, T. R. Kane, Dynamics of a Plate in Large Overall Motion, Journal of Applied Mechanics, 1989. 11, Vol. 56: 887-892
    [5] 陆佑方,柔性多体系统动力学.北京:高等教育出版社,1996年7月第一版
    [6] Wallrapp O. Linearized Flexible Multibody Dynamics Including Geometric Stiffening Effects. Mech. Strut & Mach, 1991, 19: 385~409
    [7] 张策,黄永强,王子良,陈树勋.弹性连杆机构的分析与设计.北京:机械工业出版社,1996
    [8] Linkins P W. Finite element appendage equations for hybrid coordinate dynamic anslysis. Journal of Solids & Structures, 1972, 8: 709~731
    [9] W J Haering, R R. Ryan. New Formulation foe Flexible Beams Undergoing Large Overall Plane Motion. Journal of Guidance, Control and Dynamics. 1994,17(1): 76~83
    [10] Cailos E. Padilla and Andreas H. Von Flotow. Nonlinear Strain-Displacement Relations and Flexible Multibody Dynamics. Journal of Guidance, Control and Dynamics, 1992, 15: 128~136
    [11] 洪嘉振,蒋丽忠.柔性多体系统刚柔耦合动力学.力学进展,2000,30(1):15~20
    [12] 于清,洪嘉振.柔性多体系统动力学的若干热点问题.力学进展,1999,29(2):145~154
    [13] 洪嘉振,蒋丽忠.动力刚化与多体系统刚柔耦合动力学.计算力学学报,1999,16(3):295~300
    [14] William Haering. Simple Flexible-Body Dynamic Beam Formulations: Deformation Choices, Boundary Conditions and Strain Approximations. AIAA, A01-25086, 2001-1297
    [15] Yoo. H. H. and J. Chung Dynamics of Rectangular Plates Undergoing Prescribed Overall Motion. Journal of Sound and Vibration. 2001, 239(1): 123~137
    [16] Yoo. H. H. Ryan. R. R. and Scott. R. A. Dynamics of Flexible Beams Undergoing Overall Motions. Journal of Sound and Vibration. 1995, 181 (2): 261~278
    [17] 蒋丽忠,洪嘉振.作大运动弹性薄板中的几何非线性与耦合变形.力学学报,1999,31(2),243~249
    [18] 刘才山,王玉玲等.一般柔性体连续系统的动力学建模方法.山东建筑工程学院学报,1999,14(1),59~63
    [19] 杨辉,洪嘉振等.刚柔耦合多体系统动力学建模与仿真.计算力学学报,2003,20(4), 403~408
    [20] 刘锦阳,洪嘉振.作大范围运动矩形薄板的建模理论和有限元离散方法.振动工程学报,2003,16(2),175~178
    [21] J. C. Simo, L. Vu-Quoc. On the Dynamics of Flexible Beans Under Large Overall Motions-The Plane Case: Part Ⅰ. Journal of Applied Mechanics. December, 1986, Vol. 53, 849~854
    [22] J. C. Simo, L. Vu-Quoc. On the Dynamics of Flexible Beans Under Large Overall Motions-The Plane Case: Part Ⅱ. Journal of Applied Mechanics. December, 1986, Vol. 53, 855~863
    [23] Ider S. K, Amirouche F M L. Nonlinear Modeling of Flexible Multibody System Dynamics Subjected to Variable Constraints. Journal of Applied Mechanics, 1989, 56: 444~450
    [24] Ider S. K, Amirouche F. M. L. The Influence of Geometric Nonlinear in the Dynamics. Journal of Applied Mechanics. 1989, 55: 830~837
    [25] Bakr E. M, Shabana A. A. Geometrically Nonlinear Analysis of Multibody Systems. Computers and Structures. 1986, 23: 739~751
    [26] Boutaghou Z. E, Erdman A. G Stolarski H. K. Dynamics of Flexible Beams and Plates in Large Motions. Journal of Applied Mechanic, 1992, 59: 991~999
    [27] Oskar Wallrapp. Linearized Flexible Multibody Dynamics Including Geometric Stiffening Effects. Mech. Struct. & Mach. 1991, 19(3): 385~409
    [28] Oskar Wallrapp and Richard Schwertassek. Representation of Geometric Stiffening in Multibody System Simulation. International Journal for Numerical Methods in Engineering. 1991, Vol. 32: 1833~1850
    [29] Jeha Ryu, Sang-Sup Kim, and Sung-Soo Kim. A General Approach to Stress Stiffening Effects on Flexible Multibody Dynamic Systems. Mech. Struct. & Mach. 1994, 22(2): 157~180
    [30] Banerjee A. K. Lemark M. E. Multi-Flexible Body Dynamics Capturing Motion-Induced Stiffness. Journal of Applied Mechanics. 1991, 58: 766~775
    [31] Banerjee A. K. Dichens J. M. Dynamics of Arbitrary Flexible Body in Large Rotation and Translation. Journal of Guidance, Control and Dynamics. March-April, 1990, 221~227
    [32] Banerjee A. K. Block-Diagonal Equations for Multibody Elastodynamics with Geometric Stiffness and Constraints. Journal of Guidance, Control and Dyanmics. 1993, Vol. 16(6): 1092~1100
    [33] Huston R. L. Computer Methods in Flexible Multibody Dynamics. International Journal for Numerical Methods m Engineering, 1991, Vol. 32: 1657~1668
    [34] Wu S. C, Haug E. J. Geometric Nonlinear Substructuring for Dynamics of Flexible Mechanical Systems. International Journal for Numerical Methods in Engineering. 1988, 26: 2211~2226
    [35] Liu A. Q, Liew K. M. Nonlinear Substructure Approach for Dynamic Analysis of Rigidflexible Multibody Systems. Computers Methods in Applied Mechanics and Engineering. 1994, 114: 79~396
    [36] Zhang D. J, Liu C. Q, Huston R. L. On the Dynamics of an Arbitrary Flexible Body with Large Overall Motion: An Integrated Approach. Mech. Struct. & Mach. 1995, 23(3): 419~438
    [37] Zhang D. J, Huston R. L. On Dynamic Stffening of Flexible Bodies Having High Angular Velocity. Mech. Struct. & Mach. 1996, 24(3): 313~329
    [38] 洪嘉振,尤超蓝.刚柔耦合系统动力学研究进展.动力学与控制学报,2004,2(2),1~6
    [39] 刘锦阳,洪嘉振.刚柔耦合动力学系统的建模理论研究.力学学报,2004,34(3),408~415
    [40] 杨辉,洪嘉振,余征跃.两种刚柔耦合动力学模型的对比研究.上海交通大学学报,2002,36(11),1591~1595
    [41] 杨辉,洪嘉振等.刚柔耦合建模理论的实验验证.力学学报,2003,35(2),253~256
    [42] 杨辉,洪嘉振,余征跃.动力刚化问题的实验研究.力学学报,2004,36(1),118~124
    [43] Liu JY, Hong JZ. Dynamic Modeling and Modal Truncation Approach for a High-speed Rotating Elastic Beam. Archive of Applied Mechanics. 2002, 72: 554~563
    [44] 刘锦阳.刚柔耦合动力学系统的建模理论研究.[博士论文].上海交通大学工程力学系,2000
    [45] Meirovitch L, Nelson H. D. High Spin Motion of a Statellite Containing Elastic Parts. Journal of Spacecraft and Rocket, 1966, 13: 1597~1602
    [46] T.R.凯恩,D.A.李文森等著.航天飞行器动力学.北京:科学出版社,1988.7
    [47] 蒋丽忠,洪嘉振等.作大范围运动弹性梁刚柔耦合动力学建模.计算力学学报,2002,19(1):12~15
    [48] 刘锦阳,洪嘉振.柔性梁的刚柔耦合动力学特性研究.振动工程学报,2002,15(2)194~198
    [49] 刘锦阳,洪嘉振.柔性体的刚柔耦合动力学分析.固体力学学报,2002,23(2),159~166
    [50] 王建明,刘又午.刚柔耦合系统动力学建模新方法.振动工程学报,2003,16(2),194~197
    [51] 陆志华,黄承绪,孙世基.刚柔耦合多体系统动力学模型的数值解法.上海交通大学学报,1997,31(6),65~68
    [52] 邹经湘,王本利,王世忠等.结构动力学.哈尔滨工业大学出版社,1996年
    [53] 曹志远编著.板壳振动理论.中国铁道出版社,1989年4月
    [54] 王文亮.结构振动与动态子结构方法.上海交通大学大出版社,1995年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700